
ReUse: A Recommendation System for Implementing User Stories

Heidar Pirzadeh, Andre de Santi Oliveira, Sara Shanian
SAP SE, SAP Hybris

Montreal, Quebec, Canada
email: {heidar.pirzadeh, andre.de.santi.oliveira, sara.shanian}@sap.com

Abstract— In agile software development, user stories contain
feature descriptions that are used as the entry points of
discussions about the design, specification, requirements, and
estimation of the software features. The first step in
implementing a user story is to find proper files in the code base
to make changes. To help the developers, in this paper, we
describe a new approach that automatically recommends the files
where a feature will most likely be implemented based on a given
user story that describes the feature.

Keywords—Recommendation System; Text Mining; Program
Comprehension; Information Retrieval; Agile Software
Development

I. INTRODUCTION
Since 2010 more than 200 big software companies have

adopted Agile software development methodology [1].
Important motivations behind the widespeard adoption of Agile
software development are fast delivery to the market, efficient
handling of new requirements, and increased overall
productivity of development teams.

The development team in an Agile setting typically
receives the new requirements in the form of a user story
(hereinafter interchangeably referred to as story). A user story
is a very high-level definition of a requirement, which contains
enough information so that the developers can produce a
reasonable estimate of the effort to implement it. Given a story,
developers go through three basic steps of 1) identification of
code locations as starting points, 2) finding and applying a
solution, and 3) testing and validating the implemented change.

Any delay in one of the above-mentioned steps will result
in a delayed implementation of the story and undermines the
important goal of fast delivery. In fact, it has been shown that
developers could get stuck in the first step of finding the right
location to start making their changes to implement the request
[2], [3]. While experienced developers are usually faster in
identifying and understanding the subset of the code relevant to
the intended change, studies have shown that developers spend
up to 50 percent of their time searching for information [4], [5]
to answer their questions about the system under development.

The reason that experienced developers are faster in their
identification step is because of their higher familiarity with the
system and with the previously implemented similar
requirements. Their knowledge and experience makes them a
valuable source for answering others’ questions during their
program comprehension [6]. If an experienced developer
leaves the team, usually, part of that knowledge will also go
with him. We think that externalizing this knowledge and how
it is gained could enable everybody in the team to speed up and
improve their deliveries and, in turn, make the team less prone
to personnel changes. A recommendation system that could

provide team members with suggestions to help with
identification of changes locations seems like a perfect fit for
this scenario.

Once implemented, a user story could be usually mapped to
the creation or modification of one or more classes in the code
base. Many companies use ticket management (e.g., JIRA [12])
and code management (e.g., Bitbucket [13]) ecosystems to
respectively maintain and store the stories, the code and the
mapping between them. For example, each story in JIRA has a
ticket number. When committing the code that implements a
story to Bitbucket, the developer could include the story’s
ticket number in the commit message so that JIRA creates a
link between the story and the committed code. The
information accumulated in ticket/code management systems
could be leveraged by the recommendation system in creating
insightful recommendations that could help developers in faster
and more reliable deliveries.

In this paper, we propose ReUse a recommendation system
that employs techniques from information retrieval, text
mining, and the field of recommender systems to automatically
suggest a list of files where a story will most likely be
implemented. We evaluated the effectiveness of our
recommendation system in an industrial setting on the Order
Management System (OMS) product at SAP Hybris. The
results show that our recommendations are of 71% precision.

We start by reviewing a few related works in Section II. In
Section III, we describe the proposed approach. Section IV
discusses the results of our case study on OMS. In Section V,
we discuss the threats to validity. We conclude the paper and
describe future avenues in Section VI.

II. RELATED WORK
To the best of our knowledge, no other work has been

reported on a recommendation system for user stories in Agile
software development. However, a few works have been done
on recommendation systems for bug localization during
software maintenance. Kim et al. [11] propose a prediction
model to recommend files to be fixed. In their model, the
features are created from textual information of already
existing bug reports, then Naive Bayes algorithm is applied to
train the model using previously fixed files as classification
labels, and then use the trained model to assign multiple source
files to a given new bug report. Our evaluation of the
effectiveness of a recommendation is also quite different. They
“consider the prediction results to be correct if at least one of
the recommended files matches one of the actual patch files for
a given bug report”. We think for a developer to go through the
recommended files he needs to be assured about the precision
of the list. Zhou et al. [3] proposed a revised Vector Space
Model approach for improving the performance for bug

149Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

localization. They measure the lexical similarity between a new
bug report and every source file and also give more weight to
larger size files and files that have been fixed before for similar
bug reports. Their approach relies on good programming
practices in naming variables, methods and classes. In
comparison, our approach is independent of file names or the
content of the files.

III. THE PROPOSED APPROACH
The idea behind our approach is based on the assumption

that there are naturally occurring groups of user stories in any
project that can be identified by looking at their description. By
using such information, our system could provide
recommendations for a new user story by first finding the
group of user stories it belongs to by computing its similarity to
existing user stories. Thus, a user story could have a set of
nearest neighbors that can be used to make recommendations
about the files needed to implement that user story based on the
files that were modified during the implementation of similar
user stories.

As shown in Fig. 1, our recommendation system performs
its task through three main steps:

§ Analyzing the textual content of the new story to
prepare it for next steps by tagging the content with
meta information,

§ Creating a weighted vector of the new story and use it
in finding other stories that are closely similar to it, and

§ Preparing a recommendation for the new story by
providing a precise set of recommended files to be used
by developers.

A. Text Analysis and Preparation
A common pre-processing step in many information

retrieval approaches is one that removes stop-words - The
words that add little value to the process of finding relevant
information. Stop-word identification, which is the process of
identifying these words, makes use of domain and global
information. For example, in the domain of English literature,
stop-words include auxiliary verbs (e.g., have, be), pronouns
(he, it), or prepositions (to, for).

In our text analysis and preparation, our stop-word remover
component uses Lucene’s StandardAnalyzer to remove the
terms in a user story that are listed in a set of common English
stop-words dictionary. Another pre-processing step in our
approach is Stemming. A stemmer maps different forms of a
term to a single form. A stemmer, for example, could strip the
“s” from plural nouns, the “ing” from verbs, and so on to
extract the stem of the term. That way, a stem could act as a
natural group of terms with a similar meaning. Our stemmer
component uses Lucene’s EnglishStemming to find the stems;
the English stemmer is an updated version of the famous Porter
Stemmer [9].

Whether it is in a query or in a document some terms can
represent different meaning depending on the role that they
take. The role is even more important when there are processes
like Stemming that changes a term to an alternative (usually
simpler) that could result in an unjustifiable similarity while
the original form of the term had a different meaning because
of the role it had. For example, the term “dogs” has a different
meaning in the sentence “The sailor walked the dogs” in
comparison to the meaning that it has in “The sailor dogs the
hatch” because of its roles that are correspondingly noun in the
first sentence and verb in the second one. This role is also
referred to as the part-of-speech (POS) for that term. The
similarity between two similar looking terms should increase
only if their roles are the same in the places that the word has
appeared in. That is why we perform a POS tagging on a user
story before we pass it to our stemming component. Our
current POS tagger component is implemented using Maxent
part-of-speech tagger from the Stanford NLP group.

B. Weighting and Similarity Calculation
We use a weighting process for finding representative

terms in each user story and add them to a corresponding terms
vector that is weighted based on the representativeness of each
term for that user story. Our weighting function is implemented
as a Term Frequency, Inverse Document Frequency (TF-IDF)
[10] schema. The goal of TF-IDF term weighting is to obtain
high weights for terms that are representative of a document’s
content and lower weights for terms that are less
representative.

In our case, the weight of a term depends both on how
often it appears in the given story (term frequency, or tf) and on
how often it appears in all the stories (document frequency, or
df) of the ticket management system. In general, a high
frequency of a term (high tf) in one story shows the importance
of that term while if a term is scattered between different
stories (high df), then it is considered less important. Therefore,
if a term has high tf and low df (or high idf -inverse document
frequency) it will have a higher weight. Since the importance
of a term does not increase proportionally with the term’s
frequency, the weight of term i in story k is calculated as
shown in (1):

𝑤",$ =
𝑙𝑜𝑔 𝑡𝑓",$ + 1 ∗ log 𝑁 𝑛"

log 𝑡𝑓3,$ + 1 ∗ log 𝑁
𝑛3

4
5
367

														(1)

where term frequency 𝑡𝑓",$ of term i in story k is the number of
times that i occurs in k, N is the total number of stories, 𝑛" is
the number of stories where the term i has appeared in and e is
the total number of terms. The factor log	(𝑁 𝑛") is the “idf”
factor that decreases as the terms are used widely in all user
stories. The denominator in the equation is used for weight

Code
Repository

Issue
Tracking
System

User
story

abc.java
efg.java
aaa.xml
bbb.zul

Text Analysis and
Preparation

Weighting and
Similarity Calculation

Building
Recommendations

Figure 1. Overview of the ReUse recommendation system

150Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

normalization. This factor is used to adjust the terms vector of
the story to its norm, so all the stories have the same modulus
and can be compared no matter the size of the story.

Once we have the terms vector of each story ready, we
need to measure the similarity between stories. The similarity
between two objects is in general regarded as how much they
share in common. In the domain of text mining, the most
commonly used measure for evaluating the similarity between
two documents is the cosine of the angle between term vectors
representing the documents. In the same way, as shown in (2),
we calculate the similarity between two stories x and y by
measuring the cosine similarity between their terms vectors 𝑉<
and 𝑉=:

𝑆 𝑉<, 𝑉= =
𝑤",< ∗ 𝑤",=?

"67

(𝑤",<)4?
"67 ∗ (𝑤",=)4?

"67
														(2)

where 𝑤",< and 𝑤",= are respectively the weight of term i in
vectors 𝑉< and 𝑉=, and the denominator of the fraction is for
normalization. The weights cannot be negative and, thus, the
similarity between two vectors ranges from 0 to 1, where 0
indicates independence, 1 means exactly the same, and in-
between values indicate intermediate similarity.

C. Building Recommendations
Recommendation systems are now part of many

applications in our daily life. These systems provide the user
with a list of recommended items and help them to find the
preferred items in the bigger list of available items [7], [8]. Our
recommendation system is based on collaborative filtering. In
collaborative filtering, the items are recommended to the users
based on the previously rated items by the other users.
Mapping the idea back to our case, our recommendation
system should recommend files for a new user story based on
the previously modified files by other user stories. More
formally, as shown in (3), the usefulness of file 𝑓 for
implementing story 𝑠 noted as the utility 𝑢(𝑠, 𝑓) of file 𝑓 for
story 𝑠 has the following form

𝑢 𝑠, 𝑓 :	Func 𝑢 𝑠", 𝑓 												∀𝑠" ∈ 𝐶K																(3)

where 𝑢(𝑠", 𝑓) is the utility assigned to the file 𝑓 for story 𝑠" in
𝐶K	the set of stories that are similar to story 𝑠. Different utility
functions could be plugged into our recommendation system to
be used in creating recommendations. When building the
recommendation, our goal is to provide the user with a highly
precise list of recommended files that our recommendation
system deems necessary to implement the user story.

The recommendation can help developers in building their
mental model in a quicker and more accurate way. If the
developer is already familiar with the code base, she could use
the recommendation as a potential checklist to increase her
confidence in the changes that are planned. The basic idea in
creating a precise recommendation is to find the files that are
associated with similar stories and are frequently changed to
implement those stories. More formally, as presented in (4), to
build the recommendation, we calculate the utility 𝑢M	of file 𝑓
for a given story 𝑠 as follows

𝑢M 𝑠, 𝑓 = 𝑢 𝑠", 𝑓 ∗
?

"67

𝑆 𝑉K, 𝑉KN 						if		𝑆 𝑉K, 𝑉KN > 𝑡

	0																																																				otherwise

				(4)

where 𝑆 𝑉K, 𝑉KN is the calculated similarity between the given
story 𝑠 and a similar story 𝑠", 𝑡 is a certain cut-off threshold, 𝑛
is the maximum number of similar stories to be considered, and
𝑢 𝑠", 𝑓 is the utility of file 𝑓 for story 𝑠" which is defined as
𝑢 𝑠", 𝑓 = 𝑐",[where 𝑐",[is the number of commits in which
the file 𝑓 has appeared for implementing story 𝑠".

IV. EVALUATION
To evaluate the effectiveness of the ReUse

recommendation system, we use it in an industrial setting on
the OMS project at SAP Hybris. The OMS enables customers
to flexibly pick and choose from a set of omni-channel order
management and fulfillment functionalities. We use release 5.7
of OMS in 2015. This version of OMS contains 3018 files in
928 packages. The total number of tickets (excluding bugs) for
this release was 176. All 176 tickets were already implanted at
the time of evaluation and each ticket was linked to the
modified files in the Git repository management system
Bitbucket. The tickets were extracted from JIRA as a CSV file.
Although the exported file contained many attributes for each
ticket we only kept Summary (the name of the ticket),
Description, Issue Type, Ticket ID, Sub-task ID, Parent ID for
the experiment.

Technically, the goal in our evaluation is to find out how
effectively our recommendation system can predict the set of
files that need to be changed for each story and compare the
recommended set with the actual set of files that were modified
for that story. This way, our recommendation problem could be
seen as a classification problem where our recommendation
algorithm tries to classify the source code files into two class of
relevant and irrelevant for each story. The effectiveness of
classification in this case would be the rate of true and false
predictions that the algorithm makes. These rates can be
arranged in a contingency table that is called the confusion
matrix (see Table I).

TABLE I. CONFUSION MATRIX

	 Relevant	 Irrelevant	 	
Recommended TP FP TP + FP
Not recommended FN TN FN +TN
 TP + FN FP + TN

As seen in Table II, True Positive (TP) is the number of
correctly predicted the relevant files. False Positive (FP) is the
number of incorrectly predicted relevant files. False Negative
(FN) is the number of incorrectly predicted irrelevant files.
True Negative (TN) is the number of correctly predicted
irrelevant files.

As shown in (5), Precision or true positive accuracy is
calculated as the ratio of recommended files that are relevant to
the total number of recommended files:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
																														(5)

Recall or true positive rate, as presented in (6), is calculated
as the ratio of recommended files that are relevant to the total
number of relevant files:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
																																	(6)

151Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Comment under OMSE-28
Developer X added a comment - 10/Jul/15 3:13 PM GMT-0400

“We have split this story in 2 (other ticket: OMSE-540). This ticket
should now represent the actions that happen after the consignment
is confirmed […]”

Comment under OMSE-540
Developer X added a comment - 10/Jul/15 3:14 PM GMT-0400

“[… We] will write the service for marking items as shipped […]”

Figure 2. OMSE-28 and its comment (top), OMSE-540 and its comment
(bottom)

Specificity or true negative accuracy is calculated as the
ratio of not recommended files that are irrelevant to the total
number of irrelevant files as shown in (7):

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
																												(7)

Then as presented in (8) Accuracy is calculated as the ratio
of correct predictions:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
																	(8)

In our evaluation, we needed to have a portion of our

tickets as a training set for the recommendation system to use
them to build recommendation and a second portion as our test
set (set of stories that we want to feed to the recommendation
system and evaluate the suggestions that the system provides
for each of those stories). To avoid any bias in the selection of
the training and the test set we use k-Folds Cross Validation. In
k-Folds cross validation, sometimes called rotation estimation,
the data set 𝐷 is randomly spilt into 𝑘 mutually exclusive
subsets (the folds) 𝐷7	, 𝐷4	, … , 𝐷$ of approximately equal size.
The algorithm is trained and tested 𝑘 times; each time 𝑡	 ∈ {1,
2, …,	𝑘}, it is trained on 𝐷\𝐷m (i.e., 𝐷 minus	𝐷m) and tested on
𝐷m.
 The result presented in this section uses the following
configuration: we fold the data by splitting our set of 176
stories randomly into 18 sets (roughly 10 stories per set). On
each iteration, we use 17 sets as our training set and 1 set as the
test set. That is, a cross validation (k = 18). In our experiment
we only consider the most similar story (n = 1) and the cutoff
threshold is (t = 0.5). The number of files that will be
recommended in this case is equal to the number of files
modified files for the most similar story. The following table
shows the result of our evaluation as the average of 18
iterations.

TABLE II. EVALUATION RESULTS

Metric	 Value	
Precision	 0.7125751	
Recall	 0.4658216	
Accuracy	 0.9178191	
Specificity	 0.9363258	

Execution of the experiment on a typical developer
machine (Intel Core i7 2.5 GHz processor of 4 cores and 16
GB of Ram) took less than 30 seconds. This time includes the
time for training and the time to run the test of each iteration.
As shown in the Table I, the files that our recommendation
system suggests to the developers in the recommendation are
71% of the time the files that they certainly needed to make a
change to implement the user story. At the same time, our
recommendation system scores a very high specificity and
accuracy. Our system, is successful in avoiding the
recommendation of irrelevant files 93% of the time while in
general makes a correct prediction 91% of the time in its
recommendation.

We also performed a case by case analysis for the stories
for which our recommendation system scored lower than 50%
precision. One of such stories was OMSE-31, for which the
precision of the recommended files was only 4%.

Our investigation showed that, the story description was
updated during a sprint but the previous content was not
deleted (the content was rather formatted with strikethrough).
The csv parser in our system ignores all text formatting and
could not detect such situations and as a result recommended
files associated to a story that was similar to OMSE-31
considering the content that should have not been considered.

Another case was for story OMSE-540 with only 8% of
precision. The recommendation system detected OMSE-28 as
highly similar story and recommended the modified files
accordingly. However, the list of files that was actually
modified was significantly different than the predicted one.
Further investigation showed that OMSE-28 was describing a
feature from the end user perspective. While, as shown in
Fig. 2, later on, the story was split into two smaller stories one
to implement the user interface and the second one to
implement the services in the backend that will be used by the
user interface to implement the feature. For this, the developer
cloned the original user story (OMSE-28) and created OMSE-
540 and made a minimal change to the description. However,
he left two comments, one for each story. The current version
of our recommendation system does not take comments into
account.

V. THREATS TO VALIDITY
 There are potential threats to the validity of our work. The
effectiveness of our recommendation system is highly
dependent on the quality of the stories that the members of the
Agile team maintain for their project. Although our
recommendation system showed an impressive effectiveness

152Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

on the commercial project of OMS at SAP Hybris, not all
teams or companies have similar level of standards when it
comes to creating and maintaining their backlog of the stories.
TF-IDF alone is prone to misspellings and multi-word verbs
and expressions. To have a resilient approach we need to check
the frequency of those cases and remove them.

VI. CONCLUSION AND FUTURE WORK
In this paper we proposed an approach to help developers

in during their implementation tasks by taking benefit from the
suggestions that our recommendation system provides them on
where to make code changes. Our recommendation system
called ReUse, builds a precise recommendation list of files that
are need to be changed with high probability. We evaluated our
recommendation system on the OMS at SAP Hybris and the
results show 71% precision in recommending the files that
need to be changed.

For our future work, we would like to look into automatic
fine tuning of parameters in our recommendation builder along
with plugging in new utility functions to increase the recall and
take advantage of our recommendation system on other
projects at SAP. Taking other sources of information such as
comments or the links to other tickets (the hierarchy of tickets)
into account could help us take advantage of relations other
than the textual and conceptual relation between stories to
improve the results.

Handling the rich texts by the parser in our work, as shown
in our case study, could potentially reduce the chances of
inaccurate similarities and result in better recommendations.
Also, adding components to our system to deal with misspelled
words and expressions could also potentially be beneficial in
detecting the similarities between stories.

REFERENCES
[1] J. Little, “The List of Firms Using Scrum”, [Online].

Available from: http://scrumcommunity.pbworks.com/w/page/1
0148930/Firms Using Scrum 2016.07.12

[2] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and
T. Nguyen, “A Topic-Based Approach for Narrowing the Search
Space of Buggy Files from a Bug Report,” Proc. IEEE/ACM
26th Int’l Conf. Automated Software Eng., pp. 263-272, 2011.

[3] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be
Fixed?—More Accurate Information Retrieval-Based Bug
Localization Based on Bug Reports,” Proc. 34th Int’l Conf.
Software Eng., pp. 14-24, 2012.

[4] A. J. Ko, R. DeLine, and G. Venolia “Information Needs in
Collocated Software Development Teams”, In Proceedings of
the 29th International Conference on Software Engineering,
ICSE’07. IEEE, 2007.

[5] G. C. Murphy, M. Kersten, and L. Findlater “How Are Java
Software Developers Using the Eclipse IDE?” IEEE Software
pp. 76–83, 2006.

[6] Th. D. LaToza, G. Venolia, and R. DeLine “Maintaining mental
models: a study of developer work habits”. In ICSE ’06:
Proceeding of the 28th international conference on Software
engineering. ACM, New York, NY, USA, 492–501, 2006.

[7] Y. Koren, R. Bell, “Advances in Collaborative Filtering”, ch. 5.
Springer,. Recommender Systems Handbook, 2011.

[8] L. Baltrunas, and F. Ricci. “Experimental evaluation of context-
dependent collaborative filtering using item splitting” User
Modeling and User-Adapted Interaction 24, no. 1-2: 7-34, 2014.

[9] M. F. Porter, “An algorithm for suffix stripping”. Program,
14(3):130–137, 1980.

[10] T. Joachims. “Text Categorization with Support Vector
Machines: Learning with Many Relevant Features”. In Proc. of
ECML98, 137-142, 1998.

[11] K. Dongsun, Y. Tao, S. Kim, and A. Zeller. “Where should we
fix this bug? a two-phase recommendation model” Software
Engineering, IEEE Trans. on 39, no. 11: 1597-1610, 2013.

[12] JIRA, [Online]. Available from: https://www.atlassian.com/soft
ware/jira 2016.07.12

[13] Bitbucket, [Online]. Available from: https://bitbucket.org/
2016.07.12

153Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

