
The Daily Crash:
A Reflection on Continuous Performance Testing

Gururaj Maddodi∗, Slinger Jansen∗, Jan Pieter Guelen† and Rolf de Jong†
∗ Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands

Email: g.maddodi@uu.nl, slinger.jansen@uu.nl
†AFAS Software, Philipsstraat 9, 3833 LC Leusden, Netherlands

Email: j.guelen@afas.nl, r.dejong@afas.nl

Abstract—Software architects base their design tasks on ex-
perience mostly, when developing new architectures. The re-
quirements that are placed on these architectures, such as
high-availability and minimum performance requirements, are
becoming more demanding continuously. In this paper, we reflect
on a method for continuous performance testing, to provide
architects with feedback on their design/implementation and
prevent problems before they affect the users or other systems.
If architects employ the method, they are no longer flying blind,
and can continuously evaluate and improve their application. We
illustrate the use of the method at a large software company
and report on the outcomes of using continuous performance
testing in the development of their upcoming enterprise resource
planning application release that is going to be used by over a
million users.

Keywords–Workload Generation; Performance Testing; Soft-
ware Architecture.

I. INTRODUCTION

Performance demands placed upon modern software sys-
tems are constantly increasing. Systems ranging from simple
websites to large business solutions need to support concurrent
access by large numbers of users [1][2]. Both conventional
wisdom and several studies [3][4] indicate that many soft-
ware projects have performance problems. Catching these
performance problems before they affect users of a system
in production is becoming a focal point in the development of
software systems.

To gain insight into performance variations of a software
system, it has to be monitored before and after changes are
made to the system. This can be done through testing the
system with a test workload. Workload generation is a process
of simulating usage load that the software system is expected
to handle in a production environment. Performance testing of
a software application involves measuring the resource usage
or throughput, by giving a set of inputs to the system by means
of generated workload. In performance testing, a realistic
workload is simulated/generated and thrown at the working
system, while different monitoring mechanisms are being
used to evaluate system behavior. One of the most common
problems in performance testing is that an unrepresentative
workload is used, which gives misleading results [5]. The
selected workload used for testing has a major influence on
the eventual performance results [6]. Hence, an outline of
workload generation techniques and tests is a helpful tool in
testing software performance.

Also as most software producing organizations continu-
ously upgrade software products, either with new features
or bug fixes, these systems must be continuously tested for
their performance. Continuous Performance Testing (CPT) is
a methodology of testing the performance of a software system

every time a change is made to it. This term stems from the
continuous software improvement movement, which prefers
guided incremental improvement over discontinuous burst of
unreliable major software releases and updates [7].

The contributions of this paper are: (1) an outline of
available workload generation techniques is provided, and
(2) a reflection on a method of CPT in practice at a large
software organization. We structure the work as follows. First,
the research method is described in Section II. Secondly, an
overview is provided of the topic of workload generation with
a structured literature review in Section III. Thirdly, a literature
review on continuous performance testing is described in
Section IV. In Section V, the CPT method is presented, based
on the literature study. In Section VI, a case study is presented
at a software company describing a practical implementation
and results of the method. The case is evaluated with practi-
tioners, who share their experience using CPT and insights it
has given to their development process. We describe analysis
and discussions in Section VII. Conclusions are described
in Section VIII, where we illustrate that CPT, when based
on realistic workloads, is an essential tool for any software
architect.

II. RESEARCH METHOD

The research was conducted in two phases. First, a liter-
ature study was performed to establish the available methods
for CPT. Secondly, through design research, a new method for
CPT has been created. Thirdly, a case study is conducted to
evaluate the practical aspects of CPT.

A. Literature Study
This section details the literature study protocol created

to find papers discussing workload generation methods and
performance testing. We used the following keywords to find
publications on workload generation and continuous perfor-
mance testing:

“Testing workload generation” OR “Workload generator”
OR “Deriving workload” OR “Test user generation” OR
“Performance profiling” OR “software performance testing”
OR “Workload characterization” OR “Continuous integration
testing”

A literature protocol is established based on the recom-
mendations of Webster and Watson [8], and Kitchenham and
Charters [9]. Our data collection strategy consisted of using
three scientific search engines: Google Scholar, CiteSeerX,
and ieeexplore. Besides the mentioned keywords, references
to papers were also looked at, a technique Webster and Wat-
son [8] calls ”going backward”. This method was also taken

100Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

in the opposite direction (“going forward”) as the references
of important papers were also considered.

B. The Case-study Method
The case-study was conducted at AFAS Software. AFAS

is a Dutch vendor of Enterprise Resource Planning (ERP)
software. The privately held company currently employs over
350 people and annually generates e100 million in revenue.
AFAS currently delivers a fully integrated ERP suite, which
is used daily by more than 1.000.000 professional users from
more than 10.000 customers. The NEXT version of AFAS’
ERP software is completely generated, cloud-based, and tai-
lored for a particular enterprise, based on an ontological model
of that enterprise. The ontological enterprise model will be
expressive enough to fully describe the real-world enterprise of
virtually any customer, and as well form the main foundation
for generating an entire software suite on a cloud infrastructure
platform of choice: AFAS NEXT is entirely platform and
database-independent. AFAS NEXT will enable rapid model-
driven application development and will drastically increase
customization flexibility for AFAS’ partners and customers,
based on a software generation platform that is future proof
for any upcoming technologies. AFAS is continuously evalu-
ating NEXT for its performance, hence they are an attractive
choice for the case-study. The case company was also chosen
pragmatically, as a long term relationship exists between the
company and Utrecht University.

The case study comprised of interviewing four experts from
AFAS Software, including software architects and project man-
agers with years of experience in software architecture design.
The interviews conducted as part of the case-study were semi-
structured. An interview protocol was defined with questions
pertaining to: benefits of CPT that AFAS are seeing, tools
and frameworks used for testing, workload generation, alert
mechanisms, and organizational aspects of decision making.
The interviews were recorded and then later transcribed to
extract findings regarding the CPT process at AFAS. One of the
co-authors of this paper is also the person who implemented
some of the basic principles of CPT. He is now working at
AFAS and his previous work is being continued and worked
on by his colleagues.

Threats to validity can be internal or external. To counter
internal validity threats, one of the co-authors, who has in-
depth knowledge of the process of CPT at the company, was
asked to validate the findings. Also, a company representative
was asked to review the findings. External threats we foresee is
how the findings can be applicable to other organizations. Fur-
ther validation can be done by involving more organizations,
which we see as future work.

III. WORKLOAD GENERATION

Workload generators have been around since the early 90s,
both as academic and commercial tooling. In order to generate
for specific scenarios, the generators generally allow for a
number of input parameters to be set. Workload generation
techniques can have a number of different characteristics
associated with them, and can generally can be classified into
two types: static (do not depend on earlier of future actions)
and dynamic (based on temporal correlations or other outside
sources). Early tools were designed for specific circumstances,
mostly generating HTTP requests for static environments, such

as Webjamma [10] and S-clients [11]. Other tools generate
dynamic behavior, such as TPCW [12], SPEC WEB99 [13],
Webload [14], and JMeter [15].

Some workload generation methods target non-existent
systems and in these cases the generated load is tested against
a performance model of the system. In those cases, both the
workload and the system are simulated. This does require de-
tailed performance measurements from the original workload.
This helps to know the effects of a task on the system (or
similar measurements), so the basis of the model has corre-
sponding link to a performance measurement. Burstiness is a
commonly overlooked factor when generating workload [16].
The usage of a software system is not evenly distributed across
time, but has bursts and lulls. Applying a smaller degree of
burstiness to a workload can give the workload more realistic
behavior.

Finally, workload generators vary in the workload they
output. In the empirical approach, sampling is done of existing
data (data recorded from live sessions). In contrast, analytic
approaches use mathematical modeling to generate synthetic
workload. The empirical approach is easiest to implement,
however it lacks the flexibility as the recorded traces are
only representative of one specific configuration and software
version. A workable analytic model has the shortcoming that it
does not accurately exhibit the large number of unique possible
characteristics.

A. Workload Characterization and Generation Techniques
In this section, we describe some of the commonly used

workload generation and characterization techniques available
in literature.

Descriptive Generation [6][17][18][19] is a technique fre-
quently associated with simple statistical methods: averaging,
variances, standard deviation, correlations, distributions, and
their corresponding visualization such as histograms or scatter
plots. These statistic generation methods are meant to generate
workload characteristics such as active users, user think time,
actions per sec, etc.

Clustering [19][20] is a workload generation technique
that groups similar actions as a unit, making generalizations
possible. The selected clusters can be made based on other
workload generation methods such as correlations, or by
making a selection manually based on functionality within the
chosen system. Antonatos [21] describes a method, in which
the available network traffic is clustered based on protocol
and message type, dividing the traffic into 5 clusters: HTTP
request, HTTP Images, HTTP Text, HTTPapp data, and so on.

Markov chains [18][22][23][24] use the temporal charac-
teristics of a workload. A Markov chain consists of series of
different states a target system can exist in and the transitions
between those states. Transitions are given probabilities of
occurrence with several states being active at once, for e.g.,
many users can use a system at once and their actions are not
affected by each-other but only by their own previous actions.

Stochastic form charts [19][20][25] are similar to Markov
chains, in that, in addition to states and transitions between
those states, actions can also be present. A state can only have
transitions towards actions with a corresponding probability,
while an action can have one transition towards a state. An
example could be a series of web-pages as states and user

101Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

actions such as logging in or saving as the actions to transition
to different or same web pages.

Reactivity [26] is a technique of workload generation
which takes output of the target system into account, such
as response time of the system to earlier tasks. Response time
is a critical factor to the user in an interactive system. Also
findings from [27] show that, user think time i.e., the time
between subsequent user tasks, is affected by the time it takes
for the system to respond. Short response times (0.1 sec) keep
the user in the flow improving think time, while longer (10
secs) response times disrupt the user’s attention and results in
longer think times and different tasks.

Layering is a technique used to model workload from
multiple layers instead of only a single layer responsible for
the actual workload. This follows the reasoning that, not only
the current and preceding task but also the complete state of
its parent service/applications affects the total workload.

Regression based modeling [28] is an analytical approach
of predicting performance of a target system. By collecting
performance test results at different workloads and performing
a regression analysis on the results, predictions can be made
about the performance for any workload. Hence, only a subset
can be used to predict their performance data by extrapolation.

It is important to note that these techniques can be
combined to have required characteristics in the generated
workloads. With all these techniques, it is important that one
should already have the most important characteristics of the
workload in mind to generate an appropriate workload. For
e.g., if the ideal workload contains a large variability over
time, then considering burstiness is necessary. Also the target
system and its limitations are important. For instance, should
the user only perform certain actions from a given state, then
using state diagrams is necessary.

B. Workload Generation Techniques in Practice

There have been many research works to improve real-
ism of the generated workload as well as variability. Many
approaches from code analysis to Domain-specific Languages
(DSLs) have been adopted. In this section, we describe some of
the recent works on workload generation that use combinations
of the techniques described above.

Ittershagen et al. [29], proposes a simulation based ap-
proach to estimate application’s observable shared resource
usage. It uses a combined approach of extracting embedded
software’s processor usage and memory access patterns to get
an abstract workload model. This model can then be used in
host-based simulation or on a target specific architecture. A
compiler infrastructure based system is used, through which
the application is processed, which gives the CPU usage and
memory access patterns that are used to create an abstracted
workload model.

Busch et al. [30] describes an automated workload char-
acterization approach to estimate the performance behavior
of I/O intensive software applications in cloud a platform.
The proposed algorithm extracts workload characterization
models by a non-invasive and lightweight monitoring to get
performance metrics such as, request size, read/write ratio,
etc. The approach works by dividing high-level operations into
several low-level ones corresponding to a workload metric.

In Casaliccio et al. [31], a workload characterization for
Desktop-as-a-service (DaaS) is presented. The study was con-
ducted over three months on actual user traffic by measuring
resource usage on a DaaS provider’s servers. The aim was to
study the resource usage and develop a statistical performance
model. Several observations were reported from this study:
the session length could be modeled with an exponential
distribution, and the CPU Load as well as the Disk load (r/w
rate) had a long-tail distribution. It was also observed that the
peaks in CPU Load or disk read/write rate exceeds the average
value by two (or more) orders of magnitude.

Zakay et al. [32] proposes a workload generation method
by combining realism of workload tracing (through sampling)
and flexibility of workload modeling. The workload traces
were divided into sub-traces, which represent activity of real
users. New workloads with varying characteristics can then
be created by combining the sub-traces in various ways. In
order to keep the reconstructed workload close to a real one,
re-sampling is done at the user level also taking into account
daily and weekly user activity for added realism.

In Van Hoorn et al. [33], a framework for performance
testing of session-based applications is proposed using ana-
lytical modeling and automatic workload generation. A DSL
based approach is used to generate workload specifications,
which are then used by workload generation tools to generate
workloads. The proposed DSL, WESSBAS-DSL, uses the
Markov4JMeter workload modeling formalism for behavior
modeling of user session (session duration and ‘think’ times).
The generated WESSBAS-DSL instances are then transformed
into corresponding JMeter test plans.

Vogele et al. [34] extend the WESSBAS-DSL approach
of [33] by transforming of WESSBAS instances into workload
specifications of Palladio Component Model [35], representing
architecture-level performance models. The approach enables
layered modeling and automatic extraction of workloads. Us-
ing WESSBAS-DSL several aspects of session-based system’s
workload can be modeled such as, Workload Intensity, Appli-
cation Model, Behavior Models, and Behavior Mix.

Table I shows the workload generation techniques de-
scribed in III-A used in the literature described above. From
Table I, it can be seen that several workload generation
techniques can be used depending on the requirement of the
test and workload specification.

IV. PERFORMANCE TESTING METHODS

In Brunnert et al. [36], a continuous performance eval-
uation scheme is proposed for new releases or updates for
enterprise applications. The main contribution is that archi-
tectural information is considered, while defining a resource
profile for an application. A model is defined for content and
structure to describe performance modeling for an application.
A continuous delivery mechanism is also described with steps:
create resource usage profile for current version and put it
into a repository, predict performance for current version
and compare with previous, and if change is detected send
notification to development team.

Bezemer et al. [37] describes performance maintenance
and improvement of software application in cloud platform
after their deployment. The authors argue that continuously de-
tecting Performance Improvement Opportunities (PIOs), which

102Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE I. COMPARISON OF WORKLOAD GENERATION METHODS.

Literature Proposed Method Description Workload Generation Techniques Used
Ittershagen et al. [29] Code analysis Generate abstract workload model by analysis code and observing

resource usage pattern
Simulation of system and workload

Busch at al. [30] Usage tracing I/O Workload characterization by using lightweight monitoring cloud
usage

Descriptive (statistics means for file size,
workload intensity etc.)

Casaliccio et al. [31] Usage tracing Mathematical performance model generation for workload characteriza-
tion by tracing usage of Daas server

Layering, Descriptive (statistical properties
of CPU, read/write loads), Burstiness

Zakay et al. [32] Usage tracing and
modeling

Generating workload by tracing real usage load and resampling parts of
it to generate workloads with variability and realism

clustering (users), Burstiness, Regression
modeling (resampling workload trace parts)

van Hoorn et al. [33] Domain-specific
Language

Generation of performance test plan with workload by using DSL to
model workload specifications

Layering (session and protocol), Clustering
(behavior mix), Markov chains

Vogele et al. [34] Domain-specific
Language

Using DSL model and transforming it into a PCM model to include
architecture-level performance metrics

Markov chains and Layering (similar to
[33])

are defined as situations during which performance can be
improved, can assist in performing perfective maintenance (the
goal of which is improving performance and therefore perfect-
ing a software system after delivery) of deployed software. An
algorithm is proposed to detect PIOs based on response times.
From analyzing the PIOs an association rule set can be defined
which can be used for detecting bottlenecks.

Rasal et al. [38] proposed a reactive-based framework for
performance testing of web applications. In the work, reactivity
is described as the way users behave for a provided quality of
service. In the proposed scheme web log data is captured from
the server-side (from a website set up by the experimenters for
a company). A usage pattern is derived in terms of execution
time (time taken to process a request) and think time (time
user takes to send the next request) from both the server-side
and the client-side. A usage pattern model is derived and then
it is used to generate automated test cases.

Arcelli et al. [39] proposes a framework for automated gen-
eration of software models subject to continuous performance
analysis and refactoring. The aim is to detect potential perfor-
mance anti-patterns (PA), which are mistakes induced during
design phase, using the principles of model-driven engineering.
The algorithm consists of identifying specific metrics which
could degrade performance and associate threshold to them. PA
are evaluated by comparing metrics to their threshold. Then,
the PA and its solution are identified and refactoring is applied
to get the new software model. With the PA knowledge base
built, framework can process software models automatically.

In Horkỳ et al. [40], performance unit tests are used
to generate performance documentation to help developers
make informed decisions (i.e. keeping performance in mind)
during software development. In the setup phase, workload
for the system is determined, the system is subjected to the
workload, and performance is measured. The observed results
are evaluated against test criteria using statistical hypothesis
testing. Performance documentation is presented for methods
in the software framework which would help make choices
between different software libraries.

Lou et al. [41] proposes an approach (FOREPOST -
Feedback-ORiEnted PerfOrmance Software Testing) to auto-
matically identify input combinations or specific workload to
find performance bottlenecks. It uses an adaptive feedback-
directed learning system using application execution traces.
If-then rules are used to automatically select input values
for testing. Initially, a small number of random input values
are selected, and then using clustering, execution profiles are
grouped into performance categories. The categorized data are

then classified using machine learning to obtain rules. The
learned rules are used to generate test-cases.

Danciu et al. [42] proposes an approach of analyzing per-
formance of Java 2 Platform, Enterprise Edition applications
and providing feedback related to performance in the Inte-
grated Development Environment (IDE) itself. The source code
is parsed and converted into a Palladio component model. This
is then used to predict the response time of the application.
The predicted performance results is presented within the IDE,
making developers performance aware during development.

The literature study presented above, encompasses different
phases of performance testing of software applications; from
testing performance during development/modeling applica-
tion [39], application upgrading [36], to maintaining deployed
software [37]. It also shows reactive approaches [38], and
proactive approaches where application development choices
are influenced by performance [40][42]. The literature de-
scribed takes focus on resource usage, throughput, response
time, or a combination of them. Various workload generation
method were used: real production loads for approaches that
use reactive mechanism or deployed application [37][38],
predicted workloads [41][42], workloads generated from the
software model [36][39], or just stress test specific parts (as
only limited functionality is available) of the application by
iteratively calling them [40].

In the next section, we extract steps and process phases
from the methods and frameworks above, to create an abstract
method that can be deployed by practitioners.

V. THE CONTINUOUS PERFORMANCE TESTING METHOD

In Table II, an overview of the steps of CPT that are found
in literature is described. It is important to choose the purpose
of performance tests and hence the criteria being measured.
Table II shows that each work has a specific criterion, such as
resource usage [36][37][41] or response time [37][38].

The processes and frameworks found in the literature, all
have a workload generation phase as part of the test. For
example, Brunnert et al. [36] use usage models that help in
predicting resource usage while Lou et al. [41] and Danciu
et al. [42] use predicted workloads. Furthermore, Bezemer et
al. [37] and Rasal et al. [38] use real production workload,
and Horky et al. [40] iteratively call parts of an application
to stress test the system. Monitoring points are defined in the
test setup, be it logs or the software model itself. Following
up, there is a test that involves either performance prediction
for analytical approaches or measuring parameters, such as
response time. The obtained results are compared either to

103Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE II. COMPARISON OF (CONTINUOUS) PERFORMANCE TESTING METHODS.

Paper Perf. criteria Workload Monitoring Testing Alert mechanism
Brunnert et al. [36] Resource usage Synthetic workload

(usage modeling,
think times)

Resource prediction
from performance model

Performance prediction Comparison b/w current and previous ver-
sion

Bezemer et al. [37] Throughput, response
time and resource us-
age

Live production
workload

Logs Build ruleset and com-
pare

Provides performance improvement oppor-
tunities through bottleneck identification

Rasal et al. [38] Execution time Live production
workload

Logs Build usage pattern Implicit, not stated

Arcelli et al. [39] Over-used S/W com-
ponents and resource
usage

None, deduced from
software model

S/W model annotated
with performace indices

Model transformation
and threshold
comparison

Automated model refactorisation

Horky et al. [40] Resource usage Iteratively call a piece
of code

Measure resource usage
on local system

Run the piece of code
and measure response

Performance documentation

Lou et al. [41] Resource usage Workload predicted Measure resource usage
on local system

Tracing execution of
methods

Identified bottlenecks as methods

Danciu et al. [42] Response time Synthetic Workload
using modeling

Resource Prediction us-
ing performance model

Tracing execution of
methods

Identified bottlenecks as methods presented
in IDE

previous values or to a threshold. At the last stage, an alert
mechanism is used to notify the results to the stakeholders
of performance tests. Several ways of alert mechanisms can
be observed in the literature, such as, through PIOs [37],
performance documentation, or presenting results on the IDE
during development.

Based on these observations, an abstract method for CPT
is presented with the following steps:

1) Assess critical performance criteria - In this step
performance metrics to be measured are selected.
This is important as this determines the type of test
to be performed and the workload parameters.

2) Decide on workload generation technique to use
- This step is very important as a representative
workload is necessary to get reasonable results for
the purpose of the test. As stated earlier, this step
depends on the type of performance to be performed.
Section III gives more information on selecting an
appropriate technique.

3) Identify monitoring points and build in monitor-
ing - In this step, the points where the application
performance in relation to identified metrics is to be
located.

4) Decide on performance testing method and tools
to use - This depends on the performance criteria
and stage of development cycle of application. It
can be simulation based approach for software under
development to monitoring application under use.
Section IV describes some of the methods.

5) Set up alert mechanisms and describe actions -
Setup system to send performance results to con-
cerned personnel for the next course of action.

Using the steps described above, the proposed method for
CPT is shown in Fig. 1. By introducing a feedback loop from
the testing phase, comprising of alert mechanism and decision
making step back to testing, performance evaluation can be
done on a continuous basis. In the next section, we validate
this method by means of a case-study at AFAS, where a
similar CPT method is used. We compare the proposed method
with the tools and mechanism used at AFAS, and present the
usefulness of CPT being performed in development of NEXT.

Update
Needed?

Critical Performance
Criteria

Identification

Workload
Characterisation and

Generation

Monitoring
Points

Testing
Method

and Tools

Legends:

 Activity
 Decision
 Artifact

No

Performance
Metrics Results

from Tests

de
sc

ri
be

s

co
n

fi
gu

re

de
fi

ne

generates

al
er

t

leads to

input

le
ad

s
to

le
ad

s
to

Yes

Software System
Testing

New
Updates

Software
Architecture

Update

FIGURE 1. CONTINUOUS PERFORMANCE TESTING WORKFLOW.

VI. CASE STUDY AND EXPERT EVALUATION

Currently, AFAS Software is using CPT to evaluate perfor-
mance changes for NEXT on a regular basis. One of the key
design drivers of this redesign is the focus on Command Query
Responsibility Segregation (CQRS) [43][44] distributed archi-
tecture. CQRS is an architectural pattern developed to support
scalability, and provides a practical solution to Brewer’s the-
orem [45] in a distributed system architecture. This pattern
prescribes separation in client-server communication between
commands and queries, commands being actions which can
modify the data while queries are the request to access the
said data. This strict separation allows architects to make
different architectural choices on command and query side of
the system. CPT has become a major tool in the design and
validation of architectural choices on both the command and
the query side of the CQRS architecture for NEXT.

A. Implementation at the Case Company
The case study was performed with an intention to find out

how, in an organization and in real software production setup,
performing CPT has lead to improvement in software quality
and development process. To this end, the case-study included
interviewing experts from AFAS on the process of performance
testing of NEXT. The interview protocol was designed with

104Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

several sections each discussing different aspects of CPT as
described in Section V. The questions were designed to extract
the process and tools used at AFAS in each aspect of the CPT.
In the Table III, we describe the AFAS context at each aspect of
CPT and the tools used by AFAS in their CPT implementation.

B. Case Findings
From transcribing the interviews of the case-study and

comparing it with the CPT method described, the following
observations were made:

First, the performance criteria that are important for the
selected performance test and the purpose of the test are
identified. At AFAS, the performance testing is more stress
testing the system. The metrics that are measured are: the num-
ber of user operations which correspond to commands/queries
and events projected per second on their designed CQRS
architecture choices. The aim of the tests is to see the trends
on the selected data stores and eventually make a choice of
selection for stores on command and query side.

A workload generation mechanism is used to suit the
test, for instance to do stress tests, concurrent commands
and queries are generated, as the tests are mainly focused
on measuring throughput of the data stores. The workload is
generated by a custom-built application which uses a template
for commands and queries to generate workload. The workload
generator generates the required number of commands or
queries. It is known beforehand the number of events which are
to be projected. This helps comprehensively test the designed
architecture for its performance.

Monitoring points are identified in the architecture for the
selected test. At AFAS the monitoring points are introduced at
the command, query and event projection. Plugins are intro-
duced at monitoring points which have performance counters
that measure the number of operations (commands, queries,
and events) per second. This selection of monitoring points
helps to measure the number of commands/queries handled
per second as well as the time it takes for the whole process
chain to execute.

Currently performance testing is done mainly for the selec-
tion of data stores. Testing is done on many different database
options (MongoDB, MySQL, MSSQL and PostgreSQL) and
are repeated for every database choice. The application is
hosted on a server and input with the generated workload.
The tests are run with different stores and the said performance
metrics are registered at the monitoring points. Since CQRS
architecture allows separate choices to be made on command
and query side, parts of the system can be optimized inde-
pendently. one software architect stated :”It (CPT) helps with
the way we want to choose stores or changes we made were
right or wrong in terms of performance”. Another software
architect stated: ”From the testing it is noted that PostgreSQL
performs better on the query side for transactions”.

Alert mechanism works by sending emails to the stake-
holders after the tests each day. Also, the recorded results
are published on the company’s intranet and can be accessed
by anyone within the organization. The plotted results show
metrics from last few weeks, and can be useful to see trends
in performance of the application as it evolves. The concerned
team monitors the results and makes decisions when it is
necessary to investigate the cause. A software architect stated:

”The performance test results become very important when
changes are implemented and some variation in performance
is expected”. If the results obtained after changes differ very
much than expected, then it is inspected as one of the architects
mentioned: ”If the change can be explained, after some new
feature was implemented and some drop was expected then it
might be fine. But if the change cannot be explained then it
will be investigated”.

In the case-study, a performance testing scenario was
created with the goals of comparing database options and
operating systems for NEXT. The configurations consisted
of MSSQL and MongoDB on Windows and Linux operating
systems. As described earlier, the critical performance criteria
were defined to be measured, i.e., throughput, response time,
CPU, and disk I/O. The workload characterization was done
with the metrics in mind to test individual components of
CQRS architecture. Hence, the workload consisted of database
operations (in large numbers) on a work item, such as Insert
(create commands), InsertQMB (create events), Update (update
commands), UpdateQMB (update events), Query, Query40 (40
simultaneous queries at a time). Several interesting observa-
tions were noted: SQL offered most throughput in inserts,
MongoDB showed higher average throughput but gaps were
observed (as it processes writes in large batches), MongoDB
on Linux showed lower throughput for inserts and queries, etc.
This testing configuration gave a basis for performance testing
NEXT on a daily basis as new options (in database, event bus,
etc.) are tested and the new features are added to the software
model NEXT.

The NEXT platform currently exists in a pre-release phase,
but parts of it are already being used within the company.
The platform is evolving rigorously (“We make massive ar-
chitecture changes almost daily (as model-driven development
is used and model evolves everyday and thus leads to many
changes in implementation)”) and CPT is helping to evaluate
changes from a performance point of view. The company ben-
efits from continuous insight into the platform’s performance
evolution, especially because the platform is in such an early
phase of development. That said, employees in the company
states that CPT is useful in any maturity phase of the platform,
because at a later stage they expect that CPT can help them
identify small changes with large impact on the performance.

C. Expert Evaluation
In the case study, the interviewees indicate that CPT has

been essential in the development process of NEXT in the
areas of architecture, implementation, and software quality.

With regards to architecture, one senior software architect
at AFAS, when asked about how CPT has influenced archi-
tectural choices for NEXT, stated: “Performance testing has
given cause to rethink [...] things, what you think helps to
improve performance but doesn’t actually”. This flexibility is
seen by others as well: “Doing performance testing during
design/implementation phase is important because the impact
of changes can be seen can and work on it rather than
during production”. He also stated that the selection of test
is important based on state of the application: “But it is
important to select the type of test as it is not known about
production load during development”. One instance was cited
where performance test had helped to identify a bottleneck
and prompted a change in architecture - “A bottleneck was

105Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE III. PERFORMANCE TESTING TOOLS.

Process Case-study Method Tools
Assess critical performance
criteria

Requests handled per second and time taken to process each request, it
can be just the commands or queries or the whole process measuring
commands and no. of events it generates or queries and execution of all
the projected evens, future: resource usage CPU, memory, IO

This is a choice made based on current state of the product

Workload generation Commands and/or queries are generated containing user information and
in order to stress the system either on command side or query side or
both and measure how many requests can be handled

Workload generator which uses a CSV file containing random
user information and a template specifying no. of commands
and/or queries

Identify monitoring points monitoring points are inserted on command, query side, and event handler
to measure no. of commands

Custom-built plugins at command, query, and event bus side

Performance testing
method

Stress test system with concurrent user load (commands or queries or
both) and on different data stores and compare the identified performance
criteria

RabbitMQ, Event Tracing for Windows, ELK stack, and datas-
tores such as MongoDB, MySQL, MSSQL, and PostgreSQL

Setup alert mechanism and
describe action

Email, intranet, and coffee room dashboard, the results can be monitored
for trends

Custom tools for transforming events into graphs and publishing
it through email and web

detected in initial testing of ServiceFabric [46] in event
dispatching. One component of the ServiceFabric was detected
as producing the bottleneck. As a result a new component was
planned to replace the existing one to alleviate the problem”.
Also, in selections of stores, one of the trend that was reported
was that PostGreSQL was seen to perform better on query side.

CPT has helped in making design decisions as well as
validating the designed changes. Project manager at AFAS
gave an example: “it (CPT) has helped us make decision
whether to use of dynamic commands vs typed commands
in the backend architecture. We expected some performance
issues, but through performance testing we observed that
no significant degradation in performance occured. Hence it
(CPT) helped us validate changes”.

CPT has furthermore helped in making decisions about
where to deploy the application and what kinds of resources
will be used. Currently, the most important reason to use CPT
at AFAS is to create an overview of resource usage on each
database platform and find the most performant database for
the development of NEXT.

The representatives at the company indicate that quality
problems that would normally be caught in production are now
caught earlier. “CPT has helped in finding bugs we don’t find
in normal usage. It also help with deciding whether changes
were right or wrong in terms of performance. It has helped now
and will help in future if the application monitored properly
(after changes) and we get more informative results”.

VII. ANALYSIS AND DISCUSSION

Continuous performance testing is the best way to provide
architects with continuous insight into the implementation of
their designs. There are other ways of reporting on architecture
patterns, such as empirical qualitative evaluations, but these
report on a particular implementation of a pattern, and are
thus less usable by other architects. One of the most powerful
features of CPT is that it requires architects to provide an
upfront expectation of what the performance will be, providing
them benchmarks and targets to constantly adjust their design
by. The case study is but one observation, but its results can
be generalized to other large and long-lived systems.

Frequent exchange of knowledge is required by architects
in different working sessions. Their design decisions have long
lasting effects on developer productivity, flexibility, variability,
and performance of a system. Architects need experience and
frequent interactions with other architects in cross-organization

expert groups. In the future, we suggest that other authors too
report case studies, such that synthesis becomes possible and
the CPT framework can be perfected. In particular, academia
still need to develop and evaluate tools for CPT.

VIII. CONCLUSION

This paper functions as a call to action for practitioners
and researchers to employ CPT in practice and report on their
results. The case study illustrates how an organization has
benefited from CPT in an early-stage development project.
The main advantages are found in software architecture, design
decisions, resource usage, and software quality.

We present directions for future research. Firstly, workload
generation techniques can be combined, to create more realistic
workloads. In the case-study, random data was used to gen-
erate template-driven workload, that was based on the model
underlying the application. Secondly, it would be interesting
to create realistic workloads based on the devices that are used
to access the application. Once a change in end-user behavior
is detected, switching from mainly web application to mainly
mobile, for instance, could change the workloads that are used
for testing accordingly. Thirdly, in case of an ERP application,
the user category can dictate the kind of functionality used
more often in each category and time of day the application is
used most often. This, however, we leave to future research.

ACKNOWLEDGMENT

This is an AMUSE Paper. This research was supported
by the NWO AMUSE project (628.006.001): a collaboration
between Vrije Universiteit Amsterdam, Utrecht University, and
AFAS Software in the Netherlands. The NEXT Platform is
developed and maintained by AFAS Software. See amuse-
project.org for more information.

REFERENCES
[1] K. Wiegers and J. Beatty, Software requirements. Pearson Education,

2013.
[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees

for web server end-systems: A control-theoretical approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 1, 2002,
pp. 80–96.

[3] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing
of software systems: issues, an approach, and case study,” IEEE
transactions on software engineering, vol. 26, no. 12, 2000, pp. 1147–
1156.

[4] Compuware, “Applied Performance Management Survey,” 2006.
[5] R. Jain, The art of computer systems performance analysis. John Wiley

& Sons, 2008.

106Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

https://amuse-project.org
https://amuse-project.org

[6] S. Elnaffar and P. Martin, “Characterizing computer systems work-
loads,” Tr. 2002-461, School of Computing, Queen University. Ontario,
Canada, 2002.

[7] H. H. Olsson and J. Bosch, “Towards continuous customer validation:
A conceptual model for combining qualitative customer feedback with
quantitative customer observation,” in Proc. of 6th International Confer-
ence of Software Business (ICSOB) June 10-12, 2015, Braga, Portugal.
Springer International Publishing, Jun. 2015, pp. 154–166.

[8] J. Webster and R. T. Watson, “Analyzing the past to prepare for the
future: Writing a literature review,” MIS quarterly, vol. 26, no. 2, 2002,
pp. 13–23.

[9] B. A. Kitchenham, “Systematic review in software engineering: Where
we are and where we should be going,” in Proc. of the 2nd International
Workshop on Evidential Assessment of Software Technologies Sep 22,
2012, Lund, Sweden. ACM, 2012, pp. 1–2.

[10] T. Johnson, “Webjamma,” 1998.
[11] G. Banga and P. Druschel, “Measuring the capacity of a web server.”

in USENIX Symposium on Internet Technologies and Systems, Dec.
1997, pp. 61–72.

[12] D. A. Menascé, “Tpc-w: A benchmark for e-commerce,” IEEE Internet
Computing, vol. 6, no. 3, 2002, pp. 83–87.

[13] A. G. Saidi, N. L. Binkert, L. R. Hsu, and S. K. Reinhardt, “Performance
validation of network-intensive workloads on a full-system simulator,”
Ann Arbor, vol. 1001, 2005, pp. 48 109–2122.

[14] Y. Sherman, U. Hare, and I. Kinreich, “Method of load testing web
applications based on performance goal,” Aug. 13 2002, uS Patent
6,434,513.

[15] E. H. Halili, Apache JMeter: A practical beginner’s guide to automated
testing and performance measurement for your websites, Jun. 2008.

[16] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic
burstiness to a traditional client-server benchmark,” in Proc. of the 6th
international conference on Autonomic computing, Jun. 2009, pp. 149–
158.

[17] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R.
Ganger, “Storage device performance prediction with cart models,”
in Proc. The IEEE Computer Society’s 12th Annual International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS), Oct. 2004, pp. 588–595.

[18] A. Van Hoorn, M. Rohr, and W. Hasselbring, “Generating probabilistic
and intensity-varying workload for web-based software systems,” in
SPEC International Performance Evaluation Workshop, Jun. 2008, pp.
124–143.

[19] M. Calzarossa, L. Massari, and D. Tessera, “Workload characterization
- issues and methodologies,” in Performance Evaluation: Origins and
Directions. Springer, 2000, pp. 459–482.

[20] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An approach for
characterizing workloads in google cloud to derive realistic resource
utilization models,” in IEEE 7th International Symposium on Service
Oriented System Engineering (SOSE), Mar. 2013, pp. 49–60.

[21] M. Yuksel, B. Sikdar, K. Vastola, and B. Szymanski, “Workload
generation for ns simulations of wide area networks and the internet,” in
Proc. of Communication Networks and Distributed Systems Modeling
and Simulation Conference, 2000, pp. 93–98.

[22] A. Bahga and V. K. Madisetti, “Synthetic workload generation for
cloud computing applications,” Journal of Software Engineering and
Applications, vol. 4, no. 07, 2011, pp. 396–410.

[23] H. Hlavacs, E. Hotop, and G. Kotsis, “Workload generation by modeling
user behavior,” Proc. OPNETWORKS, 2000.

[24] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” in Proc. of CCA, vol. 8, 2008.

[25] C. Lutteroth and G. Weber, “Modeling a realistic workload for perfor-
mance testing,” in Enterprise Distributed Object Computing Conference,
2008. EDOC’08. 12th International IEEE. IEEE, 2008, pp. 149–158.

[26] A. Pereira, L. Silva, W. Meira, and W. Santos, “Assessing the impact
of reactive workloads on the performance of web applications,” in
IEEE International Symposium on Performance Analysis of Systems
and Software, Mar. 2006, pp. 211–220.

[27] D. A. Menasce, V. A. Almeida, L. W. Dowdy, and L. Dowdy, Perfor-
mance by design: computer capacity planning by example. Prentice
Hall Professional, 2004.

[28] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,”
in 4th International Conference on Autonomic Computing (ICAC’07),
Jun. 2007, pp. 27–27.

[29] P. Ittershagen, P. A. Hartmann, K. Grüttner, and W. Nebel, “A workload
extraction framework for software performance model generation,” in
Proc. of the Workshop on Rapid Simulation and Performance Evalua-
tion: Methods and Tools (RAPIDO), Jan. 2015, pp. 3:1–3:6.

[30] A. Busch, Q. Noorshams, S. Kounev, A. Koziolek, R. Reussner, and
E. Amrehn, “Automated workload characterization for i/o performance
analysis in virtualized environments,” in Proc. of the 6th ACM/SPEC
International Conference on Performance Engineering, Jan. 2015, pp.
265–276.

[31] E. Casalicchio, S. Iannucci, and L. Silvestri, “Cloud desktop workload:
A characterization study,” in IEEE International Conference on Cloud
Engineering (IC2E). IEEE, Mar. 2015, pp. 66–75.

[32] N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 12, 2014, pp. 2079–2105.

[33] A. van Hoorn, C. Vögele, E. Schulz, W. Hasselbring, and H. Krcmar,
“Automatic extraction of probabilistic workload specifications for load
testing session-based application systems,” in Proc. of the 8th Interna-
tional Conference on Performance Evaluation Methodologies and Tools,
Dec. 2014, pp. 139–146.

[34] C. Vögele, A. van Hoorn, and H. Krcmar, “Automatic extraction
of session-based workload specifications for architecture-level perfor-
mance models,” in Proc. of the 4th International Workshop on Large-
Scale Testing, Feb. 2015, pp. 5–8.

[35] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, 2009, pp. 3–22.

[36] A. Brunnert and H. Krcmar, “Continuous performance evaluation and
capacity planning using resource profiles for enterprise applications,”
Journal of Systems and Software, 2015.

[37] C.-P. Bezemer and A. Zaidman, “Performance optimization of deployed
software-as-a-service applications,” Journal of Systems and Software,
vol. 87, 2014, pp. 87–103.

[38] Y. M. Rasal and S. Nagpure, “Web application: Performance testing
using reactive based framework,” IJRCCT, vol. 4, no. 2, 2015, pp. 114–
118.

[39] D. Arcelli and V. Cortellessa, “Assisting software designers to identify
and solve performance problems,” in Proc. of the 1st International
Workshop on Future of Software Architecture Design Assistants, May
2015, pp. 1–6.

[40] V. Horkỳ, P. Libič, L. Marek, A. Steinhauser, and P. Tuuma, “Utilizing
performance unit tests to increase performance awareness,” in Proc. of
the 6th ACM/SPEC International Conference on Performance Engi-
neering, Jan. 2015, pp. 289–300.

[41] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk, “Forepost: finding
performance problems automatically with feedback-directed learning
software testing,” Empirical Software Engineering, 2016, pp. 1–51.

[42] A. Danciu, A. Brunnert, and H. Krcmar, “Towards performance aware-
ness in java ee development environments,” in Proc. of the Symposium
on Software Performance: Descartes/Kieker/Palladio Days, Nov. 2014,
pp. 152–159.

[43] G. Young, “Cqrs and event sourcing. feb. 2010,” URl: http://codebetter.
com/gregy oung/2010/02/13/cqrs-and-event-sourcing.

[44] J. Kabbedijk, S. Jansen, and S. Brinkkemper, “A case study of the
variability consequences of the cqrs pattern in online business software,”
in Proc. of the 17th European Conference on Pattern Languages of
Programs, Jul. 2012, pp. 2:1–2:10.

[45] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, 2002, pp. 51–59.

[46] “MS Azure ServiceFabric,” 2016, URL: https://azure.microsoft.com/
en-us/documentation/articles/service-fabric-overview/.

107Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

https://azure.microsoft.com/en-us/documentation/articles/service-fabric-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-overview/

	Introduction
	Research Method
	Literature Study
	The Case-study Method

	Workload Generation
	Workload Characterization and Generation Techniques
	Workload Generation Techniques in Practice

	Performance Testing Methods
	The Continuous Performance Testing Method
	Case Study and Expert Evaluation
	Implementation at the Case Company
	Case Findings
	Expert Evaluation

	Analysis and Discussion
	Conclusion
	References

