
Reports with TDD and Mock Objects:
an Improvement in Unit Tests

Alan S. C. Mazuco
Department of Computer Science
Masters in Applied Computing
University of Brasilia (UnB)

Campus Darcy Ribeiro
Brasilia, DF, Brazil

Email: alanmazuco@hotmail.com

Edna Dias Canedo
Faculdade UnB Gama - FGA
University of Brasilia (UnB)

Brasilia, DF, Brazil
Email: ednacanedo@unb.br

Abstract—The construction of reports in software engineering,
although considered a simple task, is sometimes extremely
difficult for the developer, especially if the report has a rich
amount of detail and web software as a backdrop. This article
will show how you can reduce the stress of developers using
agile methodologies, such as Test Driven Development (TDD)
associated with Mock Objects. Software testing is gaining the
attention of software scholars because of the huge impact on the
quality they produce and of the reduced delivery time. This study
was driven by a shortage of literature and comes, as appropriate,
to demonstrate how it is possible to reduce the drudgery of
creating reports using open source tools like Jaspersoft and
their implementers, such as IReport, along with the Eclipse
IDE. The study was based on experiments carried out in the
Brazilian Army’s Performance Management Project, with a team
of professionals who used mock objects to save time and improve
performance gain speed and which also used performance in
conducting their work and also the TDD Methodology as the
main reference. From the results, empirical observation showed
us the best and worst aspects encountered by participants during
their work.

Keywords–TDD, Test Driven Development; Mock Objects;
Reports.

I. INTRODUCTION

The Brazilian Army’s Performance Management project,
materialized in a corporate system of the same name, the
“SGD”, or “PMS” - Performance Management System, came
into the world in order to carry out and follow the evaluations
of its internal public, whose final destination is the subsidy
decision-making of subsidies for several finalistic programs.
The project has become a priority in the high command of
the Brazilian Army, and there were several factors that led to
such a distinction. However, what most drew attention was how
quickly it got off the ground and won the web pages in the form
of robust and efficient software. The system was completed in
six months of development. In the seventh month, the system
went into production as planned. The project’s success was
due to the fact that the project manager had decided to use
agile methodologies, such as Test Driven Development (TDD),
throughout the project development phase.

This case study will permeate some definitions, guiding
and reinforcing the experiences developed along the Brazilian
Army’s Performance Management project, and showing why
the TDD process has been tenaciously important in the
software development process.

What caught the eye with the production of reports using
mock objects was the increased pace of implementation,
as well as the reduced fatigue of programmers. Such
improvements led to an increase in the satisfaction of business
owners due to the high demand for increasingly rich reports.

The results were obtained by performing an experiment
conducted in the General Headquarters of the Brazilian Army,
Such experiment followed empirical methodologies, allowing
us to observe the best and worst aspects encountered by
members of the participating teams.

For a better understanding, this paper is structured as
follows: Section 2 presents several concepts on the subject at
hand, as well as some major works reported in the community.
This is very important because we found basis in the research
literature that supports the experiments that were conducted.
The Section 3 describes how the experiment was conducted,
the subject of this study, the methodologies used and the
composition of the teams that performed in it. The Section
4 presents the results, collected in the light of the experiment,
using previously selected indicators.

II. RELATED WORKS

The utilization of Mock Object simulates the behavior of
complex real objects and are therefore very useful when used
in conjunction with TDD practices. This section explores some
of the literature on the subject.

A. The Problem of Errors

A study published by the National Institute of Standards
and Technology[1] and also by the United States Department
of Commerce reveals that software errors cost around $60
billion to the US economy each year. Much has been said
about techniques to minimize the catastrophic effect caused
by software errors, as we see in Borges [1]. Such techniques
include reusing code that has been widely tested and is trusted,
as well as exhaustive verification techniques and validation
tests performed by a team of testers.

As reported in Leon and Kochs [2], agile methodologies
create ever-growing controversy, having their true effectiveness
auestioned and putting their advocates in a heated battle
of claims. However, the practice has shown that processes
arising from the agile methodology bring many benefits for
development, culminating in the satisfaction of clients.

72Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Fig. 1 shows that the use of agile methodologies can
systematically reduce the cost of making code changes.
Regarding this, Beck [3] believes that the following are key
aspects of agile methodologies:

• Effective (fast and adaptive) response to
change;

• Effective communication among all
stakeholders;

• Drawing the customer onto the team;
• Organizing a team so that it is in control

of the work performed; Quick, incremental
delivery of software.

According Baumeister and Wirsing [4], there are benefits
to an evolutionary approach in which the developer writes the
test before they write the functional code needed to satisfy that
test.

Below, we can see a graphical representation of this study.

Figure 1. Agility and the Cost of Change [3]

B. The TDD as Tonic

TDD is defined as a set of techniques of Extreme
Programming (XP) associated with agile methodologies.

According to Beck [5], an agile method could be compared
to driving a car, where the driver has the task of driving the
vehicle to his destination safely, without committing traffic
offenses.

According Baumeister and Wirsing [6], there are benefits
to an evolutionary approach in which the developer writes the
test before he writes the functional code needed to satisfy that
test.

According to Marrero and Settle [7], TDD is a way
to reflect on modeling before writing the code itself. But
as reported by Baumeister and Wirsing [6], the testdriven
development is a programming technique where the main goal
is to write clean functional code from a test that has failed.

According to a manifesto published in 2001 [3], we see
that:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

• Individuals and interactions over processes
and tools;

• Working software over comprehensive
documentation;

• Customer collaboration over contract
negotiation;

• Responding to change over following a plan
That is, while there is value in the items on
the right, we value the items on the left more.

As Fowler has shown in [8] developers should worry about
performing a refactoring of the code in order to optimize it
more and more, and TDD processes are perfectly consonant
with this approach.

Fig. 2 illustrates the TDD methodology. Note that, while
the traditional approach first encodes the main business rule
for later testing, the general idea of the TDD is to mitigate
the code through unit testing until it passes the test [9], where
frameworks like JUnit (Java) are often used by more savvy
developers.

Figure 2. Concept of the TDD, in general lines [10]

C. Mock Objects par Excellence

The main ground of TDD is to use intensive testing, even
before coding the main object. Therefore, the concept of Mock
Objects fits like a glove, from which false objects could be
created and tested with the main code, to obtain the desired
result.

A mock object, according Mackinnon et al [11], is a
substitute implementation to emulate another domain code.
It has to be simpler than the actual code, not a duplicate
implementation, and allow you to set your status to help the
test.

As seen in Stroustrup and Lenkov [12], it can be difficult to
conceive detailed unit testing in scoped languages such as Java,

73Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

without breaking the scope. To remedy that, the unit testing
technique for field packs was created.

Fowler is emphatic when he says [13]:

“The term Mock Objects has become a popular
one to describe special case objects that mimic real
objects for testing. Most language environments now
have frameworks that make it easy to create mock
objects. What’s often not realized, however, is that
mock objects are but one form of special case test
object, one that enables a different style of testing”.

From what we can presume, and as we pointed out in
the text above, the use of Mock Objects is not limited to
performing unit testing using JUnit or similar frameworks.
Rather, Mock Objects are flexible enough to perform tests for
various purposes. In the case of our experiment, it was used
to build reports. The results were measured and scientifically
proven, and have brought many benefits to our team of
developers, allowing greater flexibility in the process.

Testing with Mock Objects has been the key to solving
problems, as it transfers the actual behavior of the object to
a close-to-real fictional situation, being in perfect conformity
with the principle of Demeter Law [14]:

“Code with the encapsulation of ideas and
modularity, easily following the object-oriented
technique to the programmer... while minimizing
code duplication, the number of method arguments,
and the number of methods per class.”

Nevertheless, Freeman et al. [15] state the following:

“Mock Objects is an extension to Test-Driven
Development that supports good Object-Oriented
design by guiding the discovery of a coherent system
of types within a code base. It turns out to be less
interesting as a technique for isolating tests from
third-party libraries than is widely thought.”

According to Brown and Tapolcsanyi [16], Mock Objects
are divided into patterns, as we can see in Table 1:

TABLE I. PATTERNS CATALOG FOR MOCK OBJECTS [16].

Pattern Name Synopsis
MockObject Basic mock object pattern

that allows for testing
a unit in isolation by
faking communication with
collaborating objects.

Test Stubs
MockObject via Factory A way of generating mock

objects, utilizing existing
factory methods.

Self Shunt Unit Test code serves as the
mock object by passing an
instance of itself.

Pass in Mock Collaborator Pass in a mock object in place
of the actual collaborating
object.

Mock Object via Delegator Creates a mock
implementation of a
collaborating interface in
the Test class or mock object.

The following patterns will be added next year for
2004 PLOP:
-Mock Objects via CrossPoints;

-Write Testable Code; and
-Mock Object with Guard.

During the experiments conducted in this study, as seen in
the table, we used the Mock Object described below.

III. THE EXPERIENCE

1) The Mock Object used: According to Brown and
Tapolcsanyi [16] and Fowler [13] Mock Objects can be used
to build repeatable, automated, and highly leveraged Unit
Tests. In many cases, setting up Mock Object frameworks that
“emulate” the real world objects is necessary. Thus, the pattern
used in the experiment was the Self Shunt. This pattern fit like
a glove, as the Java report-creation operations are extremely
repetitive, bringing some fatigue obstacles and construction
time.

Fig. 3 shows the report to be created in the experiment,
just to get an idea of the complexity of development. From
there, a mock object containing all the data would be used to
create form this report using fictitious data.

Figure 3. Report template that served as “guide” to build the report.

Professionals in JasperReports know the difficulty in
formatting a report as complex as this, so much so that some
prefer not to venture. However, reports provide a lot of function
points as a measure to estimate the system size, ensuring larger,
more rewarding results from a financial point of view [17].
Therefore, no software factory will ignore this practice.

74Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

To aid in the experiment, the stakeholders have provided
a psychologist, whose main function would be to analyze the
developers over of the more cognitive aspects, such as fatigue,
while also monitoring of the interviews.

2) Description of Experiment: The team of the Brazilian
Armys Performance Management Project performed the
experiment. It was conducted in an isolated room, and carried
out by three pairs of certified developers, all of which were
timed, in accordance to the following:

TABLE II. DESCRIPTION OF EXPERIENCE.

OBJECT OF THE EXPERIMENT Create a complex report of one of the
system’s activities, SGD, containing a
relatively heavy image and 45 attributes.

USED TOOLS Programming language: Java other
tools: IDE Eclipse, JUnit and IReport.

METHODOLOGY Alpha team: Development using TDD
only.
Beta team: Development using TDD
with Mock Object;

TIMING The stopwatches were linked at
the beginning of implementation
experiment, but had no finishing time
preset.

A. Sequence of Activities
First, we conceived the construction of a report, where the

sequence of the activities of developers should rotate around
through the steps shown in Fig. 4:

Figure 4. Report construction with TDD

Performing that activity to build reports with the
aforementioned tools is extremely strenuous, since the
developer uses a lot of manual effort to draw pictures, frames,
lines and put texts in places previously defined by the template
that serves as a guide, see Fig. 3. The time spent on the activity
could harm the progress of timelines, creating frustrations and
stress. Because of this, the developer should focus their tasks
exactly in this manual effort, not worrying about the collection
and processing of data, and thus gaining additional time.

When using Eclipse IDE, developer reports required the
execution of a “refresh” in preparation for the report, after
refactoring and recompiling the report. Only after that could
they call the run-time report. Such process is tiresome and
time-consuming. When running a report he needed to go to

the database and bring the data to fill the report. This does not
seem very productive.

Before connecting the chronometers, each team received
the complete description for making the Mock Object and the
corresponding business rules, consisting of:

1) Alpha Team: The report should present the data from
a database, consisting basically of an object with 45
attributes and one more consisting of type byte array
- an image. It was delivered to staff together with the
business rules for the connection and information, as
well as a report template as a guide, Fig. 3.

2) Beta Team: The report should present the data from a
Mock Object, consisting basically of an object with
45 attributes and one more consisting of type byte
array - an image. It was explained also that this object
should be an identical copy of the original object. The
names of the attributes for making the Mock Object
were delivered along with the business rules as well
as the report template as a guide, Fig. 3.

IV. RESULTS

For a better understanding, we have grouped the results
into two subsections, with the metrics in the first subsection
and the analysis in the second.

A. Presentation
Prior to the experiment, we created an index to measure

the work of developers around seven items we deem relevant
for the study. This index was scaled from 2 to 10 points. To
understand it better, Table 3 shows this index in more detail.
Fig. 5, along with Table 4, present the final result of the
experiment.

TABLE III. DESCRIPTION AND CONTENT OF THE INDEXES.

Index Orientation index
10 Higher than expected.
8 Sometimes higher than expected.
6 Expected.
4 Sometimes lower than expected.
2 Below expected.

Figure 5. Results with seven variables.

75Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Where:

1) Time: Average Results of chronometers after delivery
of work, marked to the accuracy of seconds;

2) Fatigue: The developer reported extreme tiredness,
often interpreted as a painful sensation, result of
physical and mental effort;

3) Difficulty: The developer reported feeling some
difficulty performing the work required;

4) Hits: By examining the code, the developer has
submitted correct answers;

5) Visual quality: On visual inspection, the work
presented refinements;

6) Implementation: correct implementation of the
business rules and alignment with the template which
was the implementation guide;

7) Interruptions: The developer interrupted the
proceedings to ask questions.

Table 4 shows the final result of the experiment, the time
spent per each participant to carry out the work, and the
number of interruptions of each to the removal of doubts.

TABLE IV. TIMEKEEPING TEAMS.

Team Developer Time Interruptions
A 1 3h 35m 37s 6

2 3h 15m 08s 5
3 3h 25m 15s 7

B 4 1h 35m 47s 4
5 1h 15m 22s 6
6 1h 40m 57s 4

The Time column displays the time, we measurements for
all developers and the Interruptions column shows the stops
made to clear doubts from developers in relation to business
rules considered by them as confusing. Each participant
possessed their corresponding timer, in order not to invalidate
the experiment.

B. Analysis

Analyzing the results, we confirmed our suspicions and
were not surprised that the Beta Team presented the best
performance, both from a qualitative point of view, as well as
quantitative. The disparities are more relevant in the following
items: Fatigue, Time and Difficulty. Notably, the Fatigue
presented by Alpha Team was most notorious.

TIME

In relation to the measured time, we see that no individual
participant fulfilled the expectations. However, the Beta Team,
which used Mock Objects, spent nearly half the time of the
Alpha Team to solve the problem. Fig. 6 shows the data of
Table 4 in a chart showing the real-time taken from their
stopwatches on the y-axis, where we can see more clearly the
disparity. The developer 6 from Beta Team has most experience
among the other.

Figure 6. Analysis of time developers.

FATIGUE

Fig. 7 shows the measurement of fatigue. Such
measurement was done empirically, by conducting interviews
with developers. The score was measured based on reports
and on a psychological evaluation. To this regard, a second
interview was necessary, this time with a psychologist, to
evaluate the general conditions of the participants and greater
accuracy of the calculation. The graph below is materializing
these indexes.

Figure 7. Analysis of fatigue developers.

TIME x FATIGUE

Analyzing fatigue and time, side by side, we can see a
huge disparity between the teams. It can be seen quite clearly
that the Beta Team, represented by the participants 4, 5 and
6, showed less wear than the Alfa team. It was a result we
expected, since the Beta team was the one who was using
Mock Object in the experiment. This analysis can be seen in
detail in Fig. 8.

76Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Figure 8. Relationship between time and fatigue.

V. CONCLUSION

In this paper, we present the use of Mock Objects with
TDD, a few quotes on the subject and an experiment in the
laboratory which demonstrates the practice of this activity. The
experiment had two multidisciplinary teams that conducted a
study, consisting of the preparation of a report considered quite
complex, using the IReport and Eclipse IDE tools, the use of
timing and direct observation of the leader.

For the experiment, seven items were submitted for
evaluation: elaboration time, fatigue presented by the
developers, perception of difficulty reported by the
participants, number of hits, visual quality of the work,
correct implementation of business rules and the number of
interruptions per participant. Each of the items were measured
empirically by using a scale of 2 to 10. For the analysis
of results, we infer that the adoption of Mock Objects
can be a good strategy when work requires great effort
from developers. However, one more refined analysis of the
situation may provide better subsidies for decision-making.

There is strong evidence for the growth of TDD practice
in future. In recent years, the academic community has been
conducting various experiments to show empirically that TDD
helps the software development process. Some of these studies
are done by professors well known in the community, such
as prof. Laurie Williams (North Carolina State University)
[18] and Prof. David Janzen (California Polytechnic State
University) [19].

The Brazilian Army collaborated with researchers
providing the means to carry out this work, bringing an
important contribution to the science of Software Engineering.
Based on the studies in this field, we believe that the TDD
process will continue to be of interest to researchers.

REFERENCES

[1] E. N. C. Borges, “Benefits of test driven development,” Universit of
Rio Grande do Sul/Computer Institute, 2006.

[2] A. Leon and A. S. Koch, Agile software development evaluating the
methods for your organization. Artech House, Inc., 2004.

[3] K. Beck et al., “Manifesto for agile software development,” 2001.
[4] K. Beck, “Embracing change with extreme programming,” Computer,

vol. 32, no. 10, 1999, pp. 70–77.
[5] ——, “Extreme programming explained: embrace change,” 2000.
[6] H. Baumeister and M. Wirsing, “Applying test-first programming

and iterative development in building an e-business application,” in
International Conference on Advances in Infrastructure for e-Business,
e-Education, e-Science, and e-Medicine on the Internet, SSGRR 2002,
LAquila, Italy, 2002.

[7] W. Marrero and A. Settle, “Testing first: emphasizing testing in early
programming courses,” in ACM SIGCSE Bulletin, vol. 37, no. 3. ACM,
2005, pp. 4–8.

[8] M. Fowler, “Refactoring: Improving the design of existing code,” in
11th European Conference. Jyväskylä, Finland, 1997.

[9] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[10] S. Yenduri and L. A. Perkins, “Impact of using test-driven development:
A case study.” in Software Engineering Research and Practice, 2006,
pp. 126–129.

[11] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit testing with
mock objects,” Extreme programming examined, 2001, pp. 287–301.

[12] B. Stroustrup and D. Lenkov, “Run-time type identification for
c++(revised yet again),” document X3J16/92-0121, American National
Standards Institute Accredited Standards Committee, Tech. Rep., 1992.

[13] M. Fowler, “Mocks arent stubs,” 2007.
[14] K. Lieberherr, I. Holland, and A. Riel, “Object-oriented programming:

An objective sense of style,” in ACM SIGPLAN Notices, vol. 23, no. 11.
ACM, 1988, pp. 323–334.

[15] S. Freeman, T. Mackinnon, N. Pryce et al., “Mock roles, objects,”
in Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications.
ACM, 2004, pp. 236–246.

[16] M. Brown and E. Tapolcsanyi, “Mock object patterns,” in The 10th
Conference on Pattern Languages of Programs, Monticello, USA, 2003.

[17] G. C. Low and D. R. Jeffery, “Function points in the estimation
and evaluation of the software process,” Software Engineering, IEEE
Transactions on, vol. 16, no. 1, 1990, pp. 64–71.

[18] W. Laurie, “Laurie Williams - profile,” http://collaboration.csc.ncsu.edu/
laurie/, 2016, [Online; accessed 08-August-2016].

[19] D. Janzen, “David Janzen - profile,” http://users.csc.calpoly.edu/
∼djanzen/, 2016, [Online; accessed 08-August-2016].

77Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

