ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A UML-based Simple Function Point Estimation Method and Tool

Geng Liu, Xinggi Wang, Jinglong Fang
School of Computer Science and Technology
Hangzhou Dianzi University
Hangzhou, China
email:{liugeng, xqwang, fjl}@hdu.edu.cn

Abstract—Function Point Analysis (FPA) is used to measure
the size of functional user requirements of software applications.
However, the measurement process of FPA is slow, expensive and
complex. The Simple Function Point (SiFP) method has been
proposed as a replacement of FPA that is much faster and
cheaper to apply. However, no tools supporting Simple Function
Point measurement have yet been proposed. In this paper, we
aim at building a tool to facilitate SiFP measurement.
Specifically, we propose a measurement based on UML models of
requirements, including use case diagrams and domain model
(class diagrams). The proposed methodology —including a set of
guidelines for domain modeling and the mapping between SiFP
measure components and UML elements - makes SiFP
measurement much easier to perform. In fact, the proposed
methodology is usable in the early requirements definition stage,
when only use case diagram and the primary class diagram
illustrating the domain model (including classes' names and
relationship among classes) are available. We used 17 academic
sample applications to validate our proposal. The result shows
that our method and tool can be used to replace manual Simple
Function Point measurement in the early phases of the software
development cycle to measure the functional size of software
project.

Keywords— Functional Size Measures; Simple Function Point;
SiFP; UML,; Object-oriented measures.

I INTRODUCTION

Function Point Analysis (FPA) [1][2][3] aims at measuring
the size of Functional User Requirements (FUR) of software
applications. Being based on FUR, which are available in the
early phases of development, these measures are widely used
to estimate the effort required to develop software applications.
FPA was originally introduced by Albrecht to measure data-
processing systems by quantifying the functionality the
software provides to the user, from the information view, by
quantifying the volume of data flow and the storage [4].

The basic idea of FPA is that the "amount of functionality"
released to the user can be evaluated by taking into account the
data used by the application to provide the required functions,
and the transactions (i.e., operations that involve data crossing
the boundaries of the application) through which the
functionality is delivered to the user. Data are user identifiable
groups of logically related data, and are classified as Internal
Logical Files (ILF) or External Interface Files (EIF). A

transaction is a set of actions seen as one cohesive unit of work.

FPA differentiates three types of transactions: External Input
(El), External Output (EO), and External Inquiry (EQ). The
size of each data function depends on the type of contents; the
size of each transaction depends on the number of data files
used and the amount of data exchanged with the external. The

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

sum of the sizes of data and transactions is the size of the
application in Unadjusted Function Points (UFP).

Organizations that develop software are interested in
Function Point measurement process that is reliable, rapid and
cheap, and that fits well in their development processes.
However, performing FPA requires a thorough exploration of
FUR, to identify and possibly weigh basic functional
components. Therefore, the measurement process can be quite
long and expensive. In fact, FPA performed by a certified
function point consultant proceeds at a relatively slow pace:
between 400 and 600 function points (FP) per day, according
to Capers Jones [5], between 200 and 300 FPs per day
according to experts from Total Metrics [6]. Consequently,
measuring the size of a moderately large application can take
too long, if cost estimation is needed urgently. Also, the cost of
measurement can be often considered excessive by software
developers.

In addition, at the beginning of a project, size estimation
would be necessary for bidding and planning. But, FURs have
not yet been specified in detail and completely, namely the
available information is often incomplete and insufficient. So
the customer is only able to do approximate measurements.
The accuracy of a FP measure grows with the completeness
and precision of FUR specifications. When we can measure
with the highest accuracy, we no longer need that measure. The
situation is described by the paradox illustrated in Fig. 1.

Fig. 1. Paradox of estimation and informations about estimation

Given the above situation, many simplified methods, such
as Early & Quick Function Points (E&QFP) [7], Estimated
NESMA [8], Simplified FP[9], ISBSG [10], ILF model [11],
and Early FP [12], have been proposed. The SiFP method
[13][14][27] is different from the other methods mentioned
above, as it does not aim at providing approximate estimation
of FP measures; rather, it defines a brand new functional size
measure, to be used in place of traditional FP.

In this paper, we propose some rules for building UML
models in a SiFP-oriented way. Since SiFP counting is based
on the identification of Unspecified Generic Elementary
Process (UGEP) and Unspecified Generic Data Group
(UGDG), which basically correspond to system data and

39

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

process, we exploit the ability of UML to represent such
information by establishing an explicit relation between SiFP
elements and UML language constructs. We also define some
rules to measure the SiFP size of an application from use case
diagrams and the domain model, and develop a tool to
automatically measure SiFP on the base of XMI/XML files
abstracted from UML model. Throughout the paper we take for
granted that the reader knows at least the basics of FPA
measurement and is familiar with basic UML concepts.

The rest of the paper is organized as follows: Section Il
explains the background knowledge about SiFP. Section Il
describes the empirical study. The validity of the study is
discussed in Section IV. Related work is presented in Section
V. Finally, Section VI draws some conclusions and outlines
future work.

Il. BACK GROUND KNOWLEDGE-SIFP

This section presents a brief summary of the SiFP method.
For full details and explanations of the method, see the
reference manual [13].

SiFP method was proposed by the Simple Function Point
Association, Italy. Its basic idea is that a notion of complexity
based on the number of logical data file or cross reference
among transaction and file or subgroup of data in a file is not
significant to the goal of representing functional size and of
estimation effort or cost. In order to measure the functional size
of an application, it is not necessary to identify several types of
transactions and files.

The SiFP method defines the generic software model as
shown in Fig.2, which highlights the components related to the
functional requirements of "moving" data, "processing” data
and data "storage".

Fig. 2. Theory of SiFP [13]

The SiFP method defines and uses only two basic
functional components (BFCs): UGEP and UGDG, see Fig.3.
An UGEP is defined as: "An atomic set of functional user
requirements conceived for processing purposes. It refers to an
informational or operational goal considered significant and
unitary by the user and includes all automated, mandatory and
optional activities needed to meet the goal. After an UGEP is
concluded, the measurable software application (MSA) to
which it belongs must be in a logically consistent state." [13]
An UGDG is defined as: "An atomic set of user requirements
having a storage purpose. It refers to a single logical data set
of interest to the user, for which information must be kept
persistently."[13]

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Fig. 3. BFC Types [14]

In the case of the UGEP, the term "unspecified" highlights
that it is not necessary to distinguish whether a process is
mainly for input, or output, or what is its primary intent of data
processing. Similarly, in the case of the UGDG, it means that it
is not necessary to distinguish between internal and external
logical storage with respect to the boundary of the MSA.

On the other hand, the term "Generic" indicates that for any
BFC there is no need to identify subcomponents in order to
determine BFC's complexity: all the BFCs weight equally
within the same type of BFC. Future developments of the
methodology may lead to define different functional weights
for each specific BFC depending on elements related to the
processing component of transactional BFCs that, at present, is
not quantitatively taken into account.

Fig. 4. SiFP measurement process [13]

The SiFP measurement process is represented in Fig.4. It is
a 6-step process:

— Gather the available documentation,;

— Identify application boundary;

— Determine the measurement goal and scope;

— Locate elementary processes (UGEP) and logical data
files (UGDG);

— Calculate the function size using function SiFP = 4.6
UGEP + 7 UGDG;

— Document and present the measurement.

I1l. THE EMPIRICAL STUDY

In this section, we introduce UML-based SiFP estimation
method through a case study and present briefly the Tool
SiFPOOQOTool developed by us.

40

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

A. The case introduction

We use as the case a reduced version of a real Information
System by Lavazza [15], since it is concise and its size is
appropriate. Its functional size in FP is already measured, so
we do not need to do it again. In our case, a system class
diagram that involves composition and
specification/generalization meets our needs. The only
drawback of this system for our study is that the use case
diagram is relatively simple; the relationships among the use
cases just involve the general association. But, overall, it is
suitable for our objectives.

This GymlIS is an information system for Gym
management. The application offers annual and monthly
subscriptions. The client who subscripts the annual service
only needs to pay 12 times the cost of a month but have the
right of receiving 13 months service. The client and
subscription data are stored in the system database. The former
is characterized by name, age, profession, address, and SSN.
Clients can also be updated, but, once inserted, they are never
removed from the system. A subscription is characterized by
the duration, the subscription date, the subscribing client, the
set of optional services to which the client subscribed (their
cost adds up to the cost of the basic subscription). Among the
optional services there is the possibility to get a monthly
medical check.

The functions that the application must provide are the
following: record a new client, update the client data, record a
new subscription, record the payment by a given client for a
given month, compute and print how much is due by every
client for the previous months, compute the number of
subscriptions that include the given service in a given period,
and record the results of a health check. The detailed
requirements for the transactions are not presented here. The
complete FURs of the GymlS can be found in [15]; they were
measured according to FPA rules on the basis of a traditional
description. The result was that the application is 67 FP.

B. SiFP-oriented modeling

UML-based SiFP estimation method works well only if the
given models incorporate all the required information at the
proper detail level and the modeling and measure rules are
defined according to the SiFP theory. In this sub-section we
define the SiFP-Oriented modeling methodology as a set of
guidelines. For the purpose of modeling, we use UML as
defined in [16]. We do not define extensions or force the
semantics of the language. This choice contributes to
minimizing the impact of the measurement-oriented modeling
on the development process, and to make the adoption of the
method as seamless as possible.

Usually, the activity of creating OO models is not
sequential; rather, it is often iterative, with several refinements,
deletions, extensions, and modifications of the model. In order
to keep the presentation clear, we present the modeling
methodology as a sequence of conceptual steps.

Step 1: Present application boundary

The first objective of the model is to represent the
application boundaries and the external elements that interact
with the system to be measured.

A use case diagram is a graphic depiction of the
interactions among the elements of a system. A use case

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

diagram contains four components. The boundary defines the
system of interest in relation to the world around it. The actors
are usually individuals involved with the system defined
according to their roles. The use cases are the specific roles
played by the actors within and around the system. The last
component is the relationships between and among the actors
and the use cases. UML provides use case diagrams, which are
well suited for our purposes. The boundary of the use case
diagrams can be directly taken as the boundary of the MSA.
The correspondence between the SiFP concepts and the
elements of UML use case diagrams is schematically described
in Table I.
TABLE I. MAPPING OF THE ELEMENTS BETWEEN SIFP AND UML
SiFP UML

Boundary of the object that
owns the use cases

Application boundary

UGEP Use case
User Actor
UGDG locating out of the Actor

system boundary

Step 2: Present UGEP using use case

Use Case Diagrams indicate —as actors— the elements
outside the boundary with which the application interacts; most
important, use case diagrams show the transactions. We
represent each UGEP as a use case.

Rule 1: Each use case must represent the smallest unit of
activity that is meaningful to the user(s), and must be self-
contained and leave the business of the application being
counted in a consistent state.

Rule 2: Relationship among the use case, extension, include,
generalization, must be correctly presented.

Rule 3: A use case that cannot be instanced must be noted
as "abstract" stereotype. The base use case of a cluster of use
case formatted by generalization must be noted as "abstract"
stereotype.

By applying the rules above to the GymlIS the use case
diagram reported in Fig. 5 is obtained.

System

Add_new_diient

Add_new_subscription

Record_health_check
1 =
% E — %

Operator
5ewice_freﬂV Serviceespricves
Payment_due

Fig. 5. Use case diagram of the GymIS

Step 3: Present UGDG using domain class

Usually, the methods proposed in the literature for
measuring the functional size of UML models map the concept
of data functions onto (sets of) classes. The difficulties in
matching classes and logic files are exemplified very well in
[18], where four different manners of identifying logical files
are defined, according to the different possible ways to deal
with aggregations and generalization/specializations
relationships.

41

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Although in several cases it is possible to identify a class as
a logic file, it is also quite common that a single logic file
corresponds to a set of classes.

In object-oriented development process, such as ICONIX
processes [17], the modeling process of static model can be
split into three stages: 1) requirements definition, 2) analysis,
conceptual design and technical architecture, 3) design and
coding. The obtained models are domain model, updated
domain model and Class model -as shown in Fig. 6- which
separately correspond to three types of diagram: domain class
diagram, updated domain class diagram and class diagrams.

Domain Model Class Model

Fig. 6. Static domain model of OO development using ICONIX process

Information presented by domain diagram contains names
of the entity objects, and the relationships among these entity
objects; updated domain class diagram is added boundary
objects and controllers. Also the attributes of each entity class
abstracted from use case specification are equipped; Class
diagram contains all the information mentioned above, and
some controllers are changed into one or more operations and
those operations are assigned to corresponding class. Analysis
and comparison about different types of objects at different
stages is shown in Table II. Through the above analysis we can
see the domain class diagram already fully meets the demand
for measuring the data "storage" part of SiFP except that it
doesn't have the ability to present the UGDG located outside
the system boundary.

TABLE II. ANALYSIS ADN COMPARISON ABOUT DIFFERENT TYPES OF
OBJECTS
Domain IlDJgr(rjgii Class
Model Model Model
Entity Yes Yes Yes
Stereotype Controller / Yes Yes
of Class
Boundary / Yes Yes
Class Name Yes Yes Yes
Information | Relationship Yes Yes Yes
about entity -
class Attributes / Yes Yes
Methods / / Yes
Suitable for SiFP measure Yes Yes Yes

Since for any BFC there is no need to identify
subcomponents in order to determine BFC complexity. We
define some rules as following:

Rule 4: SiFP does not distinguish between internal and
external UGDG, but in order to facilitate the later statements,
we divided UGDG into two types: external UGDG and internal
UGDG. Internal UGDG is the UGDG that locates inside of the
system boundary, external UGDG locates outside of the system
boundary.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

Rule 5: Entity classes that appear in the domain model
diagram are the candidates for UGDG. Entity classes appear in
domain model must be complete, namely, no entity class be
missed. Each entity class should have its name, and the
relationships among the entity classes should be complete.

Rule 6: Each entity class must be noted as stereotype
<<Entity>>.

Rule 7: In general, a UGDG corresponds to an entity class
(see the class User and Payments in Fig.7). A relevant
exception is given by clusters of classes that are connected by
composition relations (see the set classes consist of
HealthRecord and Result in Fig.7), or generalization relations
(see the classes Subscription, MonthScription and
AnnualScription in Fig.7). A cluster of classes that are
connected by composition or generalization relations is defined
as one UGDG.

TABLE Il MAPPING OF THE ELEMENTS
SiFP UML Class(es) #UGDG

UGDG association 1 1

UGDG aggregation 1 1

UGDG composition a cluster of 1

UGDG generalization a cluster of 1
UGDG locating out of logic data 1 1
the system boundary component

Rule 8: When necessary, add to the domain model one or
more special class(es) to present the external system logical
data: these class(es) are named as external UGDG(s) and are
stereotyped <<XUGDG>> (see class otherSystem in Fig.7). A
class diagram with added special classes is called an extended
class diagram.

By applying the rules above to the Gym IS, the extended
class diagram reported in Fig. 7 was obtained.

<<Entity>> <<XUGEDG>>
User otherSystem
N — Entity=>
=<Entity>> Subscription S
Payments Pt HealthRecord
<<Entity> <<Entity>> <<Entity>>
MonthScription AnnualScription Result

Fig. 7. Extended Class diagram of the Gym IS

C. Counting and summing

Here our SiFP counting procedure is redefined with respect
to the UML model with the following goals: it must be
coherent with the principles reported in SiFP reference manual
[13]; it must be precise, without ambiguities, thus leaving no
space to the measurer for interpretation; it must require little
effort; it must be executable by people without big skill in FP
counting and with little knowledge of the requirements.

As mentioned earlier, a UGEP is represented as a use case,
but not every use case should be counted as a UGEP. By
analyzing the role and the characteristics of each use case
belonging to a set of use cases connected by include, extension

42

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

or generalization relations (see Table 1V), and according to
SiFP rules, we define rule 9.

TABLE IV. COMMON ELEMENTS FROM GENERAL MODEL AND FPA
ORIENTED UML MODEL
for
Type of UC Role of UC Complete Abstract measure
unit
Base UC Yes No Yes
Include -
Inclusion Yes No Yes
. Base UC Yes No Yes
Extension -
Extension Yes No Yes
general UC No Yes No
Generalization [Specialized Ves No Ves
ucC

Rule 9: In general, a use case is counted as a UGEP. A
relevant exception is that the use case noted as abstract is not
counted as a UGEP.

Rule 10: As defined by the rules 4-8, whether it is a single
class or a group of classes, as long as it is defined as a UGDG,
it is counted as a UGDG.

Rule 11: A class stereotyped <<XUGDG>> is counted as
a UGDG.

Once the UGEP and UGDG lists are complete, the scores
are assigned to the individual BFCs and added together as
shown below. The scores to assign to each individual BFC are:
UGDG =7.0 SiFP and UGEP = 4.6 SiFP.

So the size of a whole application is:

SiFP=M(UGEP)+M(UGDG)= #UGEP*4.6 + # UGDG*7.0.

Here #X means the number of X.

According to the conversion between SiFP and UFP
defined in the SiFP reference manual, we can draw the
following equation to calculate the FPA functional size from
the SiFP value:

UFP = #SiFP /0.998

D. Measure Tool for SiFP

There are several UML modeling tools which support OO
modeling, such as Visio, Rational Rose, Power Designs, EA
and StarUML. These tools not only provide a graphical
modeling function, but also export the model as XMI and/or
XML file. Measurement tools can be designed by parsing
XMI/XML document and using measurement rules. We
designed a measure tool SiFPOOTool to automatically
measure the SiFP size of an application by its UML model,
precisely use case diagram and class diagram. The high-level
structure of the tool is shown in Fig.8.

Info. about SW

Measurement

FUR ;
SiFPOOTool Wpon

StarUML SOMI/XMI

Measuremeant
records

Fig. 8. Theory of SiFPOOTool

The tool provides some functions, such as, reading and
parsing XML file derived from UML model, recording and
reporting the measure result. Moreover, the related
information about the application being measured, the

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

company which holds the application (see Fig. 9), the measurer
that carries out the measurement are all recorded by the tool to
meet the needs for analysis and inquiries.

Holder Info

SWiProducer Info

Name: Name: ’7 SWID:

size: size: ’7 SoftwareTitle:
Address(City)! Address(City): ’7 App Domain:
Tele. N.: Tele. Nz ’7 Application Type:
Internet Site: Internet Site: ’7 Language:
Measurer: Developer:

Fig. 9. Information input interface of the tool

We measure the GymlS software application using our tool
SiFPOOTool: 5 UGDG and 7 UGEP were identified, thus the
total size is 67.2 SiFP.

IV. EMPIRICAL VALIDATION

We aimed to validate the two issues: the first one is
whether the tool can be used to replace the manual SiFP
measurement, when a UML requirement model is available.
The second is to validate whether our SiFP-oriented UML
modeling rules are correct. The validation overview is shown
in the Fig.10.

Manual Measurement

SiFP- #SiFP h
oriented Valdating |
UML the tool
R Model XML #siee o FR |0 —
Valdating
Using SiFPOOTool L he
modgling and
FPA-oriented _ | measurerules
UML Model

Fig. 10. Validation overview

We used 17 projects' models mainly prepared during
previous work [19]. The FURs, UML models (use case
diagram, class diagram, components diagram, and sequence
diagram) and size measures (in UFP) of those projects are
available.

The experimental validation procedure was organized as
follows:

—Firstly, for each project, the use case diagrams are
reviewed and modified according to the rules 1, 2 and 3
defined in Section I11.B.

—Second step: the class diagrams are reviewed and
modified according to the rules 4-8 in Section I11.B.

—Third step: The activities involved in steps 1 and 2 are
repeated until all the projects’ use cases and class diagrams
comply with the rules 1-8 in Section I11.B. Using StarUML, the
XMI/XML files are exported from UML model.

— The fourth step: those 17 projects are manually measured
using the SiFP method: the results are given in columns 2-4 of
Table V. The correspond SiFP and UFP are also calculated
automatically and inserted in the 4th and 5th columns of the
Table V. The UFP values are computed according to the

43

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

function SiFP = #UFP*0.998 described in the reference manual
[13].

— Then we use our tool SiFPOOTool to measure each
model XMI/XML file obtained at step 4. The results and their
corresponding UFPs are inserted in columns 6-8 of Table V.
To automatically obtain the UFP values, the previous function
SiFP=#UFP*0.998 was used in our tool.

— Finally, we copied into Column 10 the functional size
measures in UFP manually measured in the previous work.

When all the preparatory work was finished, we performed
three paired sample t-Tests on the datasets of manual
measurement (Column 5), of the measurement based on
SiFPOOTool (Column 9) and of UFP values (Column 10)
obtained in the previous work. As usually the level of
significance is set as 5%. Test results are as follows: on the
datasets of manual measurement (Column 5) and of the
measurement based on SiFPOOTool (Column 9), the two-
tailed test p-value is approximately 0.104. For the datasets of

the manual measurement(Column 5) and the UFP(Column 10),
the datasets of measurement based on the tool(Column 9) and
UFP(Column 10), both the two-tailed test p-values are
approximately 0.001. Then we analyzed the average of
absolute value of the ratio of UFP based on the tool(Column 9)
and the UFP(Column 10), it is approximately 9.95%, which is
less than 10%, so the results obtained based on the tool is
acceptable. Our approach (based on UML model) belongs to
the third level, detailed measurement level, of the six accuracy
levels for software sizing defined in [20][21].

In conclusion, our estimation tool SIFPOOT ool can be used
to replace manual SiFP measurement in the early phases of the
software development cycle, namely domain modeling phase,
to measure the functional size of software project. As it turns
out, our modeling and measure rules (Rules 1-11 presented in
Section I11. B, C and D) lead to good experiment results.

TABLE V. DATASETS OF MEASUREMENTS BY HAND, USING SIFFOOTOOL
Manual Measurement Measurement Using SiFPOOTool Ratio of Ratio of Ratio of
P.ID - - UFP 5th/9th 5th/10th 9th/10th
#UGEP | #UGDG | SiFP | UFP | #UGEP | #UGDG | SiFP UFP column column column
1 15 13 160 160.3 15 13 160 160.3 160 0.00% 0.20% 0.20%
2 15 15 174 174.3 15 14 167 167.3 140 4.19% 24.53% 19.52%
3 12 6 97.2 97.4 12 3 76.2 76.4 84 27.56% 15.95% -9.10%
4 22 10 171.2 1715 22 11 178 178.6 163 -3.93% 5.24% 9.54%
5 20 6 134 134.3 20 6 134 134.3 128 0.00% 4.90% 4.90%
6 18 8 138.8 139.1 18 9 146 146.1 130 -4.80% 6.98% 12.38%
7 16 3 94.6 94.8 16 3 94.6 94.8 78 0.00% 21.53% 21.53%
8 15 8 125 125.3 15 6 111 111.2 107 12.61% 17.06% 3.95%
9 17 7 127.2 1275 17 5 113 1134 102 12.37% 24.96% 11.20%
10 7 8 88.2 88.4 7 8 88.2 88.4 79 0.00% 11.87% 11.87%
11 18 7 131.8 132.1 18 5 118 118.0 105 11.88% 25.78% 12.42%
12 28 4 156.8 157.1 28 4 157 157.1 138 0.00% 13.85% 13.85%
13 22 5 136.2 136.5 22 5 136 136.5 124 0.00% 10.06% 10.06%
14 13 2 73.8 73.9 13 2 73.8 73.9 73 0.00% 1.30% 1.30%
15 20 3 113 113.2 20 3 113 113.2 106 0.00% 6.82% 6.82%
16 27 6 166.2 166.5 27 6 166 166.5 159 0.00% 4.74% 4.74%
17 14 5 99.4 99.6 14 5 99.4 99.6 86 0.00% 15.81% 15.81%

V. RELATED WORK

The generic concepts of FPA were published in the late
1970s. Later, more detailed measurement rules were developed
to improve consistency of measurement. Due to lack of good
software documentation, it is not always possible to apply all
the detailed rules, and measurers must fall back on
approximation techniques [22].

In [22] M. Lelli and R. Meli announced this as a paradox:
Size estimation is necessary when we do not have enough
information (thus, early estimation methods must be used to
obtain it). When we can measure with the greatest accuracy,
we no longer need that information any more.

In order to figure out whether FPA in the early phases is a
realistic option, the committee "FPA" in the early phases” was

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

established in September 1989. The committee investigated
whether FPA can be used to perform an indicative size
estimate before a complete logical (detailed) design is available
[23].

Many techniques for early size estimation have been
proposed for FP, such as component sizing technique by
Putnam and Myers [24] and the Early and Quick Function
Point size estimation techniques by Conte et al. [25]. These
methods — such as Estimated NESMA method [8], ISBSG
average weights, simplified FP [13], prognosis of CNV AG [11]
and so on - do not require the weighting of functions; instead
each function is weighted with average values.

Some methods extrapolated the FP counts from the
countable components (usually the ILFs) using statistical
methods (mostly regression analysis). Some simplified

44

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

methods — Mark 1I, NESMA’s Indicative FP, Tichenor ILF
Model, Prognosis by CNV AG, and ISBSG Benchmark — were
constructed according to such technique.

In [15] Lavazza et al. proposed a FPA-oriented UML
modeling technique that can make FPA performed in a
seamless way, while yielding reliable results. In [26] del
Bianco et al. introduced the model-based technique into
COSMIC method and suggested a simplified model-based cost
estimation models. By using the data from a large popular
public dataset Lavazza and Meli confirmed that SiFP can be
effectively used in place of IFPUG [14]. However, there has
been no measure tool for SiFP so far.

VI. CONCLUSIONS AND FUTURE WORK

Performing Function Point measurement according to the
traditional process is expensive and time consuming. The SiFP
was proposed as a replacement of FPA. Functional size is
mainly used for estimating development costs and project
planning. Many software developers use UML, hence they are
interested in basing functional size measurement on UML
models. In principle, UML-based estimation can be used
effectively at the earliest stage of software: our proposal makes
this possibility practical and viable. Additional researches
(concerning both measurement technology and measurement
tools) are necessary to support functional size measurement in
different stages of software development.

ACKNOWLEDGMENT

The authors thank Prof. Luigi Antonio Lavazza from the
University of Insubria in Varese, Italy, for his constructive
suggestions and comments on this research. The authors also
thank Jun Wu for his contribution to the implementation of the
first version of the tool. The research presented in this paper
has been supported by the Start Project Foundation of
Hangzhou Dianzi University under Grant No. KYS105614069,
by the Defense Industrial Technology Development Program
under Grant No. JCKY2013415C001 and Grant No.
JSZ1.2014415B002, and by Weapon Equipment Pre-Research
Foundation under Grant No. 9140A15040214DZ04221.

REFERENCES

[1] A. J. Albrecht, "Measuring Application Development Productivity",
Joint SHARE/ GUIDE/IBM Application Development Symposium, pp.
83-92, 1979.

[2] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.1", January 2010.

[3] ISO/IEC 20926: 2003, "Software engineering — IFPUG 4.1 Unadjusted
Functional Size Measurement Method — Counting Practices Manual”,
Geneva: I1SO, 2003.

[4] A.J. Albrecht and J.E. Gaffney, "Software function, Source Lines of
Code and Development Effort Prediction: a Software Science
Validation", IEEE Transactions on Software Engineering, vol. 9(6),
pp.639-648,1983.

[5] C. Jones, "A New Business Model for Function Point Metrics",
http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones
/FunctPtBusModel2008.pdf, retrieved: June, 2016.

[6] Total Metrics, "Methods for Software Sizing — How to Decide which
Method to Use", http://www.totalmetrics.com/function-point-
resources/downloads/R185_Why-use-Function-Points.pdf, retrieved:
June, 2016.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

"Early & Quick Function Points for IFPUG Methods v.3.1 Reference
Manual 1.1", April 2012.

ISO/IEC 24570: 2004, "Software Engineering-NESMA Functional Size
Measurement Method version 2.1 - Definitions and Counting Guidelines
for the Application of Function Point Analysis”, International
Organization for Standardization, Geneva, 2004.

J. Geraci and C. Tichenor, "The IRS Development and Application of
the Internal Logical File Model to Estimate Function Point
Counts,"1994. Presented at the Fall 2000 IFPUG Conference.

L. Bernstein and C. M. Yuhas, "Trustworthy Systems Through
Quantitative Software Engineering”, John Wiley & Sons, 2005.

M. Bundschuh, "Function Point Prognosis Revisited”, FESMA 99,
Amsterdam, The Netherlands, October 4-8, 1999, pp. 287-297.
http://www.academia.edu/1024603/FUNCTION_POINT_PROGNOSIS
_REVISITED, retrieved:June, 2016.

R. A. Monge, F. S. Marco, F. T. Cervigon,V. G. Garcia, and G. U. Paino,
"A Preliminary Study for the Development of an Early Method for the
Measurement in Function Points of a Software Product"”, Eprint Arxiv
Cs, 2004.

SiFPA, "Simple Function Point Functional Size Measurement Method -
Reference Manual, V. SiFP-01.00-RM-EN-01.01",
http://www.sifpa.org/en/index.htm, retrieved: June, 2016.

L. Lavazza and R. Meli, "An Evaluation of Simple Function Point as a
Replacement of IFPUG Function Point", in 9th Int. Conf. on Software
Process and Product Measurement (Mensura) IWSM-MENSURA 2014,
October 6-8, 2014, Rotterdam.

L. Lavazza, V. del Bianco, and C. Garavaglia, "Model-based Functional
Size Measurement”, 2nd International Symposium on Empirical
Software Engineering and Measurement (ESEM 2008), Oct. 9-10, 2008,
Kaiserslautern, Germany.

OMG-Object Management Group, "Unified Modeling Language:
Superstructure”, version 2.1.1, OMG formal/2007-02-05, February
2007. (available from http://www.omg.org)

D. Rosenberg and M. Stephens, "Use Case Driven Object Modeling
with UML Theory and Practice", Apress, Berkeley, USA, 2007.

G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, "A Function Point-
Like Measure for Object-Oriented Software", Empirical Software
Engineering , Volume 4, Issue 3, pp 263-287, Sept. 1999.

G. Liu, "Towards Making Function Size Measurement Easily Usable in
Practice", PhD thesis, University of Insubria, Varese, Italy, 2014.

P. Hill, "Software early lifecycle- Function sizing", SoftwareTech, June
2006, Vol. 9, No.2.

Total Metrics, "Levels of Function Points, Version 1.3", January 2004,
http://www.totalmetrics.com/total-metrics-articles/levels-of-function-
point-counting, Total Metrics, 2004.

M. Lelli and R. Meli, "from Narrative User Requirements to Function
Point", IN: Proceedings of Software Measurement European Forum-
SMEF 2005, Mar. 16-18, 2005, Rome, Italy.

NESMA, "The Application of Function Point Analysis in the Early
Phases of the Application Life Cycle - A Practical Manual: Theory And
Case Study, V. 2.0",
http://www.nesma.nl/download/boeken_ NESMA/N20_FPA _in_Early_P
hases_(v2.0).pdf, retrieved:June, 2016.

L. H. Putnam and W. Myers, "Measures for Excellence: Reliable
Software on Time within Budget", Prentice Hall, UpperSaddle River,
1992.

M. Conte, T. lorio, R. Meli, and L. Santillo, "E&Q: An Early & Quick
Approach to Function Size Measurement Methods", In Proceedings of
Software Measurement European Forum-SMEF 2004, January 28-30,
2004, Rome, ltaly.

V. del Bianco, L. Lavazza, and S. Morasca, "A Proposal for Simplified
Model-Based Cost Estimation Models"”, In Proceedings of 13th Int.
Conf. on Product-Focused Software Development and Process
Improvement, pp. 59-73, June 13-15, 2012, Madrid, Spain.

F. Ferrucci, C. Gravino, and L. Lavazza, "Assessing Simple Function
Points for Effort Estimation: an Empirical Study", 31st ACM
Symposium on Applied Computing, April 4-8, 2016, Pisa, Italy.

45

