
A Knowledge Base for Electric Vehicles in Inner-City Logistics

Thomas M. Prinz, Johannes Kretzschmar, Paul Hempel, and Volkmar Schau

Chair of Software Technology
Friedrich Schiller University Jena, Germany

email: {Thomas.Prinz, Johannes.Kretzschmar, Paul.Hempel, Volkmar.Schau}@uni-jena.de

Abstract—Logistics companies depend on the new technology of
electric vehicles when inner-city low emissions zones and their
restrictions grow. The comprehensible utilization of electric vehi-
cles in such a time and resource critical domain however requires
an extensive software support regarding e-vehicle features. Since
there are several logistics software systems, there is the need for a
knowledge base for electric vehicles to allow a cross-application
implementation of those features. In this paper, we argue for
such a knowledge base and how it could basically look like.
Furthermore, we motivate this base with some use cases. At the
end, the paper closes with an exemplary knowledge base for the
inference of possible drivers for a specific vehicle type.

Keywords–Knowledge base; electric vehicles; logistics.

I. INTRODUCTION

The introduction of electric vehicles presents challenges
for everyday life since they rise complete new technologies
and handling. Otherwise, that introduction becomes more and
more important as most big cities. Especially Germany and
the Netherlands have low emissions zones restricting the type
of vehicles. Inner-city logistics companies depend on that new
technology to allow a supply in future as most conventional
logistics vehicles have high emissions.

In our research project Smart City Logistik Erfurt (SCL)
[1], we consider those challenges for the introduction of
electric vehicles in inner-city logistics exemplary on the area
of the city Erfurt. The major tasks are (1) a range forecast, (2)
the driver’s acceptance, (3) an open system architecture [2],
and (4) a knowledge base:

(1) The range prediction is necessary to enable a precise
tour planning since most tours in inner-city logistics
should be planned in such that a vehicle uses its full
range. Especially in the field of e-mobility, a solid
capacity is required to prevent batteries from damage.

(2) The driver’s acceptance is important as first tests have
shown that the new technology, for example the range
restriction of electric vehicles, makes drivers insecure.
As result, a system has to support the drivers to school
their handling to get a better time/costs ratio.

(3) Since the field of transport management systems offers
less open application interfaces, there is the need for
building an open system architecture to connect new
systems for the consideration of electric vehicles (e.g.,
a range prediction) to current transport management
systems. Before the introduction of electric vehicles
can be successful in inner-city logistics, that interac-
tion has to be implemented.

(4) Eventually, the knowledge base comprises necessary
information of and behaviour rules for electric vehicles

and inner-city logistics. Since there are currently a lot
of software systems for logistics, such a base enables
a cross-system implementation by system-independent
terminologies, interdependencies, and inferences. It is
therefore the base for all other mentioned topics and
the content of this paper.

Traditionally, the development of knowledge-based systems
consists of six steps (c.f. Figure 1): (1) identification, (2)
conceptualization, (3) formalization, (4) implementation, (5)
testing, and (6) revision [3]. Since there are diverse inter-
dependencies between range influencing factors, we have to
perform a knowledge acquisition as part of the identification
step. Knowledge acquisition in the field of electric vehicles and
inner-city logistics requires an analysis of the range influencing
parameters, the business processes of logistics companies, and
the participants as well as the resources in inner-city logistics,
e.g., the structure of delivery tours.

For this purpose, we have to use several knowledge
representations in our striven knowledge base. Detailed and
structural descriptions of each resource, object, participant in
inner-city logistics and in electric vehicles form the foundation.
These descriptions define a controlled vocabulary [4] and
follow a data-driven system approach [5]. Descriptions of
numeric values specify units and their interdependencies, i.e.,
they allow for an automatic transformation from a source unit
into a target unit. The structure of composed terms can be
described with groups (compositions), cardinalities (arrays),
optionalities, and polymorphisms [5]. Semantic annotations
like synonyms, acronyms, textual information, and keywords
allow for targeted searches and later comprehensive domain
modelling.

Based on that structural layer of information, the next
layer contains the interdependencies between the different
information (or concepts in terms of ontologies). Those in-
terdependencies define semantic information which allow for
the inference of new or not explicit described information. For
example, such a system can infer that a s-pedelec is subsumed
by the concept of a moped.

Such a conceptual layer builds an advanced ontology for
electric vehicles and inner-city logistics. However, the nature
of description logics ontologies does not simply and efficient
involve numerical interdependencies being the normal case in
this field of research. If we consider the classes of European
driving licences for example, then we see that one can receive
only the driving licence class B if that person is at least 18
years old. To represent such a rule, there is the need for an
additional layer — a rule base. The rule base includes the rules
given by the ontology and additional numerical rules.

257Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1. Identification

2. Conceptualization

3. Formalization

4. Implementation

5. Testing

6. Revision

Figure 1. Expert system development after Buchanan et al. [3]

rule layer

conceptual layer

structural
layer

Figure 2. Approach for a knowledge base for electric vehicles

Our overall approach for a complete knowledge base for
electric vehicles in inner-city logistics is illustrated in Figure
2. It contains the three above mentioned layers in concentric
circles.

In this paper, we motivate some use cases for a knowledge
base for electric vehicles in inner-city logistics at first (cf.
Section II) and, afterwards in Section III, we consider the use
case in European driving licence classes in more detail and
demonstrate how we can use our three layer model to describe
it. Finally, we close our paper with a short outlook into future
work in Section IV.

II. USE CASES

The motivation for the construction of a knowledge base
for electric vehicles in inner-city logistics is each of the
following use cases, which arose from the SCL project: (1)
Infer missing measurement data, (2) infer company important
information, e.g., valid tours, drivers which are allowed to
drive a specific car, drivers whose driving licence class expires,
tour stops in valid time intervals, distances which are feasible
for an electric vehicle of the company, checks of driver’s rest
periods, or goods with the same (or a close) destination and
delivery time interval. Furthermore, a knowledge base may (3)
provide mechanisms for actual and consistent data, e.g., current
available electric vehicles.

In the remainder of this section, we consider these use
cases in more detail with regard to their need and an idea for
their solution with a knowledge base.

(1). Logistics software products and especially the range
prediction use measurement data like global positions (GPS),
current speeds, etc. for monitoring and optimization. However,
the size of measurement data should be as small as possible
without the loss of information. Sometimes, the system has
to handle incomplete or contradictory data. For this reason,

it (i.e., the knowledge base) has to be able inferring and
evaluating the missing data. This is possible for data with
physical correlations. For example, the average speed between
two measurement points (i.e., two successive received mea-
surement data) can be derived if the GPS positions and time
stamps of both measurement points are given. Naturally, in
some cases, there is a little loss of quality in the data since,
for example, the distance which can be calculated with the
help of two GPS positions may vary from the real distance.

Such an inference of measurement data is possible with
the help of formal data descriptions, especially the physical
correlations, which are defined in the structural layer of our
proposed knowledge base.

(2). Logistics companies have the same trend to temporary
workers, internationalization, globalisation, and optimization
as other companies. For this reason, such companies are
confronted with a wide heterogeneity of laws, structures, and
cultural characteristics of different countries. It is necessary to
collect all these (important) information to allow answers for
simple questions whose inference is complex. As mentioned
before, such questions could be: What is a good tour that
is valid for a specific vehicle and fits all orders? Who of
the drivers can drive that vehicle? Is it possible that a driver
reaches each tour stop within a valid delivery time interval?
When does a driver has to refresh its driving licence class to
be continuously usable? Does all drivers observe the legal rest
periods? Etc.

For such complex inferences, the structural layer must
describe all concepts which belongs to driver licences, drivers,
tours, goods, customers, vehicles, street maps, etc. Further-
more, the conceptual layer has to describe the relationships
between those concepts and, eventually, the rule layer defines
additional rules for those relationships. How such a knowledge
base could be implemented is shown exemplary in the next
section on the question ”Who of the drivers can drive that
vehicle?”.

(3). In this fast-moving time, it is important to keep up-to-
date. If the knowledge base uses standardized data descriptions
of concepts, it can automatically support eventual update
processes, by checking for consistency between comprehensive
domain ontologies. Often, new electric vehicles have a better
power performance and, therefore, save time and money. For
this reason, the structural, the conceptual and the rule layer
have to use standardized data formats or should be involved
in standardizations.

These use cases show that a knowledge base, which pro-
vides more functionality as a simple data base is useful in the
context of logistics software and electric vehicles. In the next
section, we present a cut-out of a possible knowledge base for
European driving licence classes.

III. A KNOWLEDGE BASE FOR EUROPEAN DRIVING
LICENCE CLASSES

In this section, we exemplary introduce (parts of) a knowl-
edge base for driving licence classes in the European Union.
The use-case for this knowledge base is to derive drivers who
can drive a specific vehicle type or vehicle types who can be
driven by a specific driver.

In the European Community, a lot of driving licence
classes exist. Figure 4 shows these classes and also a cut-
out of their interdependencies. As we see, there are multiple

258Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Driver

+ age : number

Driving Licence

 › has

 0..1

1

Driving Licence Class

+ from the age of : int

› has

 1..*

1

Driving Licence Class B

Driving Licence Class C

Driving Licence Class C1

...

Vehicle Type

 ‹ needs

 1..*

*

Figure 3. Entities in the knowledge base

interdependencies between those driving licence classes, which
are difficult to know and to learn for an inexperienced user.
For this reason, a knowledge base would be profitable for
supporting logistic scheduler.

As argued in Section I, at first, we introduce the struc-
tural parts of our striven knowledge base. This structural
layer consists of data descriptions, i.e., the description of
the concepts. In our implementation, we have used an own
data description language, which structures these concepts in
groups, cardinalities, options, and entities as introduced in
Döbrich and Heidel [5]. Those data descriptions contain also
synonyms and textual descriptions as well as units. For a better
readability, we use an UML 2.0 class diagram [6] at this point
of view. That class diagram is illustrated in Figure 3.

The major concepts are the ones to represent a driver, a
driving licence, a vehicle type, and driving licence classes.
Naturally, several other concepts can be introduced to describe
those concepts in more detail.

Furthermore, there are some connected attributes for these
concepts. As start point, the concept driver consists of an age.
A driver has up to one driving licence, which has at least
one driving licence class. Such a class has a class-specific
driver’s age for which that class can be received of a person.
Furthermore, a driving licence class is needed to drive several
vehicle types. At last, there are some subtypes of driving
licence classes like driving licence class B.

After we have build the structural layer, we have to
introduce the conceptual layer. As mentioned in Section I,
the conceptual layer contains relations between these concepts.
Some of these relations are already defined in the structural
layer. At first, for each class in the class diagram, we include
an unary relation in our knowledge base. For this, in the
following, we use (to represent arbitrary instances) variables d
for representing a driver, c, c1, c2 for driving licence classes,
a, a′ for ages, dl for a driving licence, and finally v as an
arbitrary instance of a vehicle type:

Driver(d) (= D(d))

Driving Licence(dl) (= DL(dl))

Driving Licence Class(c) (= DLC(c))

Driving Licence Class C(c) (= DLC C(c))

Driving Licence Class C1(c) (= DLC C1(c))

Driving Licence Class B(c) (= DLC B(c))

V ehicle Type(v) (= V T (v))

Afterwards, we need the explicit binary relations in the
following equation, which are extracted from the associations

and the attributes of the class diagram:

From The Age Of(c, a) (= FTAO(c, a))

Age(d, a)

Has Driving Licence(d, dl) (= HasDL(d, dl))

Has Driving Licence Class(dl, c) (= HasDLC(dl, c))

Needs(v, c)

Eventually, we introduce the subclass-associations of the
class diagram as rules into our conceptual layer:

DLC C(c)→ DLC(c)

DLC C1(c)→ DLC(c)

DLC B(c)→ DLC(c)

Now, we have a stable structural and conceptual layer
for our knowledge base (for this cut-out). Like Figure 4
shows, there are many other interdependencies between driving
licence classes and the involved concepts. To represent those
dependencies, we have to create a rule layer, which contains
additional information.

As basic for our rule layer, we want to check whether an
arbitrary number (x ∈ R) is greater than or equal to another
number (y ∈ R):

GEq(x, y) = ”x ≥ y”

Whether two driving licence class instances belong to the
same driving licence class can be checked by Equal:

DLC C(c1) ∧DLC C(c2)→ Equal(c1, c2)

DLC C1(c1) ∧DLC C1(c2)→ Equal(c1, c2)

DLC B(c1) ∧DLC B(c2)→ Equal(c1, c2)

As shown in Figure 4, a driving licence class C includes
the driving licence class C1, i.e., one driver having a class C
can also drive vehicles, which needs class C1.

DLC C(c1) ∧DLC C1(c2)→ Includes(c1, c2)

Furthermore, the same figure shows, that both classes C
and C1 requires class B to be received. Thus, each driver with
class C, for example, can also drive vehicles with class B.

DLC C(c1) ∧DLC B(c2)→ Requires(c1, c2)

DLC C1(c1) ∧DLC B(c2)→ Requires(c1, c2)

Now, we can infer all driving licence classes, which are
available with a single one when we merge the Equal,
Include, and Requires rule to a single Contains rule:

Equal(c1, c2)→ Contains(c1, c2)

Includes(c1, c2)→ Contains(c1, c2)

Requires(c1, c2)→ Contains(c1, c2)

As a kind of validation, we check whether a specific age
is enough to allow the receiving of a driving licence class.
Therefore, we overload the rule Requires:

DLC(c) ∧ FTAO(c, a′) ∧GEq(a, a′)→ Requires(c, a)

To build a predicate that allows us the inference of the
drivers who can drive a specific vehicle type, we have to derive
the driving licence classes of a driver.

HasDL(d, dl) ∧HasDLC(dl, c)→ HasDLC(d, c)

259Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Class A

Class AM

Mopeds

allows for

Class A1Class A2 containscontains

contains

Motor-
cycles

allows for

Motor
vehicles

contains Class B

allows for

Class BE

Class T

contains
[country = Finland]

Class F

Class G

contains
[country = Croatia]

contains
[country = Croatia]

contains
[country = Norway]

Class S

Class C1

Class C

requires

requires

requires contains

Class C1E

contains

requires

requires [or]

Class CE

requires

contains

Class D1

Large goods
vehicles

allows for

Class D

requires

requires contains

Class D1Erequires

requires

Class DE

contains

requires

[or]

Buses

allows for

Tractors

allows for
[country = Croatia]Heavy

Equipment

allows for
[country = Croatia]

Class H

Trams

allows for
[country = Croatia]

Class BF17

exchanges to
[age >= 18]

Snow-
mobiles

allows for
[country = Norway]

Motor
vehicles

allows for
[country = Germany]

allows for
[country = Bulgary or

Norway or Poland or Germany
or Finland]

Figure 4. European driving licence classes and their interdependencies

To be sure that a driving licence class is valid for a driver,
we introduce a rule that checks the age of the driver with
regard to a specific driving licence class:

D(d) ∧DLC(c) ∧HasDLC(d, c) ∧Age(d, a)

∧Requires(c, a)→ DHasDLC(d, c)

Finally, we can create a rule for our rule layer that allows
us to infer all vehicle types that can be driven by a driver and
all drivers that are allowed to drive a specific vehicle type:

V T (v) ∧Needs(v, c1)∧DHasDLC(d, c2) ∧ Contains(c2, c1)

→ DCanDriveV (d, v)

With a simple implementation of our knowledge base, e.g.,
in Prolog, we can infer our wanted information by replacing
a specific driver or vehicle with a variable, i.e., a place
holder. That functionality can be adapted to logistics software,
which automatically infer missing driving licence classes in
documents and possible drivers for a tour. So, a knowledge
base for electric vehicles is justifiable.

IV. CONCLUSION

In this work of progress paper, we have argued for a
knowledge base for electric vehicles in inner-city logistics.
Therefore, we have divided our knowledge base into three
layers: the structural, conceptual, and rule layer. Furthermore,
we have identified and explained some use cases for such a
knowledge base and, finally, showed that it is possible to create
such a knowledge base on an exemplary use case, which infers
drivers, who are allowed to drive a specific vehicle type.

With the help of such a knowledge base and the presented
use cases, it is possible to implement an intelligent software
user interface for logistics that helps to create a consistent

and complete data base. For example, if a company recruits
a driver, the system can infer all of its implied driver licence
classes although the driver stated the superordinate class C1.

In the future work, we have to extend our knowledge base
with additional concepts, relations, and rules to allow more use
cases and more safe inferences. Therefore, more knowledge
has to be derived from the practice of using electric vehicles.

V. ACKNOWLEDGEMENT

The project is funded by the German Federal Ministry for
Economic Affairs and Energy, BMWi.

REFERENCES
[1] V. Schau et al., “SmartCityLogistik (SCL) Erfurt: Deriving the main

factors that influence vehicle range during short-distance freight trans-
port when using fully electric vehicles,” in 10. GI/KuVS-Fachgespräch
”Ortsbezogene Anwendungen und Dienste”, pp. 101–108.

[2] S. Apel, T. M. Prinz, and V. Schau, “Challenging service extensions
for electric vehicles in massively heterogenic system landscapes,” in
Proceedings of the 7th Central European Workshop on Services and
their Composition, ZEUS 2015, Jena, Germany, February 19-20, 2015.,
pp. 44–50.

[3] B. G. Buchanan et al., “Constructing an expert system,” Building expert
systems, vol. 50, 1983, pp. 127–167.

[4] N. I. S. Organization, ANSI/NISO Z39.19 - Guidelines for the Construc-
tion, Format, and Management of Monolingual Controlled Vocabularies,
N. I. S. Organization, Ed. National Information Standards Organization,
May 2010, iSBN 978-1-880124-65-9.

[5] U. Döbrich and R. Heidel, “Datadriven Program Systems - a way out
from interface chaos.” Informatik Spektrum, vol. 35, no. 3, 2012, pp.
190–203.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

260Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

