
A Context-Driven Approach for Guiding Agile Adoption: The AMQuICk Framework

Hajer Ayed, Benoı̂t Vanderose and Naji Habra
PReCISE Research Center

Faculty of Computer Science, UNamur
Rue Grandgagnage 21, B-5000 Namur, Belgium

emails: {hajer.ayed, benoit.vanderose, naji.habra}@unamur.be

Abstract—Regarding the proven benefits of agile software de-
velopment, more and more practitioners are becoming interested
in agile methods and have to deal with the complexity and costs
of the adoption process. In this context, agile experts argue that
prior to any agile method or practice adoption, its relevance to the
organization and team should be evaluated to avoid unnecessary
implementation efforts and resources. The goal of this research is
to investigate a context-driven approach for guiding agile meth-
ods adoption: starting from the characterization of the context
properties, the approach helps to identify relevant practices and
to recommend process customization using adequate rules. The
focus in this paper will be on the agile context characterization
using relevant, reusable and measurable elements structured in a
context metamodel. A purposely simple instantiation is proposed
to illustrate how customization rules would be inferred from the
context characterization.

Index Terms—agile software development; software process
customization; agile context; agile practice selection.

I. INTRODUCTION

Even though the benefits of agile methods have been proved
by successful implementations and experiences, the complex-
ity of adopting them is high and requires lots of effort: upper
management sponsorship, customer involvement, team em-
powerment, traditional organizational silos replacement with
cross-functional teams, deals with egos and resistance to
change, business model arrangement, etc.

To take advantage of the agility benefits and to overcome
these common issues, experts and practitioners highlight the
necessity to properly adapt practices, deliverables, activities
and any other process aspect to avoid unnecessary implemen-
tation costs and efforts and to better accommodate the team’s
specific context and needs.

The agile literature, as explained by Dybå et al. [1], provide
a broad picture of adaptation experiences and successful
agile implementation but most of them are hardly reusable
because they lack of structuring and are often based on experts
knowledge and intuitive reasoning: the adaptation decisions
are neither documented nor structured nor automated (see
section II).

The goal of the AMQuICk framework [2][3] is to provide
methods and tools to guide the adaptation of agile methods in
a more objective, structured and (at least partially) automated
way. To that end, it is necessary to record and formalize the
intuitive knowledge of agile experts regarding the adaptation
of methods to specific contexts so that decision-making may
be systematized.

A key to success in this endeavor lies in the exploitation
of a formalized and measured representation of the context of

an ongoing development process. Given an objective model of
the context (including measured attributes), the identification
of relevant process elements to recommend to the team maybe
more easily exploited by formalized recommendation rules
(paving the way towards a complete expert system).

This paper introduces an approach to context-modeling
designed to be exploited in such a way and demonstrates how
an agile context can be instantiated using relevant measurable
elements in order to infer customization rules. The main
questions underlying the approach are therefore: (1) how
can we model and compose agile processes using reusable
components?, (2) what defines an agile software development
context and how to model it?, (3) how to retrieve relevant
components regarding the context at hand?.

The remainder of this paper focus on context modeling
challenges and is structured as follows: Section II presents
the existing approaches and context models to guide the
customization process. Section III-A presents an overview
of the framework that we propose. Sections III-B and III-C
provide details on the process specification and context mod-
eling. Section III-D refers to the formalization of the process
engineering interpretation rules. An example is presented in
Section IV to illustrate the context metamodel instantiation
and how customization rules could be inferred from the context
characterization. Finally, Section V presents closing comments
and future work.

II. RELATED WORK

A. Agile Customization

Even though the literature abounds with valuable agile
methods tailoring experiences reports [1], most of them are
difficult to exploit, because too narrowly linked to a specific
situation and often based on experts’ knowledge and intu-
itive reasoning: neither documented nor structured nor tool-
supported.

There exist structured approaches that provide practical
road-maps to facilitate and guide through the implemen-
tation and tailoring process [4][5] but they definitely lack
automation: most of them are just documents with guidelines
and repeatable steps to follow for effective agile methods
implementation. Moreover, the problem with these approaches
is that each of them proposes a solution based on only few and
prefixed factors influencing the implementation. For example,
Cockburn [6] proposes to choose the agile methods among
the Crystal family methods according to the number of people
involved and criticality criteria .

228Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Other approaches, such as Mnkandla [7], propose a toolbox
for only practices selection and not other process aspects.
Moreover, the linkage with project context is only allowed
through a predefined methodology selection matrix and project
taxonomy matrix. This kind of matrix synthesizes some
experts’ knowledge therefore preventing any possibility of
extension.

Finally, more formalized and tool-assisted approaches, such
as Mikulėnas et al. [8], aim to support agile methods adapta-
tion by providing users with rich practices composition mech-
anisms (e.g., merging, coupling, etc.). However, the choice of
suitable practices is only based on the user appreciation: the
adaptation decisions are not assisted or derived from context
attributes.

B. Agile Context Defined

The software development context refers to all the influen-
tial circumstances and variables that affect the work environ-
ment of all stakeholders involved in the project life-cycle, e.g.,:
market uncertainty, budget constraints, application domain,
project criticality, project duration, team size, familiarity with
the involved technology, etc.

Although the term context has an intuitive meaning for
agile practitioners, it’s hard to formalize the relevant context
variables to support software process adjustments.

Several contextual models to guide the adoption and adap-
tation of agile software development practices can be found
in the literature.

Cockbrun et al. in the crystal family of processes [6] define
different processes based on Product Size, Criticality, and
Skills.

Boehm et al. [9] define a home ground of agile vs. plan-
driven as associated to five critical factors namely, Product
Size, Criticality, Dynamism (i.e., requirements change rate),
Personnel (i.e., level of method understanding [10]) and Cul-
ture (of the team: thriving on chaos or on order).

Kuchten [11] defines 2 sets of factors that make up the
context: factors that apply at the level of the whole orga-
nization, and factors that apply at the level of the project.
The organization-level factors do influence heavily the project-
level factors which should drive the process to adopt. The
organization level factors are defined as: Business domain,
Number of instances, Maturity of the Organization, Level
of Innovation and Culture. Project-level context factors are:
Size, Stable Architecture, Business Model (contracting, money
flow, etc.), Team Distribution, Rate of Change, Age of System,
Criticality and Governance (management style).

S. W. Ambler [12], in the Agile Scaling Models (ASM)
framework, defines a range of 8 scaling factors for effec-
tive adoption and tailoring of agile strategies: Team size,
Geographical distribution, Regulatory compliance, Domain
complexity, Organizational distribution, Technical complexity,
Organizational complexity and Enterprise discipline.

Even though the context models reported above have been
defined for different purposes (i.e., Crystal family of methods
configuration, defining agile vs. plan-driven home grounds,

practices adoption guidance and scaling agility to larger
scopes), they seem to be more or less similar with only
minor variations. They are all composed of context “factors”
or “dimensions” at the higher levels refined in a set of
“properties” or “attributes” at the lower levels.

Based on this observation, our target was to find a way
to abstract context modeling in a common paradigm, so that
agile process engineers or facilitators (or any other equivalent
role) can design their own profile to contextualize process
components depending on their own perception. Indeed, the set
of relevant context elements to support the software process
adjustments is potentially different from an organization to
another.

The approach investigated in this paper is an attempt to
address the issues mentioned above. The following sections
provide an overview of the essential set of components re-
quired for context-driven adaptation.

III. AMQUICK FRAMEWORK

A. Overview

Figure 1: AMQuICk Basic Elements

In order to support the long-term vision of assisted adapta-
tion of agile development processes, it is crucial to comple-
ment existing agile tailoring approaches with more objective
and systematic guidelines. As explained in Section II, the
context appears as a missing link in the formalization process
regarding the tailoring of agile methods. The approach we
propose is therefore aiming at better formalization of the
context, so that it can be exploited further in the process
tailoring part of the approach. Practically, the approach relies
on a formal (and rule-based) mapping between process models
and the related context models.

As illustrated in Figure 1, our approach is model-driven
and complies to the Meta-Object Facility (MOF) architecture
[13]. At the M2-level lie the two required metamodels: the first
dedicated to the context specification, the second to process

229Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

modeling. The former is specifically designed for our purpose
while the latter takes advantage of the preexisting Essence
DSL to define the abstract syntax of agile processes (see
Sections III-B and III-C for further details).

While the M0-level is concerned with actual collected data
regarding the context and the process, the M1-level is the
cornerstone of the approach. At this level, two syntactic
instances of the metamodels may be compared and mapped
against each other from a semantic point of view. In other
words, at this level, a specific piece of context may call for
a specific piece of process. This relationship between context
and process must be guaranteed by rules derived from the body
of knowledge of agile experts referred to in Section III-D.

Implementing this approach is key regarding the elicitation
of objective decision-making elements that are needed to guide
the evolution and decide which process adjustments to include
at the right time. The components illustrated in Figure 1 form
the basis of a rule-based system so that the experts can define
the crucial context features that influence process adaptation
and the practitioners simply enter some information about the
project context (by instantiation of the latter features) and
get an indication of the most appropriate adaptations for that
project.

B. Process Modeling
As explained in Section I, the need for a better flexibility

of software engineering motivates the construction of tailored
processes to the situation at hand. This discipline is known as
Situational Method Engineering (SME).

The kernel of SME consists in composing contextual meth-
ods by reusing structured “components” of existing methods.
Various techniques can be used including Metamodeling,
Domain Specific Languages (DSL), Ontologies, etc.

For the needs of the previously described approach we in-
vestigated and compared some of them among which, ISO/IEC
24744 metamodel [14], Software Process Engineering Meta-
model (SPEM 2.0) [15] and the recently published DSL
Essence 1.0 [16].

The DSL Essence 1.0 (see Figure1) is a Kernel And
Language For Software Engineering Methods adopted by the
OMG. It was chosen because of its intuitiveness (graphical
notation, different level of abstraction: static and operational
view), usability at the team level, extensibility and finally
because the DSL has been developed among an active initiative
which aims to develop a software engineering kernel for both
agile and waterfall ways [17].

However, the Essence DSL has to be extended in order
to allow for a more structured definition of context-related
elements into the process modeling. As explained in [18],
quality-related information may be taken into account in order
to provide more objective (or a least more structured) elements
of context.

C. Context Modeling
In this section, we investigate the second problem intro-

duced in Section I, i.e., what attributes the agile software
development context encompass and how it can be captured?

Figure 2 depicts the designed metamodel for context speci-
fication. It defines all the concepts (and relationships between
them) that may be used in the definition of a context model.
The core elements for characterizing an agile context are:

• “Context Dimension”: includes the high-level key-
concepts of software engineering characterizing the con-
text. Possible instantiations are project, organization,
team, endeavor, customer, solution, etc. These instanti-
ations highly depends on the tacit knowledge of agile
experts.

• “Context Property”: the set of variables underlying a
context dimension. For example, the “requirements di-
mension” may be characterized by the “requirements
change” property.

The metamodel also includes concepts designed to describe
in details the measurable entities of the context and the
nature of the measures themselves (see Figure 2). This subset
of the metamodel results from the conceptual alignment of
various related works dedicated to define a unified terminology
of software measurement metamodels specifically ISO/IEC
SQuaRE [19] and the Model-Centric Quality Assessment
(MoCQA) [18].

As a result, the metamodel includes all the concepts required
to define a well-formed and coherent measurement method: it
relies on the notion of measurable entity for which a given
measurable attribute has to be mapped to a value (i.e., the
measure itself). In the context metamodel, those concepts are
replaced with the “ContextDimension” (measurable entity)
and the “ContextProperty” (measurable attribute).

In order to be conceptually correct and allow for the right
operation and comparison, the measure has to be identified by
a series of variables (i.e., type of value, unit, and scale) that
indicates how the sheer value must be understood, compared
to other measurement values and interpreted in fine.

The metamodel also emphasizes the difference between
sheer measurement values and so-called indicators. Indicators
are the key to the approach since they allow bridging the gap
between objectified (through measurement) context elements
and derived process elements. As explained in [18], indicators
are only as useful as their interpretation rules.

In a more traditional quality assessment context, the in-
terpretation associated to a given indicator determines the
action to be undertaken in the next steps of the development.
Building upon this notion, the AMQuICk approach proposes
to link the interpretation to process engineering rules (thanks
to “CustomizationRule”) so that the interpretation of the
indicator impacts directly the way the process is to be refined.

D. Rule-Based Process Engineering

Every time an organization is going to develop a project in
an agile way, a context profile has to be instantiated using the
context metamodel described in Section III-C.

However, a standalone context model has no meaning if
not linked with adequate customization abilities. Indeed, the
instantiated model only defines the structural properties of

230Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 2: Context Metamodel

the context. The behavioral mechanisms regarding the process
engineering have to be elicited.

To do so, the body of knowledge required in the engineering
process has to be gathered, i.e., the information about typical
project contexts involved in the previous developments of the
organization, the information sources of past agile experiences,
the tacit knowledge of experts (or experienced people), the
previous process configurations and adaptations, the tailoring
guidelines (if they exist), etc.

Then, this information has to be structured properly in order
to support process engineering decision-making. The relation-
ship between the context and process can be guaranteed by
transformation rules. The package “Process Customization”
of Figure 2 describes the abstract syntax of the interpretation
rules engine. “CustomizationRule” is associated to:

• a context “Indicator” which determines the action or
event to be undertaken,

• an input process element (“LanguageElement”),
• an output process element (“LanguageElement”),

The “CustomizationRule” may be of 3 types: an adaptation
rule (e.g., iteration length adaptation, start integration earlier,
write acceptance criteria before implementation, etc.), an ex-
tension rule (e.g., lean value stream map integration, start
iterations with model storming sessions, etc.) or a prohibition
rule (e.g., collective code ownership and pair-programming are
inapplicable in some contexts).

This part of the approach is to be further developed in
the future. At this stage of the research, the process cus-
tomization subset acts as a placeholder that will be refined
in the future so that the customization rule generation will
be automated, which would not be feasible with the actual
formalism. Language elements from the Essence 1.0 DSL in
particular “Extension Element” and “MergeResolution” can be
reused to compose the output process model [16][17].

IV. ILLUSTRATION

In order to illustrate an application of the AMQuICk contex-
tualizing approach, we propose a small example in Figure 3.
The example models the context features used to detect the
lack of customer involvement and an adequate adaptation rule.

The customer is here defined as a context dimension char-
acterized by the customer involvement context property. This
property may be measured in different ways:

• commitment time: base measure which refers to the
effective time of collaboration between the customer and
the development team. This measure is of type ratio and
is expressed in datetime,

• physical proximity: base measure which refers to the
geographical distance and is expressed in km,

• communication channel: base measure which refers to
the more frequent channel used in the communication
between the customer and the team. The measure is of
type nominal with a range of possible values, i.e., face-
to-face, video, phone, mail or documents.

The association between these measures in a relevant
analysis model (involvement analysis model) provides two
indicators of whether the customer involvement is satisfactory
or not. In the case of lack of customer involvement detection, a
possible process engineering rule to be undertaken is to extend
the process with the [Customer Proxy] practice [20] (Enhance
Customer Involvement rule).

The provided illustration in Figure 2 represents a purposely
simple context model. Although the ultimate goal of the
context model is not to be a visual representation, it is meant to
illustrate the kind of objective and measurable information that
could be captured by such a model. Similarly, the customiza-
tion rule provided herein is not meant to be used in such a
simplistic way. At this stage of the research, the customization

231Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 3: Illustration of a Context Model

rule acts as a placeholder that will be refined in the future so
that it can be automated (which would not be feasible with a
simple textual representation).

V. CONCLUSION AND FUTURE WORK

The approach we propose in this paper aims at supporting
decision making regarding agile process (or even any process)
evolution in a contextualized way. It relies on an explicit
modeling of relevant context-related aspects as well as the
use of measurement-based elements to provide objective hints
regarding the required process adaptation to undertake. At this
stage, the approach focus on the conceptual steps, that is,
defining relevant metamodels and conceptual elements.

These conceptual tools are required in order to make the
modeling of processes, context elements and process engi-
neering rules possible and coherent. Efforts regarding this
conceptual level is still required. For instance, the opportunity
to further align the proposed context metamodel with the
process metamodel in order to limit the conceptual complexity
should be investigated (e.g., the notion of “Alpha” from
Essence 1.0 and the notion of “Context Dimension” proposed
in our approach are similar and may be associated).

However, the main added value of this conceptual level
lies in the fact that it lays the foundation of a tool-supported
methodology. Indeed, the ultimate goal of the approach is
to provide an assisted methodology that relies on an expert
system. The conceptual approach described in this paper is
expected to enable the design of such a system. Indeed, the
approach assumes that by exploiting the available agile expe-
riences feedback, we would be able to extract significant and
useful knowledge for enhancing the decision-making ability
of agile professionals when composing a suitable process.

By exploiting these available agile experiences feedback and
linking them to context models, a knowledge database could

be populated and enhance the decision-making abilities of the
development team. Rules would not only be created by agile
experts, they would also be generated through an inference
engine.

In turn, this knowledge base could provide the basis of
a community-based approach, where continuous feedback,
cross-referenced with basic inferences rules, provides an ever
improving support for process related decision-making.

REFERENCES

[1] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9, pp. 833–859, 2008.

[2] H. Ayed, N. Habra, and B. Vanderose, “AM-QuICk: a measurement-
based framework for agile methods customisation,” in Software Mea-
surement and the 2013 Eighth International Conference on Software
Process and Product Measurement (IWSM-MENSURA), 2013 Joint
Conference of the 23rd International Workshop on. IEEE, 2013, pp.
71–80.

[3] H. Ayed, B. Vanderose, and N. Habra, “Supported approach for agile
methods adaptation: an adoption study,” in Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering.
ACM, 2014, pp. 36–41.

[4] K. Conboy and B. Fitzgerald, “Method and developer characteristics
for effective agile method tailoring: A study of xp expert opinion,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 20, no. 1, p. 2, 2010.

[5] I. Attarzadeh and S. H. Ow, “New direction in project management suc-
cess: Base on smart methodology selection,” in International Symposium
on Information Technology (ITSIM), vol. 1. IEEE, 2008, pp. 1–9.

[6] A. Cockburn, Crystal clear: a human-powered methodology for small
teams. Pearson Education, 2004.

[7] E. Mnkandla, “A selection framework for agile methodology practices:
A family of methodologies approach,” Ph.D. dissertation, Faculty of En-
gineering and the Built Environment, University of The Witwatersrand,
2008.

[8] G. Mikulėnas, R. Butleris, and L. Nemuraitė, “An appraoch for the
metamodel of the framework for a partial agile method adaptation,”
Information Technology And Control, vol. 40, no. 1, pp. 71–82, 2011.

[9] B. Boehm and R. Turner, Balancing agility and discipline: A guide for
the perplexed. Addison-Wesley Professional, 2003.

232Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[10] A. Cockburn, “Selecting a project’s methodology,” IEEE Software,
vol. 17, no. 4, pp. 64–71, 2000.

[11] P. Kruchten, “Contextualizing agile software development,” Journal of
Software: Evolution and Process, vol. 25, no. 4, pp. 351–361, 2013.

[12] S. W. Ambler, “The agile scaling model (asm) : Adapting agile methods
for complex environments,” IBM, Tech. Rep., December 2009.

[13] ISO/IEC 19502:2005 Information technology - Meta Object Facility
(MOF), International Organization for Standardization and International
Electrotechnical Commission Std., 2005.

[14] ISO, ISO/IEC 24744: Metamodel for Development Methodologies, In-
ternational Organization for Standardisation (ISO) Std., 2007.

[15] SPEM (version 2.0): Software & Systems Process Engineering Meta-
model Specification, Object Management Group (OMG) Std., 2008.

[16] Essence (version 1.0): Kernel and Language for Software Engineering

Methods, Online at : http://www.omg.org/spec/Essence/1.0, Object Man-
agement Group (OMG) Std., November 2014.

[17] I. Jacobson, P.-W. Ng, P. McMahon, I. Spence, and S. Lidman, “The
essence of software engineering: the semat kernel,” Queue, vol. 10,
no. 10, p. 40, 2012.

[18] B. Vanderose, “Supporting a model-driven and iterative quality assess-
ment methodology: The MoCQA framework,” Ph.D. dissertation, Ph. D.
dissertation, University of Namur, 2012.

[19] W. Suryn, A. Abran, and A. April, “ISO/IEC SQuaRE: The second
generation of standards for software product quality,” in 7th IASTED
International Conference on Software Engineering and Applications,
2003.

[20] A. Alliance, “Agile alliance guide to agile practices,” Online at:
http://www.guide.agilealliance.org/. Last accessed 02/10/2015.

233Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

