ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

An Extensible Platform for the Treatment of Heterogeneous

Data in Smart Cities

Cicero Alves da Silva and Gibeon Soares de Aquino Jinior

Department of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte
Natal, RN, Brazil

Email: cicerojprn@gmail.com,

Abstract—Nowadays, there is a lot of devices of varying tech-
nologies in the urban environment, which makes the integration
of data generated by them a difficult process due to their
heterogeneity. However, it is important to manage these data in
an integrated way to enable the exchange of information between
existing fields and assisting in the decision-making process.
Moreover, there is no way to tell how these data will need to be
processed since each application may require it to be available
obeying specific processes. Thus, this article describes the design
and implementation of a platform that aims to integrate, process
and make available data streams from heterogeneous sources. It
also defines an extensible data processing flow, which makes the
creation of new processes for existing data and the inclusion of
new types of data easier. Finally, a case study was conducted,
which used a parking lot as scenario and assessed extensibility
and performance aspects related to platform implementation.

Keywords—Smart Cities; Software Architecture; Extensibility.

I. INTRODUCTION

The widespread use of intelligent devices and other types
of sensors resulted in the emergence of the Internet of Things
(IoT), a paradigm in which the objects of the everyday life
are equipped and able to communicate with other objects and
users, which makes them a part of the Internet [1]. Thus,
these objects are able to work in different urban environments,
providing data that are collected in them and enabling the
Smart Cities concept to be used. Even though the term “Smart
City” has been widely used nowadays, it does not present a
standardization regarding its meaning. However, it is known
that a smart city should pay special attention to performance
improvement in six different areas: Economy, People, Gover-
nance, Mobility, Environment and Living [2][3].

Nonetheless, only the use of these objects is not enough to
improve urban life [4]. It is important that the management
of the data generated in them is carried out in the same
place, allowing the exchange of information between the
existing sectors to happen and assisting in the decision-making
process. However, this data integration is not a trivial task
because of the devices’ heterogeneity [1][5][6], since they use
different technologies and different communication protocols
and produce data flows with multiple formats and different
characteristics.

Furthermore, applications that consume these data may
require them to be made available in different forms, making
it necessary for them to be processes before its delivery.
Therefore, to assist in the comprehension of the complied

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

gibeon@dimap.ufrn.br

problems, the systems that propose to process data flows from
these heterogeneous sources need to filter them, combine them
and assemble them, thus producing new data as output [7].
However, there is no telling in which form the data needs to
be processed, since the same data may need to be processed in
different ways to meet the application’s needs and since there
may also be the need to perform the inclusion of new types
of data in the platform.

Finally, this article discusses the definition, design and
implementation of a Smart City platform whose focus is
related to the integration, prossessing and availability of data
flows from heterogeneous sources in an urban environment. In
addition, this study also discusses the process of extensible
data processing defined in this platform, which allows the
data to be processed according to its specific characteristics
and the application’s needs. Section II discusses a few related
works. Subsequently, Section IIT shows the platform proposed
in this study. Section IV, in turn, discusses a case study
that used a parking lot scenario and assessed some important
aspects related to the implementation of the platform. Finally,
Section V shows this study’s conclusions and future work.

II. RELATED WORK

In the study of Anthopoulos and Fitsilis [8], a research is
held in smart cities in order to develop an architecture to be
used in the management of urban services. However, unlike
the present study, Anthopoulos and Fitsilis’ work deals only
with the architecture’s description. Thus, it is not possible
to identify the modules that must be implemented for the
proposed layers to work and it is not possible to assure that
these layers are effective to work with the data generated in
the urban environment.

In Filipponi et al.’s work [9], an event-based architecture
that allows the management of heterogeneous sensors to mo-
nitor public spaces is presented. However, this architecture is
different from the one proposed in this work, since its use is
very limited and it does not incorporate many requirements
such as privacy and monetization.

The MAGIC Broker 2 platform, which focuses on objects’
interoperability and proposes to work in an IoT environment,
is presented in Blackstock et al.’s article [10]. However, the
authors state that this platform is not ready to work in a Smart
City environment. In contrast, in the present work, the platform
is designed precisely to deal with this area of study.

207

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Middlewares for IoT are proposed in Gama, Touseau and
Donsez’s study [6] and in Valente and Martins’ study [11].
However, they differ from the platform proposed in this study
since they do not perform the extraction of knowledge from
the integrated data and do not have privacy strategies for the
transfered information.

Andreini et al.’s article [12] discusses an architecture based
on the principles of service orientation. However, it is limited
to smart objects’ geographical location issues. Furthermore,
it does not address data privacy and does not allow the
aggregation and extraction of the knowledge found in them.

III. PROPOSED PLATFORM

The platform proposed in this paper aims to enable inte-
gration, processing and availability of different types of data
generated by the sensors that exist in the urban environment.
Furthermore, it focuses on providing the extensibility of pro-
cessing tasks performed on these data due to the fact that it
is not possible to predict in what form their flows need to be
processed.

Thus, the extensibility of the processing steps is important
due to the fact that the applications are so dynamic and may
require different processing ways for the same data flow and
due to the fact that with time, new types of data will turn up
as a result of the emergence of a new source.

This way, moving from the intended goals to the platform
and seeking to provide this extensible data processing feature,
the following requirements were defined:

1) Data retrieval from sources with heterogeneous tech-
nologies;

2) Availability of data integrated into the platform;

3) Data association allowing information from different
domains to be combined to work in an unified man-
ner;

4) Follow the modular and “pluggable” approaches,
making the maintenance and extension of the plat-
form easier;

5) Have a well defined data transformation process,
since its modules represent specific stages of pro-
cessing, which makes it necessary for them to have
specific responsibilities within the platform. The data
transformation process should be extensible so that
the processes can be suitable to work according to
the characteristics of each type of data;

6) Keep the transmitted data’s privacy;

7) Allow the extraction of knowledge from large volu-
mes of data integrated to the platform;

8) Enable monetization, allowing the developers of the
services to sell the data created in them.

Table I shows how the studies analyzed in Section II treat
the requirements listed above for the proposed platform. Thus,
it is clear to see that none of them defines an extensible
transformation flow for processing the data in their architecture
proposals, which is a requirement that is the main focus of
this proposal. In this flow, we determine the steps required to
process a group of data that is integrated to the platform in
order to deliver them in the best way possible to be used in
the development of new systems. Moreover, the extensibility
of the defined steps allows these steps’ processing are realized
according to the characteristics of each type of data.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

TABLE I. REQUIREMENTS ATTENDED BY THE RELATED WORKS.

Works
[12], [8], [10], [9], [6], [11]
[12], (8], [10], [9], [6], [11]

Requirement
Retrieve data from heterogeneous sources
Create new services

Support data aggregation [8], [9], [6], [11]
Well-defined and extensible data processing -
Allow the extraction of knowledge -
Modular approach [10], [9], [6], [11]

Pluggable approach
Maintains data privacy (81
Monetization -

Daia source

8§ “ {=m) @

DATAEASH

——
SEMANTIC

A
PREPROCESSING

PEEE L

A= =-o@m EHeg

Figure 1. Proposed platform.

A. Architecture

Due to the requirements listed in Section III, we decided
to carry out the implementation of the proposed architecture
in the Open Services Gateway Initiative (OSGi) framework.
This technology makes the development of modular Java
softwares easier due to the fact that it provides many benefits
related to manageability and maintainability [13], which is
essential for this solution since the extensible transformation
process thought for it aims to use the modular and “pluggable”
approaches, allowing the extensions to be easily inserted and
removed.

Figure 1 displays the platform proposed in this article. In
Figure 1, we can see that it was planned in a way to support
data from different sources, which are treated within it and then
are made available, allowing the creation of new applications.
In addition to this, it is possible to identify that when it comes
to the database that should be used, it is flexible and supports
the use of different types of database. The platform also has a
set of standard modules, which are responsible for defining
the steps of the extensible processing flow. Moreover, in the
proposed solution, there is a set of auxiliary modules that
increase the features that are important to it.

Each of these standard modules has its own specific respon-
sibilities in the architecture and provide its basic behaviors.
Furthermore, as shown in Figure 2, they are responsible for
defining the extension points, allowing different implementa-
tions to be generated and “plugged” on to the platform.

The specific modules are responsible for implementing the
processing tasks for each step of the extensible processing flow.
Therefore, to add a source to the architecture, it is necessary
to implement the specific modules that are able to handle the

208

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[~ — ~ ~ -

Q 9 |

El El E1 E2 |E3 E3 E4

| Intelligence [

Output |

IElL |}'_.F4 IE 1 ES

‘ Input Prepr ing ’ ‘ Persi

‘ Event Admin Security ‘

Figure 2. Extensible architecture.

type of data being inserted and then plug them to their relating
standard modules.

In Figure 2, it is also possible to identify the existence
of the Event Admin Security module, which is an extension
of the Event Admin available in OSGi. This extension was
carried out with the goal of adding an additional security
requirement related to the access to messages transferred
in this module. Thus, this capability ensures that only the
architecture’s standard modules can receive messages from the
Event Admin, preventing the specific modules to interfere in
their flow.

The standard modules work partly in a similar way and
are only distinguished from each other in the processing step
for which they are responsible. In general, a standard module
receives a set of data. Then, it checks the specific modules
that are interested in the type of data received and passes it
to those who are allowed to access it. Thus, these specific
modules process and return the data to the standard module
which, finally, publishes it using the Event Admin Security.
This way, the architecture has six standard modules, which are:

1) Input: the modules that are “plugged” on to the Input
are responsible for integrating different data sources
that exist in the cities to the proposed architecture;

2) Semantic: is responsible for receiving the data that is
integrated in the Input and representing them in the
format that the developer feels is most appropriate to
the system that is being implemented;

3) Preprocessing: receives the data treated in Semantic
and is responsible for filtering it;

4) Persistence: its tasks is to receive the preprocessed
data and the primary responsibility of the modules
that are “plugged” on to it is to store the received
data in the architecture;

5) Intelligence: is responsible for receiving all of the
data processed by the modules mentioned above. This
way, the specific modules process this data and when
their algorithms can identify any relevant knowledge,
event 5 (ES) is published;

6) Output: is responsible for receiving the data pro-
cessed by the Persistence and the Intelligence mod-
ules. Finally, each individual Output module provides
access to the architecture’s data, allowing new appli-
cations to be developed.

The proposed architecture also has three auxiliary modules:
Security, which implements the policy of permissions to
access data that are transferred within the architecture; Billing,
which is responsible for accounting the messages that are
accessed by the specific modules to enable later billing related
to data consumption; and Data Provider, whose function is to
carry out the management of the stored data and allow them
to be accessed by the specific modules.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Data source

S pecific
Semantic

Specific
Persistence

Intelligence

XY
Specific

Intelligence

Figure 3. Steps of the data processing flow.

To perform the data aggregation process in a module, it
is only necessary for it to have the set of permissions to
access data from different services that lead to the compound
service. Finally, the developer is not obliged to provide specific
modules for all of the steps in the transformation flow. Thus,
the platform will transfer the data to the next module of the
flow when it is not possible to find, in a standard module,
specific implementations responsible for working with the data
type that was received.

B. Data flow in the platform

As defined in Figure 3, by making use of these six modules
and using a simplified scenario where there is only one
specific module “plugged” to each standard module, the basic
extensible flow occurs through a set of 14 steps. First, the
data is sent from the source to the Specific Input module
responsible for receiving it (Step 1), which, in Step 2, forwards
it to their relating standard module.

Then, in Step 3, the data is transferred from the Input to
the next step (Semantic). Thus, this standard module forwards
it to the specific module that is capable of working with it
(Step 4). After it is received, the Specific Semantic module
performs the first data transformation, since it is at that instant
that it starts to be represented in the format chosen by the
developer of the specific system. After that, in Step 5, ir is
sent back to Semantic and then the data is published by this
standard module (Step 6).

Preprocessing receives the data transferred in Step 6 and
delivers it to the Specific Preprocessing module (Step 7),
which performs a filtering process in which the set of data
is subjected to a cleaning and selection process. After that, in
Step 8, the filtered data returns to the Preprocessing module,
which passes it forward (Step 9).

In Step 10, Persistence transfers the pre-processed data
to the Specific Persistence module. After that, this specific
module performs the data storage process and then, in Step
11, returns the last state of the problem’s data to Persistence,
which forwards it to the next step of the flow (Step 12).

Subsequently, Output passes the data to the specific module

209

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(Step 13). Thus, in Step 14, the Specific Output module makes
the data accessible to applications.

It is important to note that any of the specific modules can
perform data aggregation in its processing tasks. In addition,
Figure 3 also shows a knowledge discovery flow. In it, the
Intelligence module receives all of the data delivered in steps
3,6,9, and 12 of the basic flow. Every time a set of data is
received, the standard Intelligence module forwards it to the
Specific Intelligence module (Step X) which processes it at all
times in an attempt to identify any knowledge relevant to the
problem. Therefore, when something meaningful is identified,
the Specific Intelligence module returns the information to
the standard Intelligence module which, in its turn, sends it
to the Output module, which makes them available to the
applications. Finally, for this flow, the letters X, Y and Z were
used since it is not possible to predict the moment in which
every one of the steps will be executed in the processing flow
because they do not follow a sequential execution like the basic
flow does.

IV. CASE STUDY

This section describes a case study that aims to evaluate
two behavioral aspects of the implemented platform: the easi-
ness of the creation of specific modules (Extensibility) and the
data processing capacity (Performance). Finally, the planning
process and its description followed the guidelines set forth in
[14][15][16].

A. Planning

This case study investigates the following research ques-
tions (RQ):

e RQ1: Is the platform extension process that is carried
ou through the development of specific modules a
simple activity?

e RQ2: Is the performance of the data flow’s treatment
process impaired in any way due to the existence of
a set of steps for information processing?

e RQ3: Is the performance of the data flow’s treatment
process impaired when specific modules plugged to
standard module are used?

The subject who used the platform that was proposed and
implemented in this work was a developer with experience
in the development of Java and OSGi applications. Moreover,
the used object was an extension of the proposed platform
depeloped to integrate data from a parking lot. Thus, in this
scenario, we intended to access data from the server that stored
the parking lot’s information, process it using the platform’s
extensible flow and then make it available for the development
of new applications.

The analysis units for this case study are: the implemented
platform and its extension that enables to work with the
parking lot’s data. Thus, the platform’s standard modules were
evaluated regarding the performance of the data flow’s transfor-
mation process. The extension used to handle the parking lot’s
resource, in its turn, was explored regarding the extensibility
analysis and the evaluation of the performance of the data flow
when specific modules are “plugged” on to standard modules.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

B. Execution

To insert the data from the parking lot in the proposed
platform, the implementation of specific modules to work with
this source was generated. A priori, the additional module
Parking Model was developed, which is used by all of the
specific modules and whose responsibility is to mold in classes
the data from the parking lot source.

Then, the Parking Input module was implemented, which
integrates the data generated in the parking lot to the platform.
Subsequently, the Parking Semantic was generated, which is
responsible for representing such data in objects. Thereafter,
the Parking Preprocessing module was developed, whose
duties are to eliminate data duplication and select only the main
data of the problem. In sequence, the Parking Persistence
was implemented, which is only responsible for performing
the received data storage step. In this study, the Parking
Intelligence module was also developed, which only stores
in a file the logs from all of events 1, 2, 3 and 4 sent in the
Event Admin Security. This was important to confirm the
sequence of the sent events. The Parking Output module is
a Representational State Transfer (REST) module that works
as a gateway for the parking lot’s resource data processed in
the architecture.

After the implementation of all of these modules, we
moved on to the stage of evaluation of all of the extensibility
and performance aspects of the platform. This evaluation was
performed in a machine with Windows 8.1 operation system
Single Langue 64-bit, Intel (R) Core (TM) i3-3227U CPU @
1.90GHz and 3.87 GB of RAM processor.

Regarding the extensibility, we collected the amount of
lines of code implemented in each of the specific modules of
the parking lot’s system, as shown in Table II. On this count, all
of the lines of code in the source code’s file were accounted
for, including imports, statements, etc. In addition, we also
counted the lines of code that are directly related to tasks
that are necessary to “plug” these modules to the platform,
as shown in Table III.

TABLE II. LINES OF CODE OF PARKING LOT’S SYSTEM

Number of lines of code
Parking Input 78
Parking Semantic 66
Parking Preprocessing | 79
Parking Persistence 68
Parking Intelligence 78
Parking Output 61
Parking Model 56
Total 486

TABLE III. NUMBER OF LINES OF CODE IN THE PARKING LOT SYSTEM’S
MODULES (IGNORING STATEMENTS AND GENERAL CODE)

Number of lines of code
Parking Input 7
Parking Semantic 9
Parking Preprocessing | 8
Parking Persistence 10
Parking Intelligence 9
Parking Output 12
Total 55

Regarding the performance, this requirement was evaluated

210

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

using the standard of measurement of the time it takes for the
data to be transferred in the flow. This measure was calculated
based on the time required for a message to be transferred
from the input point to the end of the processing flow. For
this purpose, the average time that it takes a certain amount of
packages sent at once to go through all of the processing steps
of the platform was calculated. In addition, for each amount
of packages sent, ten samples were collected and their general
average time was generated using (1).

i=p ,.
=10 Lt
B Zg‘:l 21;1

a

0 ey

Where:

e a — represents the general average;
e p — represents the amount of packages received;
e i — represents the transfer time for the i package.

C. Threats to validity

For the case study, four types of validity were evaluated:

e Construct validity: data capture for this case study’s
execution was performed using quantitative surveys
related to factors analyzed for the implemented plat-
form. Moreover, this process took place in a single
machine, preventing changes in computer settings to
compromise the values collected in the study;

e Internal validity: the features of the subject that per-
formed the case study decreased the risk that factors
related to inexperience in the development of Java and
OSGi-based applications got out of control;

e External validity: programmers that are beginning to
work with Java and OSGi can generate solutions with
a larger amount of lines of code than those developed
by the subject that performed the case study. Finally,
the use of computer settings that are different from
those specified in Section IV-B will influence the time
it takes for messages to be processed by the platform;

e Conclusion validity: quantitative data that contributed
to the platform evaluation process were used. Regard-
ing performance data, they were collected in several
samples in order to get an average, preventing that de-
viations that reflected only one specific time influence
the outcome.

D. Answers to the research questions

This subsection answers the research questions raised in
Section IV-A.

1) RQ1: The extension of the modules responsible for
processing the data flow is a simple task, since it is only
necessary to implement a small part of the code in order to
plug them to the platform. As shown in Table II, in order to
carry out the specific application of the six modules of the
parking lot system, the implementation of 486 lines of code
was necessary. However, by observing Table III, it is possible
to note that less than 1/8 of the lines accounted for in Table II
are directly responsible for providing the extension process
defined in the standard modules.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

400

373,877?

300 //
250 /
200

150

350

Average time

(s}

125,545‘
100
50
0,004 0,004 0,042 0,069 0278 3,95?/
0 + + + * +
1 10 100 1000 10000 100000 500000 553000

Number of packets

Figure 4. Average time to transport messages depending on the amount of
packages (512 MB limit)

700
600 588,263

500
Average 400 /
time (s) 300 257,552/’

200 /

100
0004 0004 0037 0072 07286 3549 24781/
o * + + + + +

1 10 100 1000 10000 100000 500000 1000000 1106000

Numer of packets

Figure 5. Average time to transport messages depending on the amount of
packages (1,024 MB limit)

2) RQ2: By looking at the flow’s transfer data, it is
possible to realize that the data processing steps do not affect
significantly the platform’s performance. However, this feature
depends on the settings of the computer in which it runs
since, as shown in the results in Figure 4 and Figure 5, it
is possible to note that the average transfer time for up to
100,000 packages received at the same time is stable, but
when this number of messages is increased, the transfer time
increases dramatically. Another factor that can prove this fact
is the moment in which the memory limit was doubled. With
this, the transfer time for the amount of 500,000 packages
went down to 80.27% when compared to the 512 MB of RAM
memory experiment. Furthermore, by providing the platform
twice the RAM memory, the maximum number of packages
supported also doubled, which shows that the amount of
messages supported by Event Admin Security depends on the
amount of memory available.

3) RQ3: By analyzing the graph shown in Figure 6, it is
possible to note that the use of specific modules to perform
the processing of the type of messages in the parking lot data
causes a loss of performance in the delivery of packages when
compared to the experiment shown previously in Figure 4.
However, the average time only reaches very high values when
the amount of messages received simultaneously is also very
high, as can be seen in Figure 6, where up to the amount of
1,000 messages, the average transfer time is approximately 2
seconds.

V. CONCLUSION AND FUTURE WORK

This article shows the details in definition, design and
implementation of a platform that aims to integrate, trans-
form and provide heterogeneous data generated in the urban
environment. It has an extensible processing flow, which is
important because it is not possible to predict how the different

211

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

250

227,991/
200 /
150
Average /
time (s) 100

50 /
0,011 0,059 0,329 2,204 21,467
0 * * *

10 100 1000 10000 100000

Number of packets

Figure 6. Average time to transport messages depending on the amount of
packages using the parking lot’s specific modules (512 MB limit)

types of data need to be processed in order to be delivered to
the applications and because as time goes by, new types of
data will emerge and will also need to be “plugged” to the
platform. This way, the main contribution of this work and
of the proposed platform was the creation of an extensible
processing flow that allows data processing to be suitable to
work according to the characteristics of each type of data
existing in the ecosystem.

Through the extension that was performed in order to
work with the parking lot scenario, it was possible to insert
data from a first source into the platform. With the specific
modules that were developed, it was possible to test the
extensible processing flow, wherein they perform processing
according to the characteristics of the parking lot’s feature
data. Furthermore, it was possible to attest the operation of
the standard modules and the auxiliary modules defined in
this work.

With the case study, it was possible to evaluate two impor-
tant aspects related to the platform implementation proposal.
The extensibility characteristic was a process that was easily
carried out due to the fact that the standard modules made
available the interfaces that define the behaviors associated
with it, which makes the process of extension and “plugging”
specific modules easy. Moreover, with the evaluation of the
performance, there is a proof that the steps defined do not
burden significantly the transfer of messages in the platform.

As future work, we intend to perform further case studies
of the use of the platform, in which we aim to work with sce-
narios where there are different sources of data allowing their
aggregation and also the development of multiple applications.
Furthermore, there is the intent to evaluate other characteristics
related to platform implementation, such as processing and
distributed scalability. Moreover, we intended to make the
cloud computing and big data concepts better in it. Finally, we
aim to use the platform to manage a real environment where
there are several devices, applications and the possibility of
the emergence of new sources of data.

REFERENCES

[1] A.Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” Internet of Things Journal, vol. 1, no. 1,
February 2014, pp. 22-32.

[2] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions
of technology, people, and institutions,” in 12th Annual International
Conference on Digital Government Research. ACM, June 2011, pp.
282-291.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

(3]

(4]

(31

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler-Milanovic,
and E. Meijers, “Smart cities: Ranking of european medium-sized
cities,” Centre of Regional Science (SRF), Tech. Rep., 2007.

A. Mostashari, F. Arnold, M. Maurer, and J. Wade, “Citizens as sensors:
The cognitive city paradigm,” in 8th International Conference Expo
on Emerging Technologies for a Smarter World (CEWIT). IEEE,
November 2011, pp. 1-5.

K. Su, J. Li, and H. Fu, “Smart city and the applications,” in In-
ternational Conference on Electronics, Communications and Control
(ICECC). IEEE, September 2011, pp. 1028-1031.

K. Gama, L. Touseau, and D. Donsez, “Combining heterogeneous
service technologies for building an internet of things middleware,”
Computer Communications, vol. 35, no. 4, November 2012, pp. 405—
417.

G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Computing Surveys,
vol. 44, no. 3, June 2012, pp. 15:1-15:62.

L. Anthopoulos and P. Fitsilis, “From digital to ubiquitous cities:
Defining a common architecture for urban development,” in Sixth
International Conference on Intelligent Environments (IE). IEEE, July
2010, pp. 301-306.

L. Filipponi, A. Vitaletti, G. Landi, V. Memeo, G. Laura, and P. Pucci,
“Smart city: An event driven architecture for monitoring public spaces
with heterogeneous sensors,” in Fourth International Conference on
Sensor Technologies and Applications. IEEE, July 2010, pp. 281—
286.

M. Blackstock, N. Kaviani, R. Leal, and A. Friday, “Magic broker 2:
An open and extensible platform for the internet of things,” in Internet
of Things (IOT). IEEE, November 2010, pp. 1-8.

B. Valente and F. Martins, “A middleware framework for the internet of
things,” in The Third International Conference on Advances in Future
Internet. IARIA, 2011, pp. 139-144.

F. Andreini, F. Crisciani, C. Cicconetti, and R. Mambrini, “A scalable
architecture for geo-localized service access in smart cities,” in Future
Network and Mobile Summit (FutureNetw). IEEE, June 2011, pp.
1-8.

P. Bakker and B. Ertman, Building Modular Cloud Apps with OSGi.
USA: O Reilly, 2013.

R. K. Yin, Case Study Research: Design and Methods.
Publications, 2003.

B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method
and tool evaluation,” IEEE software, vol. 12, no. 4, July 1995, pp. 52—
62.

P. Runeson and M. Host, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineer-
ing, vol. 14, no. 2, April 2009, pp. 131-164.

SAGE

212

