
Verifying and Constructing Abstract TLA Specifications: Application to the Verification

of C programs

Amira Methni∗, Matthieu Lemerre†, Belgacem Ben Hedia†, Serge Haddad‡ and Kamel Barkaoui∗
∗CNAM, CEDRIC, 292 rue Saint Martin, Paris Cedex 03, France

Email: first.last@cnam.fr
†CEA, LIST, Centre de Saclay, PC172, 91191, Gif-sur-Yvette, France

Email: matthieu.lemerre@cea.fr, belgacem.ben-hedia@cea.fr
‡LSV, ENS Cachan, CNRS & INRIA, France

Email: haddad@lsv.ens-cachan.fr

Abstract—One approach to verify the correctness of a system is
to prove that it implements an executable (specification) model
whose correctness is more obvious. Here, we define a kind of
automata whose state is the product of values of multiple variables
that we name State Transition System (STS). We define the
semantics of TLA+ (specification language of the Temporal Logic
of Actions) constructs using STSs, in particular the notions of
TLA+ models, data hiding, and implication between models. We
implement these concepts and prove their usefulness by applying
them to the verification of C programs against abstract (TLA+
or STS) models and properties.

Keywords–Temporal Logic of Actions; formal specification;
model-checking; C programs; refinement mapping.

I. INTRODUCTION

As software systems become large and error-prone, formal
verification methods become an essential key concept to ensure
their correctness. Model Checking [1] provides an automated
technique to check and detect errors in computer programs. But
despite its promise, the verification process may be complex
due to the size of these systems. One useful technique to
reduce the complexity of verification process is abstraction.
Generally, an abstract model specify “what” the system do
while the concrete model describes “how”. The idea is to map
the concrete set of states to a smaller set of states resulting in
an approximation of the system with respect to the property
of interest. We say that the concrete model implements the
abstract one. Verifying the abstract model is generally more
efficient than verifying properties of the original.

a) Contributions: We define an operational semantics
of a TLA specification in terms of automata, that we called
State Transition System (STS). We remind the concepts of
implementation relation and refinement mapping in TLA+ that
we formalize in terms of relations between STSs. The refine-
ment between specifications can be checked with the TLC
model checker. Verified properties on the abstract specification
can thus be deduced in the concrete specification. A way
to abstract details of the concrete specification is to hide its
irrelevant variables. TLA+ can express data hiding, but TLC
can’t support this type of construct. So, we have implemented
the notion of data hiding by constructing a STS that we call
“quotient STS”, which is constructed by extending the TLC
model checker. In order to let the quotient STS be analyzed
by existing tools, we extend the TLC model checker to produce
an LTS that can be checked by the CADP toolkit. We apply the
mentioned concepts on C programs using our tool C2TLA+.

Preliminary results show the importance of using an abstract
model to reduce the complexity of verification.

b) Outline: The remainder of the paper is structured as
follows. We give an overview of TLA+ and its operational
semantics in Section 2. Section 3 reminds the concepts of
refinement mapping and the implementation relation between
specifications and describe a way to construct the quotient
STS. In Section 4, we apply these concepts to verify the
correctness of the C implementation with respect to their
specification and we report some preliminary experimental
results obtained. We discuss related work in Section 5. Section
6 concludes and presents future research directions.

II. AN OPERATIONAL SEMANTICS FOR TLA
SPECIFICATION

In this section, we explain some basics concerning the
syntax and the semantics of TLA [2]. Then, we describe the
operational semantics of TLA using a STS.

A. Overview of TLA+
TLA+ is a formal specification language based on the TLA

[3] for the description of reactive and distributed systems. TLA
itself is a variant of linear-time temporal logic. The semantics
of TLA is defined in terms of states. A state is a mapping from
variables to values. A state function is a nonboolean expression
built from constants, variables and constant operators, that
maps each state to a value. For example, y + 3 is a state
function from a state s to three plus the value that s assigns to
the variable y . An action is a boolean expression containing
constants, variables and primed variables (adorned with “′”
operator). Unprimed variables refer to variable values in the
actual state and primed variables refer to their values in the
next-state. Thus, an action represents a relation between an old
state and a new state. For example, x = y ′ + 2 is an action
asserting that the value of x in the old state is two greater that
the value of y in the new state. A state predicate (or predicate
for short) is an action with no primed variables.

Syntactically, TLA formulas are built up from actions and
predicates using boolean operators (¬ and ∧ and others that
can be derived from these two), quantification over logical
variables (∀, ∃), the operators ′ and the unary temporal operator
� (always) of linear-time temporal logic [4].

The expression [A]vars where A is an action and vars the
tuple of all system variables, is defined as A ∨ (vars ′ =

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

vars). It states that either A holds between the current and
the next state or the values of vars remain unchanged when
passing to the next state. For any action A, the state predicate
Enabled(A) describes whether the action A can be executed
in the current state s , i.e., there exists some state t such that
s −→ t is an A step.

To specify a system in TLA, one describes its allowed
behaviors. A behavior is an infinite sequence of states that
represents a conceivable execution of the system. The system
specification can be given by the temporal formula Φ defined
as a conjunction of the form:

Φ
∆
= Init ∧�[Next]vars ∧ F (1)

Where, Init is the predicate describing all legal initial
states, Next is the next-state action defining all possible
transitions between states and F is a conjunction of fairness
assumptions about the execution of actions. However, other
forms of specification are possible and can occasionally be
useful.

A TLA formula is true or false on a behavior, which is
a sequence of states. Let σ = 〈s0, s1, . . .〉 be a behavior. σ
satisfies Spec iff Init is true of the first state s0 and every
state that satisfies Next or a “stuttering step” that leaves all
variables unchanged.

B. State Transition System
In TLA, the behavior of a system is modeled as an

infinite sequence of states. The operational semantics of a TLA
specification can be given in terms of a STS, which is easier
to work with than sets of sequences.

Φ
∆
= ∧ (x = 0 ∧ y = 0)

∧ � [
∧ x ′ = (x + 1)%4
∧ y ′ = x ÷ 2

]〈x ,y〉

(a) TLA specification

(b) The STS of Φ

Figure 1. The operational semantics of a TLA specification

Definition 1: A STS is a 3-tuple T = (Q, I, δ) given by

- a finite set of states Q,
- a set I ⊆ Q of initial states,
- a transition relation δ ⊆ Q×Q.

Figure 1 shows a TLA specification and its corresponding
STS TΦ = (QΦ, IΦ, δΦ) which encodes all its possible behav-
iors (÷ symbol denotes integer division). The specification Φ
is translated into TΦ as follows:

- TΦ has initial state(s) IΦ specified by the predicate
x = 0 ∧ y = 0,

- every state s ∈ QΦ corresponds to a valuation of the
state function 〈x , y〉,

- each transition t ∈ δΦ corresponds to satisfying the
predicate [x ′ = (x + 1)%4 ∧ y ′ = x ÷ 2]〈x ,y〉.

III. REFINEMENT AND ABSTRACTION OF TLA
SPECIFICATIONS

A way to reduce the verification task is to define an abstract
model as a specification, and then relate behaviors of the ab-
stract model to those of the implementation. Properties checked
on the abstract model can be deduced on the concrete one.
We use concrete model to refer to high-level specification and
abstract model to refer to low-level specification. This section
describes the semantics of refinement between a high-level and
a low-level TLA+ specification. Then, we present a way to
automatically construct a reduced model, which abstracts the
detailed behavior of the concrete TLA+ specification.

A. Refinement Mapping
Abadi and Lamport [5] described that a high-level speci-

fication Ψ implements a low-level specification Φ iff for each
behavior of Ψ, there is a behavior of Φ with the same sequence
of externally visible states, allowing stuttering, e .g., if the
state Φ does not change during a finite number of steps. This
implementation relation is proved by defining a refinement
mapping between specifications.

Let Ψ and Φ be two TLA specifications, x1, . . . , xm and
y1, . . . , yn the variables occurring in the specifications Ψ
and Φ respectively. A (concrete) specification Ψ implements
an abstract specification Φ if Ψ ⇒ Φ. The proof of this
implication consists in defining state functions ȳ1, . . . , ȳn in
terms of the variables y1, . . . , yn and prove that Ψ⇒ Φ̄, where
Φ̄ denotes the formula Φ obtained by substituting ȳi for the
free occurrences of yi , for all i .

The set of state functions ȳ1, . . . , ȳn is called a refinement
mapping. The “barred variable” ȳi is the state function with
which Ψ implements the variable yi of Φ. So, if σ is the
behavior s1 → s2 → s3 . . . of Ψ, we define the behavior σ̄ to
be s̄1 → s̄2 → s̄3 . . . We say that Ψ implements Φ under this
refinement mapping iff, for each behavior σ satisfying Ψ, the
behavior σ̄ is a behavior of Φ.

B. Implementation Relation and Property Preservation
The proof Ψ⇒ Φ under a refinement mapping is sufficient

to verify that Ψ implements Φ [5]. The key to the implication
relation is that TLA allows to write only formula that are
insensitive to stuttering, i.e., given a TLA formula Φ and
two stuttering equivalent runs σ and σ′, Φ holds along σ
if and only if it holds along σ′ [3]. This implementation
relation between TLA specifications can be viewed as a weak
simulation relation between its corresponding STSs.

Definition 2: Let TΨ = (QΨ, IΨ, δΨ) and TΦ =
(QΦ, IΦ, δΦ) denote two STSs. A simulation R relation from
QΨ to QΦ is a function that satisfies the following conditions:

• ∀s ∈ IΨ,R(s) ⊆ IΦ (initial states are mapped to
initial states),

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

• For each state pairs (s1, s2) ∈ δΨ,
(R(s1),R(s2)) ∈ δΦ (state transitions are mapped
into state transitions or stuttering steps).

If a lower-level specification, expressed by a TLA formula
Ψ, implements an abstract specification Φ, Ψ preserves all
TLA properties of Φ if and only if for every formula φ, if
Φ⇒ φ is valid, then so is Ψ⇒ φ. This is true if Ψ⇒ Φ.

C. Data Hiding in TLA
A very useful form of data abstraction is variable hiding,

which refers to providing only essential information to the
outside world and hiding not needed information. In TLA, it is
possible to hide some variables using the existential quantifier
∃∃∃∃∃∃ (which differs from the quantifier of predicate logic). The
formula ∃∃∃∃∃∃ x : Φ asserts that it doesn’t matter what the actual
values of x are, but there are some values x can assume for
which Φ holds. The meaning of ∃∃∃∃∃∃ is defined by (2). The
formula σ ∼x τ is defined to be true iff σ can be obtained
from τ (or vice-versa) by adding and/or removing stuttering
steps and changing the values of x . Thus, the (2) is true for a
behavior σ iff Φ is true for some behavior τ such that σ ∼x τ
is true.

σ |= ∃∃∃∃∃∃ x : Φ
∆
= ∃ behavior (σ ∼x τ) ∧ (τ |= Φ) (2)

The temporal formula (3) describes a specification Φ where
v is the list of all relevant state variables and x is the list of
internal (hidden) variables.

Φ
∆
= ∃∃∃∃∃∃ x : Init ∧ [Next]v ∧ L (3)

The existential operator is a very simple and useful way
in which the system is described as a black box. However, in
practice, the TLC model checker cannot handle the TLA hiding
operator. In what follows, we present a way to implement
data hiding by constructing a quotient STS from a TLA
specification.

D. Computing a Quotient STS

Figure 2. Constructing the quotient STS using the refinement mapping
ȳ

∆
= y

Given a concrete STS T = (Q, I, δ) describing a TLA
specification, one can obtain an abstraction of T , a small STS
that we call quotient STS and which is obtained by quotienting
the states Q under a refinement mapping γ.

Figure 2 shows a STS resulting from adding a refinement
mapping ȳ

∆
= y in all states of the concrete STS. The quotient

STS (at the right side of the figure) is constructed by collapsing
all states related under the relation γ into the same state. Let
T /γ = (Q/γ , I/γ , δ/γ) be the quotient STS of T = (Q, I, δ)

1: procedure QUOTIENTSTS
2: Qγ ← γ(I)
3: NotSeen ← {s ′ ∈ Q | s ∈ Q and (s, s ′) ∈ δ}
4: while NotSeen 6= {} do
5: for ∀q ∈ NotSeen do
6: if γ(q) /∈ Qγ then
7: Qγ ← Q/γ ∪ {γ(q)}
8: δ/γ = δ/γ ∪ {(γ(q), γ(q ′)) | (q , q ′) ∈ δ}
9: NotSeen = NotSeen \ {q}

10: end if
11: end for
12: end while
13: end procedure

Figure 3. Construction algorithm of the quotient STS

under the refinement mapping γ. The algorithm of constructing
T /γ is given in Figure 3.

We extend the implementation of TLC to produce the
quotient STS “on-the fly” when the TLC model checker
computes the state space of a specification. In fact, TLC makes
efficient use of disk. It doesn’t keep all states in memory which
is the limiting factor of the explicit other model checkers.
Instead, it stores just fingerprints of states, which is a 64-bit
number generated by a “hashing” function. So, the probability
that two states have the same fingerprint is 2−64 which is a
very small number. So, the quotient STS is generated with the
same fingerprint collision probability and without exploding
the memory.

E. Translating a STS into a Labelled Transition System
In order to use existing tools to check properties on a

STS, we transform the quotient STS into a Labelled Transition
System (LTS), that we call quotient LTS.

Definition 3: A LTS is 4-tuple T = 〈Q,L, δ, s0〉, where:

• Q is the set of states,
• L is the set of action labels,
• δ is the transition relation (a subset of Q×L×Q),
• and s0 is the initial state.

A transition (s1, l , s2) of δ, indicates that the system can move
from state s1 to state s2 by performing action labelled by l .

c) Property preservation: The equivalence between
checking a property given in LTL\x (Linear Temporal Logic
without the “next operator”) on the quotient LTS and checking
it on the original LTS is ensured by the preservation.

Proposition 1: Let ϕ be an LTL\x formula, let TΦ and TΨ

be two STSs such that TΨ ⇒ TΦ. If TΦ |= ϕ then TΨ |= ϕ.

F. Usefulness of the Quotient LTS
The quotient LTS abstracts away the details of the concrete

specification. Its main advantage is its small size. As proper-
ties are preserved between the concrete specification and its
corresponding quotient STS, model checking properties can
be done on the quotient LTS directly, which is a simple task.
The quotient LTS is generated once and can be used to verify
different properties (modulo the refinement mapping).

To express and check properties on the quotient STS, we
use the CADP [6] toolkit. For this, we first adapt the label

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 4. Verification flow of C programs

names such that LTS can be parsed by the CADP tools. Then,
we express properties in the Model Checking Language (MCL)
[7] language, the property specification language of CADP that
can be verified by its associated model checker.

IV. APPLICATION OF C PROGRAMS

In this section, we implement the concept of refinement
between TLA+ specifications and the quotient LTS on C pro-
grams. Figure 4 illustrates the verification flow of C programs.
We use our tool C2TLA+ [8] to translate C programs into
(a concrete) TLA+ specification. This latter can be checked
directly against a set of properties, or against an abstract
specification by defining the refinement mapping and the
implementation relation between the concrete and the abstract
specifications. Properties can be expressed in TLA to be
verified using the TLC model checker. The quotient LTS is
generated, and MCL properties can be verified by the CADP
model checker.

In what follows, we briefly present how we specify the
semantics of C in TLA+. We apply the described notions by
considering the example of the dining philosophers. Finally,
we assess the usefulness of using abstraction by giving results
of properties verification using TLC and the CADP model
checker.

A. TLA+ specification of a C program
C2TLA+ [8] generates a TLA+ specification that describes

the behavior of the C program as a closed system according
to a set of translation rules. A concurrent program consists in
a set of C functions. In C2TLA+, concurrency is modeled by
considering all possible interleaving of sequences of operations
called processes (corresponding to threads in C). Each step of
the complete specification is attributed to exactly one process.
The C program is defined by a TLA formula in the form of
(1). For more detailed information about the translation from
C to TLA+, please refer to our previous work [8].

B. Illustrating Example
As an example, we consider the classic dining philosophers

problem. One possible solution to this problem is the one that
appears in Tanenbaum’s popular operating systems textbook
[9],, given in Figure 5.

In the implementation of this solution, the global
semaphore mutex provides mutual exclusion for execution

#define N 4
#define THINKING 0
#define HUNGRY 1
#define EATING 2
#define LEFT(i) (i+N-1)%N
#define RIGHT(i) (i+1)%N
typedef int semaphore;
int state[N];
semaphore mutex;
semaphore sem[N];

void philosopher(int i)
{ while (1) {

think();
take_forks(i);
eat();
put_forks(i); }

}
void take_forks(int i) {
P(&mutex);
state[i] = HUNGRY;
test(i);
V(&mutex);
P(&sem[i]);}

void put_forks(i)
{
P(&mutex);
state[i] = THINKING;
test(LEFT(i));
test(RIGHT(i));
V(&mutex);

}

void test(i)
{
if (state[i] = HUNGRY

&& state[LEFT(i)]!=
EATING

&& state[RIGHT(i)]
!= EATING)

{
state[i] = EATING;
V(&sem[i]);

}
}

Figure 5. Tanenbaum’s solution for the dining philosophers

of critical sections and the semaphore sem[i] ensures syn-
chronization. The latters perform P() to acquire a lock and
V() to release it, using ”Compare-and-swap“ primitive.

C. Refinement of Specifications

d) Abstract specification of the dining philosophers:
We define a coarse-grained representation of the dining
philosopher, illustrated by Figure 6 that captures the aspects
of the system that interest us without giving all the details of
its internal structure.

In order to check liveness properties, we consider that
the philosopher cannot starve waiting for a fork, i.e., no
philosopher is eating forever. This assumption is stated by the
formula Fairness , where WFvars(A) denotes weak fairness
on action A and the symbol ♦ denotes the temporal operator
eventually.

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

MODULE Abstract philosophers
EXTENDS Naturals, TLC
CONSTANT N
VARIABLES phil state, forks
vars

∆
= 〈phil state, forks〉

fork available(i)
∆
= forks[i] = N

fork acquire(p, i)
∆
= forks ′ = [forks EXCEPT ! [p] = i]

forks release(p)
∆
=

forks ′ = [forks EXCEPT ! [p] = N , ! [(p + 1)%N] = N]
fork release(p)

∆
= forks ′ = [forks EXCEPT ! [p] = N]

LEFT (p)
∆
= (p + 1)

RIGHT (i)
∆
= IF (i = 0) THEN (N − 1) ELSE (i − 1)

think(ph)
∆
=

∧ phil state[ph] = “think”
∧ fork available(LEFT (ph))
∧ fork acquire((LEFT (ph), ph)
∧ phil state ′ = [phil state EXCEPT ! [ph] = “hungry”]

hungry(ph)
∆
=

∧ phil state[ph] = “hungry”
∧ IF (fork available(ph))

THEN
∧ fork acquire(ph, ph)
∧ phil state ′ = [phil state EXCEPT ! [ph] = “eat”]

ELSE
∧ fork release(LEFT (ph))
∧ phil state ′ = [phil state EXCEPT ! [ph] = “think”]

eat(ph)
∆
= ∧ phil state[ph] = “eat”
∧ forks release(ph)
∧ phil state ′ = [phil state EXCEPT ! [ph] = “think”]

Init
∆
= ∧ phil state = [i ∈ (0 . . (N − 1)) 7→ “think”]
∧ forks = [i ∈ (0 . . (N − 1)) 7→ N]

Spec
∆
= Init ∧�[∃ i ∈ 0 . . (N − 1) :

think(ph) ∨ hungry(ph) ∨ eat(ph)]vars
∧ Fairness

Figure 6. Abstract TLA+ version of the dining philosophers

Fairness
∆
=

∧ ∀ i ∈ (0 . . N − 1) : WFvars(hungry(i)) ∧ WFvars(eat(i))
∧ ∀ i ∈ (0 . . N − 1) : �♦(ENABLED 〈think(i)〉vars)

=⇒ (�♦〈eat(i)〉vars)

e) Specifying the refinement relation: To check that
the concrete specification generated by C2TLA+, implements
the abstract version of the dining philosophers, we define the
refinement relation as shown in Figure 7. In this section, we
don’t illustrate the translation of the C code, as the translation
rules are described in our previous work [8].

The implementation relation is an implication formula
Spec ⇒ Abstract instance!Spec.

D. Expressing properties

An interesting property that the implementation should
hold is that the critical sections are protected with the primi-
tives P() and V(). This property can be simply expressed in
TLA+ (on the abstract specification) as follows:

MODULE refinement definition
EXTENDS Concrete philosophers
philNum

∆
= load(“unused”,Addr N)

get val(addr , off)
∆
=

load(“unused”, [loc 7→ addr .loc, offs 7→ addr .offs + off]).val

refmap(addr)
∆
=

[i ∈ (0 . . philNum) 7→
LET val

∆
= get val(addr state, i)

IN IF val = 0 THEN “think”
ELSE IF val = 1 THEN “hungry”

ELSE “eat”]

Abstract instance
∆
= INSTANCE Asbtract philosophers WITH

N ← philNum,
phil state ← refmap(Addr state)

Spec =⇒ Abstract instance !Spec

Figure 7. Definition of refinement relation between abstract and concrete
TLA+ specifications of the dining philosophers

mutual exclusion
∆
=

∀ i ∈ (0 . . (N − 1)) : (phil state[i] = “eat”) =⇒
(phil state[LEFT (i)] 6= “eat” ∧ phil state[RIGHT (i)] 6= “eat”)

The dining philosophers problem captures many aspects of
liveness. Among liveness properties of the dining philosophers
is starvation-freedom and deadlock freedom that we expressed
in TLA+ as follows:

NoStarvation
∆
= ∀ i ∈ (0 . . (N − 1)) :

�((phil state[i] = “hungry”) =⇒ ♦(phil state[i] = “eat”))

DeadlockFree
∆
=

�((∀ i ∈ (0 . . (N − 1)) : (phil state[i] = “hungry”)) =⇒
(∀ i ∈ (0 . . (N − 1)) : ♦(phil state[i] = “eat”)))

E. Verification results and comparison

We check that the concrete TLA+ specification (generated
by C2TLA+) implements the abstract TLA+ specification
(given in Figure 7). We also check the set of properties on
these two specifications. We extract the quotient LTS from
the concrete specification that we checked against the set
of properties that we express in MCL. Table I shows the
number of states and the verification time of the concrete
and the abstract specifications using TLC, and the numbers
of states, transitions and the time verification of the quotient
LTS using CADP model checker. Experiments were carried
on an Intel Core Pentium i7-2760QM with 8 cores (2.40GHz
each) machine, with 8Gb of RAM memory. For 5 philosophers,
the state space of the concrete TLA specification exceeds 113
millions states and its verification takes more than 10 hours to
check the properties.

For the same number of philosophers, the abstract TLA
specification generates 82 states and properties were checked
in only 1 minute using TLC. On the other hand, the quotient
LTS generated 47 states and its verification time is 42s. Due to
the preservation properties, we can deduce that all the verified
properties on the abstract TLA specification or on the quotient
LTS are verified on the concrete specification. The use of

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. RUNTIMES OF MODEL CHECKING

Philos
Verification using TLC Verification using CADP

Concrete Spec. Abstract Spec. Quotient LTS
States Time(s) States Time(s) States Time(s)

3 395K 157 14 15 14 12

4 27.285K 1.080 32 23 20 20

5 113.285K >36.000 82 64 47 42

abstraction reduces considerably the complexity of verification
of C implementations.

When TLC reports that a transition violates the imple-
mentation formula Spec ⇒ Abstract instance!Spec, there
is an error either in the concrete specification, the abstract
specification, or the refinement mapping function. The trace
given by TLC can help to determine which one of those is the
case. We use our tool to translate this trace in C and get the
C execution sequence that leads to the error.

V. RELATED WORK

Predicate abstraction [10] is a technique to abstract a
program so that only the information about the given predicates
are preserved. This technique is being used in SLAM [11],
BLAST [12] and MAGIC [13]. Their approach has been
shown to be very effective on specific application domains
such as device drivers programming. SLAM uses symbolic
algorithms, while BLAST is an on-the-fly reachability analysis
tool. The Magic tool use LTS a specification formalism, and
weak simulation as a notion of conformance of a system and
its abstract specification.

These tools are applied to C programs and use automated
theorem prover to construct the abstraction of the C program.
The difficulty of these refinement-based approaches is that
performing a refinement proofs between an abstract and a
refined model require non trivial human effort and expertise
in theorem proving to get the prover to discharge the proof
obligations. SLAM cannot deal with concurrency, BLAST
cannot handle recursion.

Besides predicate abstraction, several verification tech-
niques for C programs have been proposed. CBMC [14]
is a bounded model checker for ANSI C programs which
translates a program into a propositional formula (in Static
Single Assignment form), which is then fed to a SAT solver
to check its satisfiability. CBMC explores program behavior
exhaustively but only up to a given depth.

Compared to previous related works that use an over-
approximation of the code implementation which is sound,
our approach is based on constructing an executable abstract
model, that can be expressed using TLA+ or by constructing
the quotient LTS. Moreover, TLA+ is a logic that can express
safety and liveness properties unlike SLAM, BLAST and
CBMC which have limited support for concurrent properties
as they only check safety properties.

VI. CONCLUSION AND FUTURE WORK

We have defined an operational semantics of a TLA+
specification in terms of a STSs. We redefined the semantics
of refinement between a high-level (concrete) and a low-level
(abstract) TLA+ specifications using STSs and we illustrated

a way to automatically construct a quotient STS from the
concrete specification by extending the TLC model checker.
We applied all these notions for verifying C programs. Exper-
imental results show that verifying properties on the abstract
model reduces considerably the complexity of the verification
process.

As future work, we plan to extend this work on several
interesting directions. We would like to generate TLA+ and
MCL properties from the ACSL [15] specification language
used in Frama-C. We envisage to benefit from Frama-C
analysis of shared variables by several processes to generate
TLA+ code with less interleaving between the processes, to
reduce the state space. Finally, we aim to use the TLA+
proof system [16] to prove refinement between a concrete and
abstract specifications.

REFERENCES
[1] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model checking.

Cambridge, MA, USA: MIT Press, 1999.
[2] L. Lamport, Specifying Systems, The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley, 2002.
[3] L. Leslie, “The Temporal Logic of Actions,” ACM Trans. Program.

Lang. Syst., vol. 16, no. 3, 1994, pp. 872–923.
[4] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-

rent Systems. New York, NY, USA: Springer-Verlag New York, Inc.,
1992.

[5] M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theor. Comput. Sci., vol. 82, no. 2, 1991, pp. 253–284.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: a
toolbox for the construction and analysis of distributed processes,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 15,
no. 2, 2013, pp. 89–107.

[7] R. Mateescu and D. Thivolle, “A Model Checking Language for Con-
current Value-Passing Systems,” in Proceedings of the 15th International
Symposium on Formal Methods. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 148–164.

[8] A. Methni, M. Lemerre, B. Ben Hedia, S. Haddad, and K. Barkaoui,
“Specifying and Verifying Concurrent C Programs with TLA+,” in
Formal Techniques for Safety-Critical Systems, C. Artho and P. C.
lveczky, Eds. Springer, 2015, vol. 476, pp. 206–222.

[9] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007.

[10] S. Graf and H. Saı̈di, “Construction of Abstract State Graphs with PVS,”
in Proceedings of the 9th International Conference on Computer Aided
Verification. London, UK, UK: Springer-Verlag, 1997, pp. 72–83.

[11] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of c programs,” in Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, ser. PLDI ’01. New York, USA: ACM, 2001, pp. 203–
213. [Online]. Available: http://doi.acm.org/10.1145/378795.378846

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
Verification with BLAST.” Springer, 2003, pp. 235–239.

[13] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
Verification of Software Components in C,” IEEE Trans. Software Eng.,
vol. 30, no. 6, 2004, pp. 388–402.

[14] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-
C Programs,” in TACAS, K. Jensen and A. Podelski, Eds., vol. 2988.
Springer, 2004, pp. 168–176.

[15] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto, ACSL: ANSI/ISO C Specification Language, version 1.4, 2009,
[retrieved: October, 2015].

[16] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and
H. Vanzetto, “TLA+ Proofs,” in 18th International Symposium on
Formal Methods - FM 2012, D. Giannakopoulou and D. Méry, Eds.,
vol. 7436. Paris, France: Springer, 2012, pp. 147–154.

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

