
Performance Exploring Using Model Checking
A Case Study of Hard Disk Drive Cache Function

Takehiko Nagano1,3, Kazuyoshi Serizawa1, Nobukazu Yoshioka2, Yasuyuki Tahara3 and Akihiko Ohsuga3

1Research & Development Group, Hitachi, Ltd., Yokohama, Japan
2GRACE Center, National Institute of Informatics, Tokyo, Japan

3Graduate School of Information Systems, University of Electro-Communications, Chofu, Japan
e-mail: {takehiko.nagano.nr, kazuyoshi.serizawa.fz}@hitachi.com, nobukazu@nii.ac.jp, {tahara, ohsuga}@is.uec.ac.jp

Abstract—To avoid performance problems (e.g., execution

delay), model-based development represented by model checking
is used to improve performance quality. However, not so many
studies have applied the model checking of performance to actual
product development. Specifically, model checking has not been
applied to performance exploring, so it is hard to say how
effective model checking is. Furthermore, creating a new model
for performance verification in addition to the usual development
process greatly burdens developers. To reduce this burden, man
hours for performance verification modeling must also be
reduced. Accordingly, we embedded parameter deployment code
to create a performance verification model and achieved
performance exploration to ease performance optimization. Also,
we developed a performance verification modeling method
reusing existing product code to reduce modeling costs (man
hours). In this paper, we report a case study in which the
proposed method was applied to a Hard Disk Drive (HDD) cache
emulation program. According to the results, the minimum cache
capacity required processing was completed within the target
time. We also show that 57.89% of cache emulation program
codes were reused to create the new performance verification
model. These results validated the proposed method.

Keywords-performance; model checking; embedded system.

I. INTRODUCTION
Embedded computer systems acquire more advanced features

and become more complicated every year, so the lines of code
also increase. Therefore, the parameters that control the
system increase, the combinations of the processing that
attains performance become huge, and the performance
prediction and exploring of the system are difficult. For
example, in the database software case, although the tuning
parameter is prepared, performance optimization is not carried
out for each product. Thus, system engineers need to do
performance tuning using the above parameter before product
release. Therefore, the tuning documents and tools are
prepared by the software vender [11]. Moreover, system
engineers need to explore system performance including
hardware controlled by software and other software packages.
However, if performance tuning is not finished by the release
deadline and products are released while still having
performance problems, we may suffer damaged customer
relations, business failures, income loss, additional project
resources, reduced competitiveness, and project failure [2].
Complicated product exploring is difficult to fit in to the
limited time of a product’s release schedule. Compuware

reported that 20% of computer systems have performance
problems (e.g., execution delay) [13].
To solve these problems, usually two approaches have been

taken. One is carrying out performance prediction and design
at early phase of system development. The other is verifying,
analyzing, and solving the performance problems at later
phase of system development [1][2].
Specifically, at early phase of system development, we carry

out system performance prediction using a mathematical
model represented by queuing theory [3][4] and performance
verification of an algorithm using model checking represented
by UPPAAL [6][16][17]. At later phase of system
development, we carry out implementation based on a design
using the above techniques and performance evaluation,
analysis, tuning, and redesign using test results [2]. These
techniques have achieved positive results. However, it is
difficult to evaluate and analyze performance
comprehensively. Because, the parameters that control the
system increase, and the combinations of the processing that
attains performance become huge. In this paper, we focus on
model checking from the viewpoint of comprehension. And
we apply it to performance exploring.
The case studies of using model checking are reported [6],

[7][8]. However, not so many studies have applied the model
checking of performance to actual product development
[16][17]. Specifically, model checking has not been applied to
performance exploring, so it is hard to say how effective
model checking is. Furthermore, creating a new model for
performance verification in addition to the usual development
is a big burden for developers. To reduce this burden, man
hours for performance verification modeling must also be
reduced.
In this paper, we propose the following two methods:

1) An easy performance exploring method embedding
parameter deployment code used to create performance
verification model;

2) A performance verification modeling method reusing
existing product code to reduce modeling costs (man hours).
By method 1), performance exploring realizes a

comprehensive verification mechanism of model checking.
Moreover, by method 2), the C code embedded function of
PROMELA is used for performance verification modeling
[20]. Specifically, costs are reduced by using the actual
product C code instead of new modeling by PROMELA.
Moreover, we report a case study in which the proposed

method was applied to a cache emulation program.

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In Section 2, we describe a performance problem and
objective. In Section 3, we explain our proposed method. In
Section 4, we present about our target, a HDD. Specifically,
we present a cache emulation program and analysis results of
its application. In Section 5, we discuss the effect of the
proposed method. In Section 6, we detail our conclusions and
future work.

II. PROBLEM AND OBJECTIVE

A. Performance problem and research scope
A purpose of this paper is to solve the execution delay

problem of the embedded computer system. We assume that
all programs are implemented in C language in this paper,
because C is a major programming language in embedded
systems. Particularly, a target of this paper is an embedded
system in that software controls hardware, such as a storage
system, a car engine controller and so on.

B. Related works
To solve these problems, many techniques have been

proposed and applied. To overcome system performance
problems, two approaches have been taken. One is carrying
out performance prediction and design at early phase of
system development. The other is verifying, analyzing, and
solving the performance problem at later phase of software
development. Below, examples of these approaches are
presented.

1) Countermeasures against performance problems at
early phase of system development
At early phase of system development, we carry out system

performance prediction and performance verification of an
algorithm. Performance prediction uses a mathematical model,
typically queuing theory. Queuing theory has been applied in
various fields, and many results have been reported [3][4].
Moreover, an example using the Markov model for the
performance prediction model has also been reported [5].

Next, the prediction and verification using a design model
are described. The modeling method consists of a
mathematical model and a programmatic model. In the
mathematical model, the model is created using timed-
automata [9], Petri net [18], and so on. In the programmatic
model, the model is created using UML extended by MARTE
[1]. The performance design and verification using model
checking is included here. UPPAAL using timed automata is a
widely used model checking tool in this domain [6][16][17].
For example, UPPAAL is applied to time constraint
verification of Audio/Visual protocol [6]. There are also other
models checking tools like PRISM that can verify a statistical
model [7].

2) Countermeasures against performance problems at
later phase of system development
At later phase of system development, we carry out two main

performance improvement measures. One is a performance
analysis test of a developed system to evaluate whether the
target performance is achieved. The other is performance

tuning to analyze test results. After that, the system is
redesigned, parameters are reconfigured, etc. [1][2]. These
techniques have been applied to actual systems, and designs
for next generation products have been reported [15].
Moreover, our company also applies these measures in many
product developments. Furthermore, documents and tools
needed to master a software package are prepared by the
software vender [11].

C. Problems to solve
The countermeasure described in Section 2-B is implemented

to prevent performance problems. And, these techniques have
achieved positive results. However, it is difficult to evaluate
and analyze performance comprehensively. Because, the
parameters that control the system increase, and the
combinations of the processing that attains performance
become huge. In this paper, we focus on model checking from
the viewpoint of comprehension. Also, we apply it to
performance exploring.
Not so many studies have applied the model checking of

performance to actual product development. Specifically,
model checking has not been applied to performance
exploring, so it is hard to say how effective model checking is.
Moreover creating a new model for performance verification
in addition to the usual development greatly burdens
developers. Furthermore, to reuse old product code, it is
necessary to create a performance verification model that also
includes the past code. This recurrent work also becomes a big
burden. To reduce the above burdens, man hours for
performance verification modeling must also be reduced.
As a result of the above issues, the problem to solve is as

follows.

Problem to solve: Enable performance exploring of
complicated systems with advanced features.

To solve the above problem by model checking, we first do
the following.

• Establish a method for applying model checking to
performance exploring

• Develop an efficient performance modeling method

III. PERFORMANCE EXPLORING USING PARAMETER
DEVELOPMENT AND PERFORMANCE VERIFICATION MODELING

REUSING PRODUCT CODE
There are various types of performance, such as execution

time and throughput. In this paper, we define execution time
as performance.

A. Outline of proposed method
Many modeling languages exist for design and verification.

Modeling languages for design include UML, and modeling
languages for verification include model checking such as
PROMELA [20]. Furthermore, there are two types of
language for verification. One is for functional verification
such as PROMELA, and the other is for verification for real
time systems such as UPPAAL [6]. In this paper, our target is
a modeling language for functional verification such as

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 PROMELA. Because model checking is used, comprehensive
verification is attained. Additionally, by applying model
checking, performance exploring is achieved. From the above,
we propose the following two methods.

1) Easy performance exploring using parameter
deployment code

2) Performance verification modeling reusing product
code

By method 1), we can apply model checking to performance
exploring. Performance exploring is realized using the
comprehensive verification mechanism of model checking.
Moreover, by method 2), we can develop an efficient
performance modeling method. We use the C code embedded
function of PROMELA for performance verification modeling.
Specifically, costs are reduced by using actual product C code
instead of new modeling by PROMELA. Here, FeaVer, which
generates the PROMELA model from the C code, exists as
related research. However, FeaVer is not a performance
verification model but only a functional verification model [9].

Moreover, we explain how to verify HDD performance using
PROMELA/SPIN not aimed at real-time verification, unlike
UPPAAL.

B. Performance exploring using parameter deployment code
In case that there are some parameters affecting to system

performance, to find a set of the parameters to achieve
required performance, performance exploring of the
parameters needed to repeat until adequate set was found.
We propose a parameter exploring method for performance to
let a model checker, like SPIN. For example, in selecting
cache size, we want to choose the smallest cache that satisfies
the target performance. In this case, after the cache size is
changed, many tests must be performed and results evaluated.
When a tester uses a simulation program, the program
evaluates by creating a script as shown in Figure 1. In Figure 1,
the caches sizes in the second line (4, 8, 16, 32, and 64MB)
are inputted to the cache_simlator program, and all patterns
are executed to calculate execution time.

Figure 1. Wrapping program
By using a model checking technique, SPIN deploys

parameters for exploring. Furthermore, the machine was
checked to see whether verification conditions were satisfied.
To evaluate cache size, as shown in Figure 2, all cache sizes
that can be taken in “if” sentences must be described. By this
description, the verification machine (SPIN) verifies by
exploring using all parameters. Thereby, to create a script as
shown in Figure 1, performance test using an actual machine,
analysis of the result log, etc. become unnecessary, and
performance exploring efficiency improves.

Figure 2. Parameter deployment sample

1 if
2 :: CacheSize_MB = 4
3 :: CacheSize_MB = 8
4 :: CacheSize_MB = 16
5 :: CacheSize_MB = 32
6 :: CacheSize_MB = 64
7 fi;

C. Performance verification modeling reusing product code
1) Reuse of whole processing
The part that does not contain the conditional branch that

influences performance reuses the original C code. The only
thing necessary is to surround the function of C language with
the c_code{}. An example is shown in Figure 3. In Figure 3,
the function sorts a segment’s structure by time using qsort of
libc. To apply this technique, it is necessary to check whether
the target function is processed atomically. This is because the
inside of the processing surrounded by c_code{} is processed
atomically by SPIN.

1 c_code{
2 //compare function
3 int comp_segment(const void *seg1,const void *seg2)
4 {
5 int Time1,Time2;
6 SegmentUnit *Unit1 = *(SegmentUnit **)seg1;
7 SegmentUnit *Unit2 = *(SegmentUnit **)seg2;
8
9 Time1 = Unit1->Time;
10 Time2 = Unit2->Time;
11
12 return Time1 - Time2;
13 }
14}

Figure 3. Example of call function writing by C code
2) Modeling of the part containing conditional branch
that influences performance
In this subsection, we describe modeling the part containing

the conditional branch that influences performance. In the
proposed method, the conditional branch (if, while, etc.),
which has influence on performance need to be converted to
conditional branch of PROMELA, and about expression of the
condition, the original C code need to be surrounded with the
c_expr{}.

1 #!/bin/sh
2 for CACHE in 4 8 16 32 64
3 do
4./cache_simulator workload_cmd_data.csv $CACHE >
result$CACHE.txt
5 done

Figure 4 shows the original C code of the conditional branch,
and Figure 5 shows an example in which it is PROMELA-ized.
The control structure of C language can be mostly used by
PROMELA: “if” sentence, “while” sentence, etc. Thus, we
use it as shown in Figure 5.
 1 if(LRUDumpTime ==0){
 2 SystemTime += TimeInterval;
 3 }else{
 4 SystemTime += LRUDumpTime;
 5 LRUDumpTime = 0; }

Figure 4. Example of original C code

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In this study, we explore and verify the performance of this
cache function using model checking and show the results.

Moreover, for the processing time of a drive portion, a value
is returned using the time it takes on the average to make data
size uniform.

1 if
2 ::c_expr{ LRUDumpTime == 0} ->
3 c_code{

1) Composition of HDD and cache memory 4 Pcache_main->SystemTime += TimeInterval;
5 }; The composition of HDD is shown Figure 6. HDD consists

of software, represented by firmware (FW), and hardware,
represented by the I/F controller, memory, disk drive, and
other controllers.

6 ::else ->
7 c_code{
8 Pcache_main->SystemTime = += LRUDumpTime;
9 LRUDumpTime = 0; Next, we explain the processing flow using write processing.

First, the HDD receives a host command (workload data) from
the I/F controller. Second, the I/F controller sends a command
to FW. Third, the FW’s cache controller module checks
whether writable cache area remains. If it does not, the data on
cache is written to the disk drive using a memory controller
and drive controller, thus opening up writable space on the
cache. Fourth, after writing, new command data is written on
cache memory by FW.

10 };
11 fi;

Figure 5. Example of PROMELA model
For example, when the “if” sentence shown in Figure 4 is

written by PROMELA, the whole code is surrounded by “if”
and “fi” like in the first and eleventh lines in Figure. 5.
Conditional sentences are written like the second and sixth
lines. Moreover, we need the cross-reference of the variable
declared within the model of the PROMELA portion and the
variable declared in the C code portion. In this paper, the
variable declared within the model of PROMELA is updated
by the C code side and then used for PROMELA model
control. For example, the fourth line in Figure 5 is equivalent
to this processing. In this case, the variable “SystemTime”
declared by PROMELA is updated by the C code side. If
SPIN can be distinguished in the variable of the PROMELA
process, SPIN cannot be renewed. In this case, “Pcache_main”
describes the PROMELA process information. P represents a
process, and cache_main represents the process name. By
following this notation, SPIN can execute a name resolution
so that an applicable variable can be referred to.

Figure 6. HDD Overview

2) Verification targets
IV. HARD DISK DRIVE CACHE EMULATION PROGLAM AND

ANALYSIS RESULT
In this paper, we verify the performance of the cache

function. Here, performance is defined as execution time.
Based on the above definition, our verified targets define the
time from the head command being accepted to the tail
command being accepted.

In this section, we describe the analysis results for applying
the technique of performance verification and exploring
described in Section 3 to a HDD cache emulation program.
Moreover, we describe the application of the technique using
the analysis results.

Next, in the future, we plan to use verification results of
actual product development. Hence, we plan to make time
accuracy of verification results equivalent to the actual system.
Therefore, we do not abstract time accuracy.

Therefore, first, we describe the HDD cache emulation
program used this time. Next, we describe the analysis results
of the cache emulation program. Furthermore, we describe the
modeling of reusing actual cache emulation program code.
Finally, we evaluate the created model’s validity.

In this paper, we chose only write processing as the modeling
target.
3) Parameters used for cache emulation
Here, we use parameters equivalent to an emulation program.

These parameters’ information is shown in Table I. A. HDD outline
Here, we describe performance verification of the cache

function of HDD. The performance of HDD is influenced by
the frequency of drive access. For example, while the drive
head attainment time (seek time + wait time of revolution) is
16.53msec in the drive of 7200rpm, cache memory control
processing needs µ sec order. This proves that time of drive
access is dominant in the I/O time of HDD [10]. From this,
HDD is equipped with the cache function to hold the accessed
data in a memory in order to reduce the number of disk
accesses. The utilization efficiency of the cache is improved,
and the whole performance is demonstrated.

TABLE I. PARAMETERS FOR EVALUATION

Parameter Meaning
Rotational speed Revolution per minute
Sector Size Subdivision area size of a track

(512 or 4096 byte)
Cache Size Total cache size
Average seek time Head moving time to target
Max segment count Subdivision area count of Cache

memory
Max sector count Max sector count per track

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

q10: Create new segment [step4] B. Cache emulation program
q11: Modify hit segment [step4] Cache processing outlines shown in Figure 7. Before Step 1,

the cache program is checked to see if a command has arrived.
If it has, cache program is checked to see if it still has easy-to-
output data (Step 1). If it does, the cache program transfers the
data from cache to a disk drive and opens up writable space in
cache (Step 2). If it does not, cache receives a command from
the I/F controller (Step 3). Next, the cache program judges
whether the new caches used are to be bigger than cache
capacity or not (Step 4). If cache overflows, the data chosen
by the cache program using a policy (ex: LRU) is written to
the disk drive (Step 5). After that, the cache program transfers
the data held by I/F to cache memory (Step 6).

q12: Check cache size [step4]
q13: Decide destage segment [step5]
q14: Calculate drive access time and clear cache [step5]
q15: Transfer data from I/F to cache [step6]
q16: Finish
Next, we explain the flow of processing using Figure 8. When
workload processing starts, the processing changes to q0:
Workload check state. Then, the number of remaining
commands of the workload is checked. If there are any
remaining commands, the processing will change to q1, and if
not, it will change to q16, finish emulation, and verify
execution time. In q1: Segment count check state, segment
count (Seg) in the cache is checked and whether to output
cache contents to the drive or not is determined. If Seg > 1
(outputting cache contents to drive), processing changes to q2.
If Seg <=1 (not outputting), then processing changes to state
q5. In q2: Create drive access list using cache data state, a
drive access list is created and processing changes to q3. In
q3: Judge existing access list state, if an access list exists,
processing changes to q4. If no list exists, processing changes
to q5. In q4: Calculate drive access time and clear cache state,
drive access time is calculated and acquired from head LBA
address of the access list and the length of access data. After
this step is completed, processing changes to q5. In q5: Check
if any drive access state exists, check whether existing drive
access (at q4 or q14) exists or not. If drive access exists, then
processing changes to q6. If not, processing changes to q7. In
q6: Set lapsed time by drive access state, drive access time is
added to system lapsed time, and processing changes to q8. In
q7: Set interval time state, configured interval time is added to
system lapsed time, and processing changes to q8.

Figure 7. Cache processing outline In q8: Update system time state, system time is updated using
set lapsed time. After system time is updated, processing
changes to q9. In q9: Obtain commands within update time
state, the commands arrive within the updated time. If there
are no commands, processing changes to q0. If commands
exist, a cache is judged to be a hit or miss. If a command is
judged to be a miss, processing changes to q10. If a command
is judged to be a hit, processing changes to q11. In q10: Create
new segment state, the new segment set up information is
secured and processing changes to q12. In q11: Modify hit
segment state, the updated information on hit cache segment is
acquired and processing changes to q12. In q12: Check cache
size state, updated cache size is judged to be bigger than the
system cache or not. If it is bigger, processing changes to q13.
If not, processing changes to q9. In q13: Decide destage
segment state, the segment that is outputted to a disk drive or
deleted is chosen by using a scheduling algorithm (ex. LRU),
and processing changes to q14. In q14: Cache drive access
time and clear cache state, cache segment information and
clear segment are outputted and processing changes to q15. In
q15: Transfer data from I/F to cache state, the command data
which has reached I/F is transfer to cache. After this step is
completed, processing changes to q 12.

On the basis of the above process and in accordance with the
modeling plan shown in Section 4-A, we created a verification
model written in PROMELA from cache emulation program.
Figure 8 shows the state transition diagram of cache emulation
program with the object of performance modeling. The
emulation program modeling this time does not have a host
portion. The module of Host I/F reads the workload file and
carries out emulation of cache.
Moreover, to calculate drive access time, we did not use an

actual HDD. We use the virtual model that calculates average
drive access time in this report.
States of the state transition diagram are as follows. The
correspondence state in Figure 7 is shown inside of [].
q0: Workload check [before step1]
q1: Segment count check [step1]
q2: Create drive access list using cache data [step1]
q3: Judge existing access list [step1]
q4: Calculate drive access time and clear cache [step2]
q5: Check exist any drive access [step2]
q6: Set lapsed time by drive access [step2]
q7: Set interval time [before step3]
q8: Update system time [before step3]
q9: Obtain commands within update time [step3]

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 8. Cache program state transition diagram

The above is processing sequence of the target cache
emulation program.

C. Analysis results of cache emulation program
This section describes the analysis result of a cache

emulation program. This time, cache performance verification
model is created reusing the existing cache emulation C
program. Therefore, we describe how to judge whether to
reuse the C program part or the new modeling part.
1) Analysis of the cache emulation program based on
the contents of verification
Based on the verification contents described in Section 4-A-2,

we analyzed the target cache emulation program. This
subsection describes the analysis of results.
As described in Section 4-A the HDD I/O performance has

dominant disk access time. Additionally, cache processing
time does not influence system execution time. Thus, in this
verification, addition of lapsed time was limited to the drive
access part. However, the opportunity to generate drive access

depends on command arrival time. Therefore, we decided to
calculate lapsed time on the basis of the command arrival time.
Moreover, as mentioned above, since a branch was required to
judge the existence of drive processing and a branch
accompanying command processing affected lapsed time, they
were newly modeled by PROMELA.
Next, from the above-mentioned plan, in processing that

determines the contents of drive access, only an execution
result influences drive access time, so we thought that the
process would not influence performance. Therefore, the
processing model that determines the contents of drive access
reused the cache emulation C program code. Furthermore,
cache emulation program calculates drive access time using
only access length, not an internal drive state. Thus, we chose
the processing drive portion reusing cache emulation C
program code.
From the results of the above analysis, we decided to

determine the part that reuses cache emulation C program
code and a new modeling part using PROMELA.
D. Development of performance verification model
using cache emulation program
1) Create performance verification model
As opposed to the state transition diagram in Figure 8, on the

basis of the analysis results in Section 4-C, we decided the
part that reuses cache emulation C program code, the part that
models using PROMELA, and the part that calculates time
progress. The result is shown in Figure 9.
 The parts enclosed in a dotted line reuse the existing code,
and the parts enclosed in a solid line newly create a model
using PROMELA. Time progress processing (to carry out
drive access part) is in gray.
The example of modeling in Figure 9 already appeared in

Figure 5. Figure 5 shows the same processing as the state
diagram that consists of a tri-state of q5, q6, and q7. Lines 1, 2,
6, and 11 in Figure 5 show the same processing as q5. Lines 3
to 5 in Figure 5 show the same processing as q7. Lines 7 to 10
in Figure 5 show the same processing as q6. Finally, lines 3 to
5 and lines 7 to 10 are reused by inserting them into c_code.
Other processing parts similarly create a model reusing C code
or using PROMELA.
E. The validity check of created model
In this section, the verification model created in Section 4-D

is verified using actual work load data. Results are described
below.
1) Workload used for verification
In this verification, we use the workload in Table II.

TABLE II. WORKLOAD SPECIFICATIONS
Name Value

Command count 6510
Command input time range (µ sec) 0~ 35529817
Start LBA range 95~1953512383
Data length (sector) 1~256

2) Parameters for verification
In this verification, we use following parameters shown in

Table III.

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In this verification, we use SPIN. The version of used
verification tool is SPIN 5.2.5.

Figure 9. Modeling method

F. Verification of execution time
First, we explain the verification of execution time. After the

input of the workload, the verification machine calculated
execution time and verified whether it satisfied the conditional
expression. Then, we verified whether the SystemTime for
reaching q16: finish state in Figure 8 exceeded the
requirement value. The used verification condition is assert
(System Time < Target Time).
A [](System Time < Target Time) can also be used for the

same verification.
In the results of this verification, the trail file was outputted

when SystemTime exceeded the TargetTime. Thereby, the
execution time was verified to satisfy the target or not.
Figure 10 shows an example case in which the above

verification conditions were not satisfied.
When the cache size was 4MB and target time was 40,000,000
µ sec, processing took 47,681,370 µ seconds and System Time
exceeded requirement time, so a trail file was outputted
(Figure 10).

TABLE III. HARDDISK PARAMETERS
Parameter Meaning

Rotational speed 7200 rpm
Sector Size 512 byte
Cache Size 4,8,16,32,64 MB
Average seek time 8.2 msec
Max segment count 2048
Max sector count 2048

3) PC used for verification
In this verification, we use the PC in Table IV.

TABLE IV. SPECIFICATIONS OF EXPERIMENT PC
Name Dell Precision T1500

CPU Intel(R)Core(TM)i7-860 2.8GHz
Memory 16GB DDR3 SDRAM(1066MHz)
Chip Set Intel(R) H57

4) Using verification tool

Figure 10. Trail file example1

We acquired the execution results of the cache emulation
program and compared them with the verification results of
the created model.
The execution results of emulation program are shown in
Figure 11.

Figure 11. Result of emulation program

The file named result*.txt in Figure 11 is an execution result
of an emulation program. The applicable numerical value at *
shows the cache size. The result of Figure 10 and the result in
cache size equals 4MB of Figure 11 are equivalent. All the
results in Figure 11 became equal when a model is executed
using the same conditions. From this, the created model was
judged to have behavior equivalent to that of an emulation
program from this result. As mentioned above, in this research,

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the created model was judged to be executed the same as an
emulation program. Therefore, the created model is thought to
be appropriate.

The first pan file has the same contents as Figure 10, so an
explanation is omitted. The results of having read the second
pan file are shown in Figure 13. As Figure 12 shows, when
cache size was 8MB, execution time became 44,080,020 µ sec,
which did not satisfy verification formula. In the verification
and results in Figure 11, when cache size was less than 8MB,
verification showed that target performance could not be
attained. It also turned out that 16MB attains target
performance with the smallest cache capacity.

V. DISCUSSION

A. Source code reuse ratio and evaluation
In this paper, we attempted to create a model more efficient

than the newly made model by reusing C source code. Then,
we analyzed the ratio of the reused number of C codes close to
the number of codes of the model.
The results of analysis are shown in Table V.

TABLE V. RESULTS OF CODE REUSE ANALYSIS
Name Value

Model LOC 627 (comment lines are excluded)
Cache C code LOC 605 (comment lines are excluded)
C Line in model 363 (Number of C codes (reuse codes) in a

model
Reuse rate 57.89% (vs. Model LOC)
Reuse rate 60.00% (vs. Cache C code)

In the results, 60% of original source codes were reused.
Moreover, the reuse ratio of the cache C code to a model
became 57.89%.
B. Performance exploring using model checking
Next, we show the results of performance exploring using

model checking. We used the same verification conditions as
described in Ⅳ-F and the code shown in Figure 5, which
distributes the cache sizes of 4, 8, 16, 32, and 64MB.
The target time was 40,000,000 µ sec like in Section 4-F, and

we carried out performance exploring. In addition, this
exploring was completed just to run the program once the pan
file that the SPIN generated was executed. Creation of a
program as shown in Figure 1 is unnecessary.
The results are shown in Figure 12. These results show that

two cache sizes cannot fulfill the conditions, abnormalities
occur, and a trail file is generated.

Figure 12. Results of performance exploring

Figure 13. Trail example 2

As mentioned above, in model checking, parameters are
explored by using the code for parameter deployment, the
code for selection of an algorithm is similarly embedded, and
a user becomes able to optimize performance easily.

VI. CONCLUSION AND FUTURE WORK
In this paper, to enable performance exploring for embedded

computer systems, which acquire more advanced features and
become more complicated every year, we decided to achieve
the following objectives for model checking.

• Establish a method for applying model checking to
performance exploring

• Develop an efficient performance modeling method

To meet the above objectives, we proposed the following
two methods.

1) Easy performance exploring using parameter
deployment code

2) Performance verification modeling reusing product
code
Moreover, the proposed techniques were applied to a HDD

cache emulation program, and we verified whether processing
could be completed within a target time and confirmed its
validity.
Furthermore, we embedded parameter deployment code to

create a performance verification model and achieved
performance exploring, and then we the determined that
minimum cache capacity required processing was completed
within the target time. We also showed that 57.89% of cache
emulation program codes were reused to create the new
performance verification model. From these results, we
validated the proposed technique.
For future work, we need to evaluate whether the proposed
technique reduces the man hours in an actual product
development.
Moreover, although reuse of code was considered to improve

the efficiency of modeling this time, the used part of code will
be processed atomically. From the characteristic of HDD,
since the criterion of judgment of atomizing was created, it is
necessary to also examine the criterion of judgment in the case
of applying the proposed technique to other products.

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Finally, the performance was defined as execution time and
verified in this paper. However, since the throughput is
similarly important as an index of performance, it will need to
be considered too.

REFERENCES
[1] M. Woodside, G. Franks, and C. Petriu, “The Future of Software

Perfo-mance Engineering” in Proc. Future of Software
Engineering 2007, May. 2007, pp. 171-187.

[2] C. Smith, L. Williams, “Performance solutions” Addison-
Wesley Publishers, 2001.

[3] K. Trivedi, “Probability and Statistics with Reliability” Queuing,
and Computer Science Applications. Wiley, 2001.

[4] L. H. Henry, “Software performance and scalability” Wiley,
2009.

[5] Q. Qinru, M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes” in Proc. of Design
Automation Conference, New Orleans, LA, June 21-25. 1999,
pp.555-561.

[6] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, “Formal
Modelling and Analysis ofan Audio/Video Protocol: An
Industrial Case Study using UPPAAL” in Proc. the 18th IEEE
Real-Time System Symposium, Dec 1997, pp 2-13.

[7] T. Nagaoka, A. Ito, K. Okano, and S. Kusumoto, “QoS Analysis
of Real-time Distributed System Based on Hybrid Analysis of
ProbabilisticModel Checking” IEICE Transactions on
Information and Systems, Vol.E94-D, No.5, pp.958-966, May
2011.

[8] K. Moonzoo, K. Yunho, “Automated Analysis of Industrial
Embedded Software” in Proc. 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011, pp. 51-59.

[9] R. Alur, D. Dill, “A theory of timed automata,” Theoretical
Computer Science 126:183-235, April 1994, doi:10.1016/0304-
3975(94)90010-8

[10] B. Jacob, N. W. Spencer, D. T. Wang, “Memory Systems Cache,
DRAM, Disk” Morgan Kaufmann Publishers,2008

[11] Oracle(R), “Database Performance Tuning Guide 10g Release2”
http://docs.oracle.com/cd/B19306_01/server.102/b14211/toc.ht
m. [Accessed: Sep 24, 2015]

[12] G. J. Holzmann, M. H. Smith, “Software model checking:
extracting verification models from source code Formal
Methods for Protocol Engineering and Distributed Systems” in
Proc. (FORTE/PSTV99) October 1999,pp.481-47.

[13] Compuware, “Applied Performance Management Survey”, Oct
2006.

[14] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software Power
Minimization” IEEE Transactions on VLSI Systems, Vol2, pp.
437-445, Dec. 1994, doi:10.1109/92.335012

[15] S. Barber, “Creating Effective Load Models for Performance
Testing with Incomplete Empirical Data,” in Proc. 6th IEEE Int.
Workshop on Web Site Evolution, 2004, PP. 51-59.

[16] A. David, K. Larsen, K. Legay, M. Mikucionis, D. Poulsen, and
S. Sedwards, “Runtime Verification of Biological Systems,”
ISOLA, LNCS, Springer, Vol7609, 2012, pp 388-404.

[17] G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F.
Vaandrager, M. Voorhoeve, S Smet, and L. Somers, “Formal
Modeling and Scheduling of Datapaths of Digital Document
Printers.” Proceedings FORMATS'08, Saint-Malo, France,
September 15-17, 2008. LNCS 5215, pp. 170-187.

[18] R. Hamadi, and B. Boualem, “A Petri net-based model for web
service composition,” Proceedings of the 14th Australasian
database conference-Vol17. Australian Computer Society, Inc.,
2003, pp 191-200.

[19] Object Management Group, “UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,”
http://www.omg.org/spec/MARTE/, [Accessed: Sep 24, 2015]

[20] G. J. Holzmann, “The model checker SPIN ,” Software
Engineering, IEEE Transactions, Vol23(5), 279-295., May 1997,
doi: 10.1109/32.588521

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

	I. Introduction
	1) An easy performance exploring method embedding parameter deployment code used to create performance verification model;
	2) A performance verification modeling method reusing existing product code to reduce modeling costs (man hours).

	II. Problem and objective
	A. Performance problem and research scope
	B. Related works
	1) Countermeasures against performance problems at early phase of system development
	2) Countermeasures against performance problems at later phase of system development

	C. Problems to solve

	III. Performance exploring using parameter development and performance verification modeling reusing product code
	A. Outline of proposed method
	B. Performance exploring using parameter deployment code
	C. Performance verification modeling reusing product code
	1) Reuse of whole processing
	2) Modeling of the part containing conditional branch that influences performance

	IV. Hard disk drive cache emulation proglam and analysis result
	A. HDD outline
	1) Composition of HDD and cache memory
	2) Verification targets
	3) Parameters used for cache emulation

	B. Cache emulation program
	C. Analysis results of cache emulation program
	1) Analysis of the cache emulation program based on the contents of verification

	D. Development of performance verification model using cache emulation program
	1) Create performance verification model

	E. The validity check of created model
	1) Workload used for verification
	2) Parameters for verification
	3) PC used for verification
	4) Using verification tool

	F. Verification of execution time

	V. Discussion
	A. Source code reuse ratio and evaluation
	B. Performance exploring using model checking

	VI. Conclusion and future work
	1) Easy performance exploring using parameter deployment code
	2) Performance verification modeling reusing product code

	References

