
Implementing the Observer Design Pattern as an Expressive Language Construct

Taher Ahmed Ghaleb, Khalid Aljasser and Musab Al-Turki

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Emails: {g201106210, aljasser, musab}@kfupm.edu.sa

Abstract—Observer is a commonly used design pattern as it
carries a lot of reusability and modularity concerns in object-
oriented programming and represents a good example of design
reuse. Implementing the observer design pattern (and several
other design patterns) is known to typically cause several prob-
lems such as implementation overhead and traceability. In the
literature, several approaches have been proposed to alleviate
such problems. However, these approaches only considered the
implementation of a specific scenario of the observer pattern,
which is concerned with having a single subject with multiple
observers. In addition, the code used to implement this pattern
was scattered throughout the program, which complicated imple-
menting, tracing and reusing them. In this paper, we: A) provide
a systematic classification of all possible scenarios of the observer
design pattern and B) introduce a novel approach to implement
them using an expressive and easy-to-use construct in Java. The
proposed observer construct is built as a language extension
using the abc extensible compiler. We illustrate through several
observer scenarios how the construct significantly simplifies the
implementation and improves reusability.

Keywords–Design Patterns; Aspect-Oriented Programming; Ex-
tensible Compiler; Language Extension; Observer Pattern.

I. INTRODUCTION
Object-oriented (OO) design patterns [1] are reusable so-

lutions that reorganize OO programs in a well-structured and
reusable design. They originally were implemented using OO
features, such as polymorphism and inheritance. After Aspect-
oriented (AO) programming languages emerged, researchers
started to employ AO constructs to make the implementation
more reusable and modular.

Despite the wide range of applications of design patterns,
manually implementing them may lead to several problems
including most notably implementation overhead, traceability
and code reusability [2]. A programmer may be forced to write
several classes and methods to achieve trivial behaviors, which
leads to a sizable programming overhead, scattering of actions
everywhere in the program, and reducing program understand-
ability. Although design patterns make design reusable, the
code (or at least part of the code) used to implement them
cannot be reused later.

Although the observer pattern has been widely used in
practice, a systematic investigation of methods of its imple-
mentation considering all the potential observing behaviors
was missing in the literature. In particular, the only imple-
mented scenario of the observer pattern in the literature is the
one having a single subject with multiple observers, where
the association of observers to subjects is subject-driven. For
instance, implementations of the observer design pattern in
[3] and [4] were illustrated using the example of having Line,
Point and Screen classes, where the observing protocol is

implemented in a way that a single subject can have a list of
observers. This particular example actually shows a different
case where many subjects (i.e., Lines and Points) can be
observed by a single observer (i.e., Screen). Another issue
of conventional implementations of the observer pattern is
concerned with the indirect way of implementing the pattern.
In other words, programmers in such approaches cannot deal
with the pattern as a recognizable unit in programs. Instead,
they are required to build an observing protocol and apply it
to each instance interested in observing a particular subject,
which leads to increased dependencies in the programmer’s
code.

Motivated by this, we aim in this paper to address these
issues while making two main contributions. First, we system-
atically study and classify the possible scenarios of applying
the observer design pattern. This classification is essential for
gaining a comprehensive understanding of the structure, design
and usage of the observer pattern. Second, we introduce a novel
approach to implement the observer design pattern (with all
its possible scenarios) as an identifiable language construct.
This approach is implemented as a language extension pro-
viding a very expressive and easy-to-use observer construct.
The implementation of the observer pattern in this approach
becomes more explicit and is significantly simplified as shown
in the typical examples presented in the paper. Consequently,
this implementation approach promotes code correctness by
reducing chances of making programming errors (both in the
implementation of the pattern and the code using the pattern),
resulting in increased productivity, enhanced modularity, and
reduced dependencies between modules.

The rest of the paper is organized as follows. Section
II describes the observer pattern and presents a systematic
classification of its possible scenarios. Section III describes
the syntax and semantics of the proposed construct of the
observer design pattern and how it can be applied. In Section
IV, we discuss the characteristics of our approach and present
some potential improvements to be considered in the future.
Related work is then presented in Section V. Finally, Section
VI concludes the paper and suggests possible future work.

II. SCENARIOS OF THE OBSERVER DESIGN PATTERN
The observer design pattern allows monitoring changes in

some components of the program, called subjects, to notify
other parts of the program, called observers. It consists of
two main components: subjects and observers. In general,
the observer pattern may define a many-to-many dependency
between subjects and observers, in which changes in the
states of subjects cause all their respective dependents (i.e.,
observers) to be notified and updated automatically.

463Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(Subject : Observer)

A) 1 : 1

B) 1 : m

(B1) (B2)

C) m : 1

(C1) (C2)

D) m : m

Figure 1. Scenarios of the observer design pattern
[small shape = instance, big shape = class]

Typically, however, the observer pattern represents the case
in which a subject maintains a set of observers, and notifies
them whenever it has changes in its state [1] (i.e., one subject -
many observers). This case is actually limited to one scenario
in which the association of observers to subjects is made on
basis of subjects. In other words, observing a list of subjects
by an observer requires each of these subjects to utilize an
individual observing protocol containing a single observer in
its list. The proper alternative way to implement such a case
would be to have another observing protocol that can associate
a list of subjects for any interested observer (i.e., an observer-
oriented protocol). Another problem of this implementation is
the instance-level application in which every instance of an
observer class has to explicitly be assigned to the observed
subject. This would be better achieved using a class-level
association of observers to subjects. This means that a subject
can be observed by a class, and then all instances of that
class will implicitly be assigned to the list of observers of
that subject.

Below, we present a systematic classification of the differ-
ent scenarios of using the observer design pattern.

A. Single Subject - Single Observer
In this case, an observer can only observe a single subject,

and the subject can only be observed by one observer as
shown in Figure 1(A). This kind of observing is said to be
a 1 : 1 association, where a notification of a state change
of the intended subject is sent to the corresponding observer.
This scenario is also viable when a certain subject has many
attributes, and a certain observer is interested in observing a
single attribute of that subject. Therefore, the association of the
observer to the subject in this case is also considered as one-
to-one. This association of a single observer to a single subject
can be applied using an instance-level observing. However, it
can also be applied using a class-level observing provided that
the observing and observed classes are singletons (i.e., each
of them has a single instance).

B. Single Subject - Multiple Observers
This is the common scenario of the observer pattern that

describes the case where a single subject can be observed by
a set of observers of different types (Figure 1(B)). This means

that whenever the subject changes its state, all its dependent
observers are notified. For example, when a central database
has changes in its data, all dependent applications to this
database are notified. In addition, observing a single attribute
of a certain subject by many observers is another case of this
scenario. This scenario can be applied at two different levels:

1) Class-level: This case happens when a single subject
is observed by many observing classes (each with a single
instance or multiple instances) as shown in Figure 1(B.B1). The
association of the subject to all corresponding observer classes
is said to be 1 : m. The other case of this scenario occurs
when a single subject instance or an attribute of that subject
is observed by an observing class with multiple instances as
shown in the same sub-figure where the subject is observed
by the circle class. This leads to the implicit application of
the observing logic to all instances of that class to have an
association of 1 : m as well.

2) Instance-level: Here, a subject instance/attribute can
have a list of observing instances (either of the same or
different class types) in a 1 : m association (demonstrated in
Figure 1(B.B2)). In this case, every instance should explicitly
be listed as an observer to the corresponding subject. It should
be noted that some instances of the same class may be
interested in observing the intended subject while the others
may not.
These two levels of association can actually happen together,
where a subject can be observed by different class types and
at the same time by instances of other classes. Moreover, the
class-level observing can be applied when all instances of an
observing class need to participate in the observing, whereas
it is required to apply an instance-level observing when only
some of the instances are interested in observing that subject.

C. Multiple Subjects - Single Observer
It is common to have one observer that has the respon-

sibility of observing several subjects at the same time. For
example, a weather station class may observe different classes
for temperature, humidity, wind, etc. As presented in Figure
1(C), this association can be represented as m : 1 where
the multiple subjects can either be of the same class or
different classes. Similar to the previous scenario, class-level
and instance-level observing can be applied in this scenario
as shown in Figure 1(C.C1) and (C.C2), respectively. Here, an
observer instance can observe either a single subject class (all
instances of that class are implicitly observed), a list of subject
classes, a list of subject instances (from same or different class
types), or a set of attributes of a certain subject.

D. Multiple Subjects - Multiple Observers
This scenario encompasses all the previous cases in an

m : n association. This kind of association is demonstrated
in Figure 1(D) and occurs when several observers intend to
observe many subjects. This can also be applied as a class-
level observing or an instance-level observing or both together.
When subjects (same or different class types) have more than
one attribute to observe, then we might have a combination of
several scenarios. An example of this scenario can be described
by having a set of class and instance observers interested in
observing a class subject, an instance subject and an attribute
of a subject.

464Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

III. OBSERVER AS A LANGUAGE CONSTRUCT

In this paper, we propose a novel approach for implement-
ing the observer design pattern as a language extension. This
language extension conveys the idea of having an expressive
construct that allows explicit application of the pattern using
recognizable easy-to-use statements. Actually, such an exten-
sion can be built on top of any AO programming language by
means of extensible compilers.

In this work, the implementation of the language extension
is conducted using the abc extensible compiler [5]. Abc em-
ploys Polygot [6] (a Java extensible compiler framework) as a
frontend, and extends it with AspectJ constructs. This allows
programmers to extend the compiler’s syntax and semantics
of both: Java and AspectJ. The immediate concrete implemen-
tation of the observer construct is based on AO constructs,
which is automatically generated using the parameters passed
through the construct statements. This implementation is more
modular compared with pure OO implementations in Java
since it uses the crosscutting facilities provided in AspectJ
[7][8]. Modularity in our approach is improved with the use of
the high-level and parametrized observer construct that makes
using this pattern more expressive and intuitive. At its final
stages, abc transforms AspectJ Abstract Syntax Tree (AST)
into Java AST while preserving the aspect information, and
then performs all required weaving with the help of the Soot
analysis and transformation framework [9] that is used as a
backend.

A. Syntax
The observer pattern language construct is designed to be

as abstract and modular as it could possibly be while maintain-
ing high accessibility to programmers and users. Moreover, the
construct allows applying all possible scenarios of the observer
pattern expressively with the least amount of code. Its syntax
is defined using the following EBNF notation:

<LetObserve>::= "let" <annotated_id_list>
"observe" <extended_id_list>
["exec" <method_invocation>] ";"

The observer construct consists of three parts: (1) a
list of one or more observers specified by a comma-
separated list of class and/or object identifiers given by
<annotated_id_list>; (2) a list of one or more sub-
jects given by <extended_id_list> specified by a comma-
separated list of any combination of class and object
identifiers and attribute names or even the wildcard (*)
to refer to all attributes within the subject to be ob-
served; and finally (3) a single optional notification method
given by the <method_invocation> non-terminal. Each
of the two non-terminals <annotated_id_list> and
<extended_id_list> has its own production rules defined in
our extension (as shown below). The <method_invocation>
and <name> non-terminals are already defined in the Java
1.2 parser for CUP [10] employed by abc. The production
rules that define the non-terminal <annotated_id_list> are
given as follows:

<annotated_id_list>::= <id> {"," <id>}
<id>::= ("class" <name> | <name>)

; where the class keyword is used to distinguish between
class and object identifiers (especially when declared with
the same names). The non-terminal <extended_id_list>

defines an extension to the non-terminal <id>. This extension
allows programmers to assign subject names, determine certain
attributes of them to observe, or use the wildcard (*) to refer
to all attributes within a subject to be observed, as follows:

<extended_id_list>::= <ext_id> {"," <ext_id>}
<ext_id>::= <id> ["(" ("*" | <attrib_list>) ")"]
<attrib_list>::= <name> {"," <name>}

As an example statement that can be generated by this
syntax, the following statement:
let screen1, class Log observe line1(length), class Point(*);

sets up an object screen1 and a class Log as observers for
changes in length attribute of object line1, and any change
in state of any object of class Point. From now on, we refer
to such statements that can be generated by this syntax as
‘let− observe− exec’ statements.

In general, the construct can directly support the applica-
tion of all the scenarios of the observer pattern as described
in Section II above (with both: class-level and instance-level
observing). In its current implementation, however, scenarios
involving mixed usage of instance- and class-level observing
can be specified by multiple separate ‘let − observe − exec’
statements, rather than a single statement, which is to be
improved upon in future versions of the implementation (See
Section IV-C).

B. Application
To show the implementation of the observer construct and

how it can be applied, we define three Java classes and several
instances of them in Table I: Line and Point as subjects
while Screen as an observer. In the Application class, we
create some instances of these classes to utilize them in the
instance-level application of the construct. Some scenarios
of the observer pattern require all instances of a class to
observe subjects (i.e., class-level observing), while some others
need every instance to have its own observing logic (i.e.,
instance-level observing). The observer construct provides both
class- and instance-level observing. The general structure of
the observer construct is as follows: observers (classes and
instances) are placed after the let keyword, subjects (classes
and instances) after the observe keyword, and, optionally, the
notification method after the exec keyword.

1) Class-level Observing: The class-level observing can be
applied as follows:
let class Screen observe class Line, class Point; (-1-)

In this kind of observing, programmers can indicate that
one class is observing a subject class or a set of subject classes.
Consequently, all instances of the observing class will be
notified when any instance of the subject(s) has state changes.
This application shows a case of the class-level version of
Multiple Subjects - Multiple Observers scenario that is applied
using only one statement.

2) Instance-level Observing: The observing logic in the
instance-level version of the observer pattern is accomplished
instance-wise. This means that each constructed object of the
observing class may observe various subjects with a different
number of attributes of each subject. One form of this kind of
observing is to observe a single attribute of a single subject,
as follows:
let screen1 observe line(length) exec resize(length); (-2-)

465Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. FOUR JAVA CLASSES: TWO SUBJECTS, AN OBSERVER, AND AN
APPLICATION

First Subject Class Second Subject Class
class Line {

Color color;
int length;
void setLength(int len){

this.length = len; }

void setColor(Color c){
this.color = c; }

}

class Point {
int x, y;
void setPos(int x, int y){

this.x = x;
this.y = y; }

}
//
//
//

Observer Class
class Screen {

public void resize(int len){
System.out.println("Resizing

with the new length: " + len); }
public void display(String str){

System.out.println(str); }
}

Application
Line line = new Line();
Point point = new Point();
Screen screen1, screen2, screen3 = new Screen();

This case refers to the Single Subject - Single Observer
scenario in which the programmer has to specify the observing
instance, the subject and the notification method that will
receive the change of the state of the specified attribute of
the subject and send it directly to the corresponding observer.
Another form is to observe multiple attributes of single subject
by one observing instance. This form represents the Multiple
Subjects - Single Observer scenario with the case of observing
many attributes of a subject using one statement, as shown in
the following application:
let screen2 observe line(color,length) exec display; (-3-)

The restriction of this application is that the programmer
has to define only one notification method (with a String-
type parameter) to refresh the observing instance with the
state changes of all attributes of the subject. If the programmer
did not specify the notification method, the compiler is built
to assume that there exist a method called ‘display’ in the
observing class will do the job.

Last form is to observe multiple subjects with all their
attributes using one statement as shown below. This form also
represents the Multiple Subjects - Single Observer scenario but
now with the case of having many subjects with either single
or multiple attributes per each. This could be accomplished
by either not specifying the attributes at all, or by using the
wildcard (*) to refer to all attributes. With respect to specifying
the notification method, cases of the previous form also apply
here.
let screen3 observe line, point(*); (-4-)

C. Semantics and Code Translation
After parsing ‘let − observe − exec’ statements and

matching them with the given syntax of the construct, the
compiler then moves into other compilation passes that
are concerned with the construct semantics. During these
passes (with the help of the type system), the compiler starts
recognizing class types, instances, attributes and methods
used in the construct application by carrying out scoping
and type-checking operations. If such checking is passed
successfully, the compiler then carries out the code conversion
(or rewriting). Otherwise, a semantic exception is generated
by the compiler.

1) Variable Scoping: The compiler checks the validity of
each element of the observer construct (i.e., classes, instances,
attributes and the notification method) to see whether they are
not defined or out-of-scope. The compiler in such cases will
generate a semantic exception. Another check is conducted
when the construct is applied without specifying a notification
method. In this case, a programmer has to define a notification
method named display in the observing class to be responsible
for refreshing it with the changes happened. If such a method
is not defined, the compiler will also produce a semantic
exception.

2) Type checking: In this process, the compiler is going to
pick the class included in the observer construct, and checks
its eligibility. For instance, when the programmer uses an
observer construct for primitive types, the compiler will check
and produce an appropriate alert message showing that only
classes or instances can be applied. Also, when programmer
use the instance-level observing form, then the argument type
of the notification method must match the type of the observed
attribute. For the case of applying the construct with a default
notification method, the compiler would expect programmers
to define a method called display in observing class that
accepts the changes as a String type.

3) Node Translation and Code Conversion: After achieving
all checks successfully, the compiler starts converting LetOb-
serve nodes into their corresponding aspect declaration nodes
that the original AspectJ compiler can deal with. This node
translation is actually executed through a code conversion pass
of the compiler where each ‘let− observe− exec’ statement
is converted into a specialized aspect that contains the proper
crosscutting concerns of the observing statement as shown in
Table II.

Every auto-generated aspect is assigned a name of the
form ‘ObserverProtocol_#’, where the hash symbol refers
to a sequence number that will be assigned for each auto-
generated observing aspect. The newly generated node (i.e.,
the aspect declaration) is created outside the class that contains
the application of the observer construct. Indeed, aspects
generated for class-level observing purposes have a different
implementation style from the ones used for instance-level.

• Class-Level Observing: As shown in Table II.A, an
aspect is generated for the ‘let − observe − exec’
statement (1). This aspect implements the observing
logic for all instances of the supplied observer class
in the statement. Therefore, a list of observers (Line
3) is employed to hold a reference copy for every
newly created object of that observer class. Object
construction joinpoints are crosscutted using the point-
cut declared in Lines 5-6 and are advised in Lines 8-
10. Whenever a subject has changes on its associated
attributes, the subjectChange pointcut (declared in
Lines 12-14) will be executed. Consequently, every
instance of that observing class will be notified (this
task is accomplished by the advice declared in Lines
16-24). After a successful generation of the desired
aspects, the compiler replaces ‘let− observe− exec’
statements by empty statements (i.e., semicolons ‘;’).

• Instance-Level Observing: In instance-level observ-
ing, an aspect is also generated for the ‘let−observe−
exec’ statement (2) as shown in Table II.B. This aspect

466Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE II. AUTO-GENERATED ASPECT FOR THE OBSERVER PATTERN CONSTRUCT

A. Class-level Observing B. Instance-level Observing

.

1 protected privileged aspect ObserverProtocol_1
2 {
3 private List observers = new ArrayList();
4 //---
5 protected pointcut newInstance(Screen obs):
6 execution(Screen.new(..)) && target(obs);
7
8 after(Screen obs): newInstance(obs){
9 observers.add(obs);

10 }
11 //---
12 protected pointcut subjectChange() :
13 set(* Line.*) ||
14 set(* Point.*) ;
15
16 after(): subjectChange() {
17 Iterator it = observers.iterator();
18 while (it.hasNext()){
19 Screen obs = (Screen)it.next();
20 obs.display(
21 thisJoinPoint.getSignature() +
22 " changed..");
23 }
24 }
25 }

1 protected privileged aspect ObserverProtocol_2
2 {
3 private Screen obs;
4
5 public void addObserver(Screen obs) {
6 this.obs = obs;
7 }
8 //--
9 public interface Subject {}

10
11 declare parents: Line implements Subject;
12
13 protected pointcut subjectChange(Subject s) :
14 (
15 set(* Line.length)
16) && target(s);
17
18 after(Subject s): subjectChange(s) {
19 obs.resize(((Line) s).length);
20 }
21 }

has only one observer field (Line 3) that holds a
reference copy of the observing instance that will be
assigned via the addObserver method, which will be
invoked at the client application (In particular, at the
line(s) where the ‘let − observe − exec’ statement
is written in the source code). Once the subject has
changes in its attributes, the subjectChange pointcut
declared in Lines 13-16 is executed. As a result, the
observing instance is notified (the advice declared in
Lines 18-20 will do this task) using the notification
method that was already associated with the statement
of the observer construct. In addition, this aspect
has a public Subject interface (Line 9) that will be
implemented by all observed (Subject) classes. This
interface can then used in place of subject classes
to capture changes of any subject implementing it.
After generating this aspect successfully, the ‘let −
observe − exec’ statement is replaced by a method-
call statement, as follows:

ObserverProtocol_2.aspectOf().addObserver(screen1);

IV. RESULTS AND DISCUSSION
After implementing our language extension to the examples

presented in this paper, we have addressed some of the
issues discussed in the literature related to modularity and
implementation overhead, and describe how they are handled
(at least partially) in our approach. Furthermore, we could
identify the characteristics of the proposed observer construct
in addition to some future improvements to it.

A. Addressed issues
1) Implementation Overhead: This issue was occurred with

several traditional implementations of design patterns (such
as, the use of OO or AO constructs) as programmers have
to have in mind how the implementation of design patterns
should work with their functional code. In our approach, the
programmer is not concerned about the concrete implementa-
tion of the pattern since it is automatically generated by the
extended compiler based on the parameters provided via the
pattern construct statements. This lets programmers save time

and space and, subsequently, focus on their functional parts of
the code (i.e., enhanced productivity). Through the examples
illustrated in this paper (and other not reported examples), we
strongly believe that our approach will outperform other imple-
mentations of the observer pattern proposed in the literature in
terms of lines of code (LOC) if applied to larger applications.

Although in Meta-AspectJ [11] programmers can abstract
the overall implementation of the observer pattern in AspectJ
with fewer lines of code, this would end up with a complex
(not expressive) abstraction that imposes users to be aware
of the aspects that would be generated. In our approach,
programmers are not aware of what is happening inside the
aspects. All what they need in our approach is to specify the
observing/observed classes or instances along with the desired
attributes and notification methods.

2) Modularity: In our approach, modularity is witnessed by
separating the implementation of the observer design pattern
from the implementation of the actual logic of the application.
This means that the actual implementation of the observer
pattern is not visible to the programmer and it is also isolated
from one application to another. This allows programmers (at
different clients) extend, alter and maintain their applications
of this design pattern modularly without being aware of what
is happening in the background.

It can be observed that our implementation of the observer
design pattern satisfies all modularity properties (i.e., locality,
reusability, composition transparency, and (un)pluggability)
firstly used by Hannemann and Kiczales [3], and thereafter
used by Rajan [4], Sousa and Monteiro [12], and Monteiro and
Gomes [13]. Our implementation is localized since the overall
implementation code of the observer pattern is automatically
generated in the compiler background, which means that it
is totally separated from the pattern application. It is also
reusable because it can be applied to various scenarios without
the need to duplicate the source code. Composing a class or
an instance in our observer construct will not interfere at all
with other classes or instances. Finally, adding (plugging) or
removing (unplugging) an application of the observer pattern
in a given system using the proposed construct will not require
programmers to do changes on other parts of that system.

467Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

B. Features
1) Hybrid approach: Our approach combines different

features of the approaches proposed in the literature under
one roof. It is implemented as a Java/AspectJ extension that
summarizes plenty of code in few-keywords constructs, just
like meta-AspectJ [11]. Additionally, it automatically generates
aspects according to the information provided as parameters in
applied construct, adapted from the parametric aspects [14].

2) Expressiveness: The syntax of design patterns is clear,
concise and expressive in a way it does not require importing
packages, building classes (or aspects), or worrying about
something missing in the design principle of the design pattern.
All what programmers need to learn in our approach is the
construct syntax used for implementing the observer pattern,
and also how to apply each scenario using that construct. Fur-
thermore, the readability and writeability is highly improved
as the written code becomes shorter and more self-explanatory.
So, the absence of dependencies makes it very easy to revise
the code for the sake of maintenance.

3) Supporting different levels of application: Supporting
different levels of applications of the constructs helps program-
mers decide where and how to apply constructs. The class-level
application is beneficial if all instances of a certain class needs
to apply the observing functionality, whereas instance-level
application is useful when certain instances of a class need
to apply the observing logic, or when each instance needs to
have its own logic.

C. Improvement Considerations in the Future
1) Optimization: As described in the paper, our extended

compiler creates a separate aspect for each application of
the pattern construct. This potential duplication of generated
aspects would require more processing from the compiler,
since each aspect node can contain a set of internal AST
nodes, which may lead to more compiler passes to be executed.
This problem can be resolved in the future by generating a
single observer-protocol aspect to handle the implementation
of all applications of the observer construct, by employing a
particular pointcut and advice for every construct application.

2) Application of the other scenarios: Although the ob-
server construct itself is general enough to capture any ob-
serving behavior directly, the current implementation of it does
not allow intermixing class-level and instance-level observing
scenarios in a single statement. This means that the imple-
mentation requires such scenarios to be specified by more
than one ‘let − observe − exec’ statement). For example, if
observing one subject by multiple observers is needed, then
the programer will have to apply the observer construct to
each observer with the intended subject (i.e., it will be applied
as a set of one-to-one scenarios). Alternatively, the construct
should be improved in future to support the other scenarios
using single-statement applications.

3) Disabling of pattern application: In our approach, pro-
grammers can apply constructs anywhere in their programs.
However, to disable a pattern for a certain target, programmers
are required to search for the construct application in the
program and then comment or remove it. This kind of disabling
suffers from a traceability overhead, as the efficient way to this
end is to have disable/enable constructs in the future that can
automate this action.

V. RELATED WORK
Hannemann and Kiczales [3] used AO constructs to im-

prove the implementations of the original 23 design patterns
using AspectJ. They provided an analysis and evaluation of the
improvement achieved to the implementation of the patterns
according to different metrics, which also have been addressed
later by Rajan [4] using Eos extended with the classpect
construct that unifies class and aspect in one module. When
compared with Hannemann’s implementation in terms of lines
of code and the intent of the design patterns, Rajan observed
that Eos could efficiently outperform AspectJ in implementing
7 of the design patterns, while being similar for the other
16 patterns. In addition, the instance-level advising feature
supported by Eos classpects was another advantage over
AspectJ. This feature allows a direct representation of runtime
instances without the need to imitate their behavior. Another
work was also done by Sousa and Monteiro [12] with CaesarJ
that supports family polymorphism. Their approach employs
a collaboration interface that can hold a set of inner abstract
classes, and some second level classes: the implementation and
binding parts. Also, their results demonstrated positive influ-
ence of the collaboration interface on modularity, generality,
and reusability over those with AspectJ. Gomes and Monteiro
[15] and recently in [13] introduced the implementation of 5
design patterns in Object Teams compared with that in Java
and AspectJ. Regardless of Object Teams goals, it showed a
powerful support in implementing design patterns efficiently,
and with more than one alternative. The entire conversion
of aspects into teams was described in detail in their work.
The common issue with all these different approaches is that
they suffer from the implementation overhead and traceability
problems as the concrete implementation of design patterns is
required to be manually written by programmers, which may
reduce their productivity.

Another approach was introduced by Zook et al. [11].
This approach uses code templates for generating programs
as their concrete implementation, called Meta-AspectJ (MAJ).
Development time is reduced in this approach since it enables
expressing solutions with fewer lines of code. With respect to
design patterns, MAJ provides some general purpose constructs
that reduce writing unnecessary code. However, programmers
cannot explicitly declare the use of design patterns at certain
points of the program, which may also lead to a traceability
problem.

Another trend, which is close to our approach, was intro-
duced by Bosch [2], who provided a new object model called
LayOM. This model supports representing design patterns in
an explicit way in C++ with the use of layers. It provides
several language constructs that represent the semantics of 8
design patterns and can be extended with other design patterns.
Although LayOM could resolve the traceability problem and
enhance modularity, it lacks expressiveness as it has a compli-
cated syntax consisting of message forwarding processes that
might confuse programmers. Our approach seems to provide
a similar power to LayOM, but, in contrast, the observer
construct in our approach has a more concise, expressive, easy-
to-use and easy-to-understand syntax.

Hedin [16] also introduced a new technique that is slightly
similar to LayOM but using rules and pattern roles. The
rules and roles can be defined as a class inheritance and
specified by attribute declarations. Doing so, it enables the

468Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

extended compiler to automatically check the application of
patterns against the specified rules. However, the creation of
rules, roles, and attributes has a complex syntax that lacks
expressiveness and requires an extensive effort to learn and
build them.

Another extensible Java compiler is PEC, which was
proposed by Lovatt et al. [17]. Design patterns in PEC were
provided as marker interfaces. A class must implement the
proper ready-made interface in order to conform to a certain
design pattern. After that, the PEC compiler will have the
ability to check whether the programmer follows the structure
and behavior of that pattern or not. However, the PEC compiler
does not reduce the effort needed to implement design pat-
terns (i.e., it suffers from implementation overhead). Instead,
it allows programmers to assign the desired design pattern
to a given class and then implement that pattern manually.
Eventually, the compiler will just check the eligibility of that
implementation.

Budinsky et al. [18] introduced a tool that automates design
pattern implementation. Each design pattern has a certain
amount of information like name, structure, sample code, when
to use, etc. The programmer can supply information about
the desired pattern, then its implementation (in C++) will be
generated automatically. This approach allows programmers
to customize design patterns as needed, but the modularity
and reusability is missed, and it suffers from the traceability
problem as well.

VI. CONCLUSION
This paper introduces two contributions in regards to the

observer design pattern. Firstly, it presents a detailed classi-
fication of all possible scenarios of the observer pattern that
might be utilized in various kinds of applications. Secondly, a
new approach for implementing the observer pattern in Java is
proposed to cover a partial set of the scenarios introduced. This
approach is developed as a language extension (Java/AspectJ
extension) using abc. The syntax, semantics and application
of the proposed observer construct are illustrate in detail,
and by means of typical examples, we demonstrate how the
implementation of the observer pattern using this approach has
been simplified and has become conciser, more expressive and
more modular. The capabilities and advantages of the proposed
approach seem promising and we anticipate that our approach
will supersede current approaches.

We hope in the future to improve this approach by follow-
ing the recommendations provided in the paper. This includes
supporting the application of other scenarios of the observer
pattern using a single statement rather than many. Resolving
current issues of the observer pattern implementation such
as optimization and application disabling will also be taken
into account in the future. Furthermore, an evaluation of
our proposed approach compared to with other approaches
proposed in the literature is another important objective that
we hope to achieve in future. Moreover, we aim to develop
constructs for implementing other software design patterns to
make their implementations more expressive and modular.

REFERENCES
[1] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,

“Design patterns: Elements of reusable object-oriented
software,” Reading: Addison-Wesley, vol. 49, 1995, p.
120.

[2] J. Bosch, “Design patterns as language constructs,” Jour-
nal of Object-Oriented Programming, vol. 11, no. 2,
1998, pp. 18–32.

[3] J. Hannemann and G. Kiczales, “Design pattern imple-
mentation in Java and AspectJ,” in ACM Sigplan Notices,
vol. 37. ACM, 2002, pp. 161–173.

[4] H. Rajan, “Design pattern implementations in Eos,” in
Proceedings of the 14th Conference on Pattern Languages
of Programs. ACM, 2007, pp. 9:1–9:11.

[5] P. Avgustinov et al., “abc: An extensible aspectj com-
piler,” in Transactions on Aspect-Oriented Software De-
velopment I. Springer, 2006, pp. 293–334.

[6] N. Nystrom, M. R. Clarkson, and A. C. Myers, “Polyglot:
An extensible compiler framework for Java,” in Compiler
Construction. Springer, 2003, pp. 138–152.

[7] A. Mehmood and D. N. Jawawi, “Aspect-oriented model-
driven code generation: A systematic mapping study,”
Information and Software Technology, vol. 55, no. 2,
2013, pp. 395–411.

[8] N. Cacho et al., “Blending design patterns with aspects:
A quantitative study,” Journal of Systems and Software,
vol. 98, 2014, pp. 117–139.

[9] R. Vallée-Rai et al., “Optimizing java bytecode using the
soot framework: Is it feasible?” in Compiler Construc-
tion. Springer, 2000, pp. 18–34.

[10] “Java 1.2 parser for CUP.” [Online]. Avail-
able: https://github.com/Sable/abc/blob/master/aop/abc/
src/abc/aspectj/parse/java12.cup Last access: September
15, 2015.

[11] D. Zook, S. S. Huang, and Y. Smaragdakis, “Generat-
ing AspectJ programs with meta-AspectJ,” in Generative
Programming and Component Engineering. Springer,
2004, pp. 1–18.

[12] E. Sousa and M. P. Monteiro, “Implementing design
patterns in CaesarJ: an exploratory study,” in Proceedings
of the 2008 AOSD workshop on Software engineering
properties of languages and aspect technologies. ACM,
2008, pp. 6:1–6:6.

[13] M. P. Monteiro and J. Gomes, “Implementing design
patterns in Object Teams,” Software: Practice and Ex-
perience, vol. 43, no. 12, 2013, pp. 1519–1551.

[14] K. Aljasser and P. Schachte, “ParaAJ: toward reusable
and maintainable aspect oriented programs,” in Proceed-
ings of the Thirty-Second Australasian Conference on
Computer Science-Volume 91. Australian Computer
Society, Inc., 2009, pp. 65–74.

[15] J. L. Gomes and M. P. Monteiro, “Design pattern imple-
mentation in Object Teams,” in Proceedings of the 2010
ACM Symposium on Applied Computing. ACM, 2010,
pp. 2119–2120.

[16] G. Hedin, “Language support for design patterns us-
ing attribute extension,” in Object-Oriented Technologys.
Springer, 1998, pp. 137–140.

[17] H. C. Lovatt, A. M. Sloane, and D. R. Verity, “A pattern
enforcing compiler (PEC) for Java: using the compiler,”
in Proceedings of the 2nd Asia-Pacific conference on
Conceptual modelling-Volume 43. Australian Computer
Society, Inc., 2005, pp. 69–78.

[18] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S.
Yu, “Automatic code generation from design patterns,”
IBM Systems Journal, vol. 35, no. 2, 1996, pp. 151–171.

469Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

