
Several Issues on the Model Interchange Between Model-Driven Software

Development Tools

Una Ieva Zusane, Oksana Nikiforova, Konstantins Gusarovs

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

{una.zusane, oksana.nikiforova, konstantins.gusarovs}@rtu.lv

Abstract — Models are widely used and are one of the advanced

tools of software engineering. There is a necessity to export

software models from one software development tool or

environment and to import them into another tool or

environment, especially actual this task is within the Model-

Driven Software Development. Despite of the popular model

description standard XML Metadata Interchange (XMI), which

can be used to perform the task of the model interchange,

several problems according to information loss still are

appearing. The research is devoted to the comparison of the

tools’ abilities to exchange the software model presented in the

form of Unified Modeling Language (UML) diagrams with

other tools, based on a set of test cases suitable to check the

completeness of the model description according to XMI

standard. Authors open the discussion about the dependency

between tools correspondence to the XMI standard and tool’s

ability of model interchange.

Keywords – model interchange; UML diagrams; model-driven

software development tool.

I. INTRODUCTION

In software development projects, models are wildly used
because they are not only visually easier comprehensible in
requirement gathering and design phase, but also model
transformations turn them into useable artefacts in
implementation phase. Models are usually portrayed as
diagrams [1], however they can also be written in a textual
modeling language.

Model Driven Software Development (MDSD) uses
abstractions provided by models to develop software systems
[2]. The development process begins with higher level of
abstraction, which is continuously transformed to more
detailed levels of abstraction until final system is developed.

During the process there may be a need for model
interchange between modeling tools. One scenario is that
computation independent model may be designed in one
modeling tool, and further work on platform specific model
should continue in another tool. Another scenario may be a
change of modeling tools in the software development
lifecycle due to tools’ pricing or available options.

XMI [3] is a popular model interchange standard, which is
implemented by many modeling tools. XMI was developed
by Object Management Group to improve model interchange
abilities between different modeling tools. UML [4] models
that are portrayed visually in MDSD support tools, can be
converted to text conforming to XMI standard.

In an ideal world model, interchange process should be
straight forward, if two tools use the same standard for model
interchange. The standard could define precise requirements
for interchangeable metadata structures, so that there would
be little or no variation for possible. This would provide
foundation for errorless model interchange process. However,
often there is still a loss of data during the model interchange
process. This is caused by different interpretations of the XMI
standard, as well as tools’ wish to extend XMI with model
layout information and different other extensions.

The goal of the research is to evaluate whether there is a
dependency between the amount of warnings and errors
discovered in MDSD support tools exported XMI file and a
modeling tools’ XMI model interchange ability. Research
consists of two parts. Firstly, tools’ ability to export files
conforming to XMI standard is evaluated. Secondly, models
for three test cases are practically exchanged between tools.

The rest of the paper is structured as follows. Section II
describes the importance of model interchange in the MDSD
process. In Section III, the National Institute of Standards and
Technology (NIST) XMI validation tool is considered as a
way to determine the quality of MDSD tools’ exported XMI
model. The next Section analyses the results of practical
model interchange between the modeling tools. Related work
is considered in Section V. In the conclusion Section, the
results of the research are summarized and the directions of
future research are suggested.

II. THE TASK OF THE MODEL INTERCHANGE WITHIN THE

MODEL-DRIVEN SOFTWARE DEVELOPMENT

Model is an integral part of MDSD [2], because it can
portray different levels of abstraction [1]. MDSD support
tools need to have a reliable model interchange ability in
order to preserve their users. If a tool cannot cooperate with
other development tools, users will have to do a lot of
unnecessary manual work, which may lead them to choose
another tool for modeling.

Models usually are portrayed visually and saved in
MDSD support tools in different formats, which depend on
the technology used in the building process of a tool. Some
modeling tools can generate XMI files for models, which
mean transforming visual models to text. Other tools have an
ability to import XMI files, transforming a model from a text
file to tools native form of a model. This process is restricted
by modeling standards (e.g., UML) and XMI standard rules.

451Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

XMI standard provides a set of rules how to write a
models’ metadata information in Extensible Markup
Language (XML) [3]. XML was introduced in 1996 by World
Wide Web Consortium [5] with a goal of simplifying data
exchange process between different software tools.

In research, three MDSD support tools are reviewed in
order to evaluate their ability of model interchange –
Enterprise Architect [6], Magic Draw [7] and Modelio [8].
These tools were selected by Model Interchange Working
Group in 2011 as ones to be evaluated by Model Interchange
Tests [10].

Enterprise Architect is developed by Sparx Systems and
has more than 350 000 users in 160 countries [6]. It is a visual
modeling tool, which is based on Model Driven Architecture
approach developed by Object Management Group. There are
numerous modeling standards available in this tool, for
example, UML, Business Process Model and Notation
(BPMN) and System Modeling Language (SysML). The user
interface in Enterprise Architect is user friendly and intuitive,
which boosts the usage productivity. The current edition of
Enterprise Architect is 12.

Magic Draw is a modeling tool developed by No Magic
[7] in order to support object-oriented systems analysis and
design. The tool incorporates such industry standards as
UML, SysML and BPMN. Magic Draw supports code
generation from models to different programming languages
(Java, C++, C# and CORBA IDL). The current edition of
Magic Draw is 18.1.

Modelio is an open source modeling tool developed by
Modeliosoft [8]. The tool is designed for business and system
analysts, as well as software developers. Tool consists of
modules that can be added to default version of the tool
according to user needs. The tool supports code generation
from models to Java language. The current edition of Modelio
is 3.3.1.

It is possible to export models in XMI format files from
Enterprise Architect and Modelio. On the other hand, Magic
Draw can export Models only in XML file. This means that
all three exported models are written in XML language and
more or less conforms to XMI standard. The model
interchange problems arise when tool A does not have
appropriate transformation rules for XML structures, which
are used in tool B.

As an example of differences in tools’ interpretation of
XMI standard and the way of generating models for
interchange purposes, we will look at a small example. In an
UML class there is an attribute with name “attribute 1”. It is
type “Boolean” and can take values from 0 to 1.

In the right part of Figure 1, a fragment of class diagram
export from Enterprise Architect can be seen. In addition to
previously mentioned characteristics attribute 1 has some
more metadata, which are included in Enterprise Architect
models.

In the left part of Figure 1 the same fragment of attribute1
exported from Modelio can be seen. This fragment is
considerably shorter, as Modelio by default doesn’t create as
many additional characteristics for an attribute. It is also
unclear what the value restriction for this attribute is – this
will be considered as a difference between the uploaded XMI
file and the “valid XMI” for the test case by NIST validation
tool.

Magic Draw exported a file with an extension .xml for
class diagram. This tool wildly uses extensions, which make
the text form of attribute1 in Figure 2 differ even more from
other discussed tools. However, when NIST validation tool
compares Magic Draw XML’s canonical XMI form to “valid
XMI” in Section III the results are good and the amount of
discovered validation errors is low in comparison with other
tools.

Figure 1. Comparison of XMI atribute1 in Enterprise Architect and Modelio

452Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 2. XMI atribute1 in Magic Draw

All three MDSD support tools discussed in this paper

have different ways of writing an attribute from a class
diagram in XML language. When it comes to more
complicated parts of models, these differences become
increasingly important in the context of model interchange.

III. NIST VALIDATION TOOL

In 2009, Object Management group announced the
creation of Model Interchange Working Group (MIWG) [11].
MIWG has created a test suit, which consists of 40 test cases
[9]. The test suit allows demonstrating model interchange
abilities of several modeling tools. 25 of the tests are defined
for UML 2.3 standard. Each test case consists of one or more
diagrams and according XMI file, which conforms to XMI
standard and is considered as a “valid XMI” for the model.
This XMI file is used in the validation process, when the
exported XMI files from modeling tools are compared to it.

USA National Institute of Standards and Technology
(NIST) [12] has developed a validation tool that can validate
an XMI file exported from a modeling tool against the “valid
XMI” for a chosen test case. XMI is compared in its
canonical form. There are various ways how model can be
represented in XMI, which all conform to XMI standard [9].
Canonical XMI has additional points in its specification that
eliminates variation. There is only one way in which a model
can be correctly represented in the canonical form. Usage of
canonical XMI makes it possible to compare two XMI
models expressed in it to find the differences. No tools used
in the research exports canonical XMI form directly. NIST
validation tool converts uploaded XMI files to their canonical
form before comparing them to the “valid XMI”.

After the validation of an XMI file the summary or results
is displayed to the user. In the heading there is information
about XMI file: XMI version, object count in the XMI file,
used meta-model. It is followed by a list of warnings, which
arises when XMI does not fully conform to the Object
management groups’ developed standard. Warnings may
cause problems with model interchange, because the
importing modeling tool may not interpret these parts of XMI
correctly.

There are two parts of validation errors discovered by the
NIST validation tool [12]:

 General errors;

 Differences between the uploaded XMI file and
the “valid XMI” for the test case.

If an XMI that is independent from all test cases provided
by MIWG is validated by NIST validation tool, only general
errors will be displayed.

In order to see differences in the tools’ ability to export
models, we compared tools in two dimensions.

Firstly, there are several XMI files available from MIWG
interchange tests in 2011 [10]. They were exported from
MDSD support tools described in the previous Section. All
the tools have developed new versions since then, so it is
possible to compare the older version of a tool with the new
one. Version numbers for tools described in this paper are
shown in Table 1.

TABLE I. MODELING TOOL VERSIONS

Enterprise
Architect MagicDraw Modelio

Year 2011 9.1 17.0 2.4.19

Year 2015 12.0 18.1 3.3.1

Secondly, all the tools have exported models from the

same test cases. This gives the grounds to compare the
number of validation errors discovered by the NIST
validation tool between the different MDSD support tools.

The comparison of tools in this Section uses three test
cases for UML diagrams: class diagram [13], activity diagram
[14] and use case diagram [15]. The choice of test cases
covers both behavioral and structural UML diagrams.

Class diagrams describe structure of a system showing
objects used in a system as classes. Each class can have
attributes (characteristics of an object) and methods (actions
that an object can do). Classes are linked with each other with
different relationships, e.g., association and generalization.

Activity diagrams are used for business process modeling.
They display the sequence of activities in a workflow and
decisions resulting from activities.

Use case diagrams show user interaction with the system.
Users are portrayed as actors and they are connected to use
cases by using different links to specify the relation.

Class diagram is the first test case to be analyzed. The
comparison of MDSD support tools and data from the tools’

453Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

versions from years 2011 and 2015 is shown in Figure 3. The
amount of validation errors discovered by the NIST
validation tool for the class diagram is displayed there.

Figure 3. Comparison of validation errors in the class diagram

In the 12.0 version of Enterprise Architect the exported
XMI conforms better with the XMI standard than the version
9.1. The amount of validation errors has decreased three
times. In the Magic Draw version 17.0 there are 33 validation
errors, but in the version 18.1 NIST validation tool did not
discover any errors. In Modelio the trend is reversed. In the
version 2.4.19 there were 8 validation errors, but in the
version 3.3.1 the NIST validation tool discovered 47
validation errors in the exported XMI of the class diagram
test case. When making a comparison between different tools,
the best in class diagram test case is Magic Draw, which is
followed by Enterprise Architect and Modelio. The amounts
of validation errors in these tools are increasingly higher.

Activity diagram is the second test case to be analyzed.
The comparison of MDSD support tools and data from the
tools’ versions from years 2011 and 2015 can be seen in
Figure 4. The amount of validation errors discovered by the
NIST validation tool for the activity diagram is displayed in
Figure 4.

Figure 4. Comparison of validation errors in the activity diagram

When comparing older and newer versions of Enterprise
Architect an increase by one validation error can be seen in
the version 12.0. Magic draw in newer version 18.1 has 18
validation errors less than version 17.0. Modelio, similarly as
Enterprise Architect, in the version 2.4.19 has one validation
error more than there was in the version 3.3.1. In the export of
activity diagrams Magic Draw has the best results with 13
validation errors discovered in the current tool’s version.
Modelio has approximately three times more validation errors
than Magic Draw, but the highest amount of validation errors
belongs to Enterprise Architect.

Use case diagram is the third test case to be analyzed. The
comparison of MDSD support tools and data from the tools’

versions from years 2011 and 2015 can be seen in Figure 5.
The amount of validation errors discovered by the NIST
validation tool for the use case diagram is displayed in Figure
5.

Figure 5. Comparison of validation errors in the use case diagram

The use case diagram XMI file, which is exported from
Enterprise Architect version 12.0, has 83 validation errors.
That is by 8 validation errors less than Enterprise Architect
version 9.1. There is even better improvement in Magic Draw
– the amount of validation errors from 50 in version 17.0 has
decreased to only 2 in version 18.1. For Modelio, similarly as
in the case of class and activity diagrams, an increase in the
amount of validation errors for the newer version 3.3.1. can
be seen. Magic Draw with its 2 validation errors has the
lowest amount of errors for the use case diagram. It is
followed by Modelio (22 validation errors) and Enterprise
Architect (83 validation errors).

There were various validation errors discovered by NIST
validation tool. In the error messages user uploaded XMI file
is referenced as “User.xmi” and preloaded XMI for the test
case is referenced as “Valid.xmi”. The most frequent
validation errors were:

 User.xmi is missing an element present in Valid.xmi;

 User.xmi contains an element not present in Valid.xmi;

 An object property value in User.xmi differs from that
of Valid.xmi, for example in User.xmi class visibility is
defined as “Public”, but in Valid.xmi the value is null;

 User object missing a value specified in Valid.xmi.
The highest amount of general errors was about the

serialization of a default value.
The summary of all the amounts of validation errors from

three test cases for each tool is shown in Figure 6. Summary
is made for the tool versions in year 2015.

Figure 6. Summary of model validation errors

Enterprise Architect has 175 validation errors, which adds
up to 61% from the total amount of validation errors. The
majority of validation errors were about the serialization of a

454Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

default value. Enterprise Architect specifies the visibility of a
public class, where in XMI it is considered a default value for
class visibility and should not be specified.

Modelio has half the amount of validation errors. Modelio
has a mentionable trend to become less conformant with the
XMI standard in the newer version. In all test cases, the
amount of validation errors for Modelio version 3.3.1 was
higher than for version 2.4.19.

In each test case Magic Draw had the lowest amount of
validation errors. Only 5% of the total amount of validation
errors was created by Magic Draw.

IV. RESULTS OF THE MODEL INTERCHANGE BETWEEN

THE TOOLS

In order to evaluate, whether a model exported form one
of described tools can be used in other tools, we tested model
interchange practically. In a perfect scenario model
interchange should provide a possibility to export a model
from one tool and import model in another tool without losing
any elements, links and layout.

For each test case analyzed in Section III we practiced
model interchange between the described tools and evaluated
it according to these criteria:

0 points – model from one tool cannot be imported in
another tool;

1 point – model can be imported from tool A into tool B,
but it is missing some elements or links;

2 points - model can be imported from tool A into tool B
and it has all elements and links;

3 points - model can be imported from tool A into tool B
and it has all elements, links and layout.

Results for each test case are displayed in the tables
below. Tools named in listed exported diagrams that were
imported in tools listed in rows.

TABLE II. CLASS DIAGRAM MODEL INTERCHANGE

From Enterprise
Architect

Magic-
Draw Modelio To

Enterprise Architect X 3 2

MagicDraw 2 X 2

Modelio 1 0 X

Model interchange results for class diagram are shown in

Table 2. Modelio was missing some elements in the diagram
exported from Enterprise Architect and could not import
model from Magic Draw at all. Enterprise Architect could
retrieve model layout exported by Magic Draw.

TABLE III. ACTIVITY DIAGRAM MODEL INTERCHANGE

From
Enterprise
Architect

Magic-
Draw Modelio To

Enterprise Architect X 3 2

MagicDraw 1 X 2

Modelio 2 0 X

Model interchange results for activity diagram are shown
in Table 3. Model did not have all the elements and links in
interchange between Enterprise Architect and Magic Draw.
Other tools received complete model from Modelio, but did
not get the layout.

TABLE IV. USE CASE DIAGRAM MODEL INTERCHANGE

 From Enterprise
Architect

Magic-
Draw Modelio To

Enterprise Architect X 3 2

MagicDraw 2 X 2

Modelio 2 0 X

Model interchange results for use case diagram are shown

in Table 4. All model interchanges that were functional
transported complete models from one tool to another. The
only interchange that did not work was from Magic Draw to
Modelio.

All the obtained points for both import and export of three
test case models are summarized in Figure 7.

Figure 7. Comparison of practical model interchange

According to previously raised criteria Enterprise
Architect has the best ability of model interchange with other
modeling tools used in this research. Tools option to import
files in XMI, as well as XML formats and ability to take
model layout is an advantage.

Modelio has 7 points less than Enterprise Architect.
Modelio is best evaluated for the ability to export a model,
which can be imported in all other tools with high accuracy.

Modelio is followed by Magic Draw. Tools biggest flaw
was its inability to import models layout. Magic Draw offers
its users a variety of automatic layout options for models,
during practical tests it was recognized that it was not enough.
The automatic layout option did not work for use case
diagram.

V. CONCLUSION

In this paper the UML model interchange capabilities of
three modeling tools were analyzed. The tools are: Enterprise
Architect, Magic Draw and Modelio. Three test cases
designed by MIWG were used: class diagram, activity
diagram and use case diagram.

With the NIST validation tool the largest amount of
validation errors were discovered in the XMI files of
Enterprise Architect, but the smallest amount of validation

455Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

errors were in Magic Draw exported models. When analyzing
the trends of development from older to newer versions of
tools it can be seen that there is improvement in the amount
of validation errors in Enterprise Architect and Modelio. Both
tools in year 2015 have less validation errors than they had in
year 2011.

In practical model interchange Enterprise Architect is
recognized as the most precise of the analyzed tools. It is
followed by Modelio and Magic Draw. This result seems to
be counterintuitive: Enterprise Architect has the highest
amount of validation errors discovered by NIST validation
tool, yet it has the best model interchange ability. This could
be explained by the tools import abilities, which cannot be
evaluated by NIST validation tool. It is also evident that not
all validation errors have negative impact on tools ability of
model interchange.

In conclusion, the dependency between the amount of
XMI validation errors and tools’ practical model interchange
ability is not evident. The amount of XMI validation errors
discovered by NIST validation tool is not enough to
determine, whether a MDSD support tool will have good
model interchange ability.

One explanation for this result is that only the quality of
exported XMI files can be tested by NIST validation tool.
Unfortunately, a good conformance to XMI standard does not
insure that other modeling tools will import the file
successfully. When testing a tools ability of model
interchange, both the quality of the export XMI and import to
other tools should be examined.

The research can be continued in two directions. Firstly,
more MDSD support tools can be compared using the same
test cases for UML diagrams. Secondly, the validation errors
discovered by NIST validation tool can be analyzed in order
to determine, which have significant impact on model
interchange.

ACKNOWLEDGMENT

The research presented in the paper is supported by
Latvian Council of Science, No. 342/2012 "Development of
Models and Methods Based on Distributed Artificial
Intelligence, Knowledge Management and Advanced Web
Technologies".

REFERENCES

[1] T. Kuhne, What is a Model? Internat. Begegnungs-und
Forschungszentrum für Informatik. 2005

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development, Springer, 2005.

[3] XML Metadata Interchange (XMI) Specification. Available:
http://www.omg.org/spec/XMI/ [retrieved: July, 2015].

[4] Unified Modeling Language (UML) Resource Page.
Available: http://www.uml.org/ [retrieved: July, 2015].

[5] Extensible Markup Language (XML) 1.0 (Fifth Edition).
Available: http://www.w3.org/TR/2008/REC-xml-20081126/,
[retrieved: July, 2015].

[6] Enterprise Architect. Available:
http://www.sparxsystems.com/products/ea/ retrieved: July,
2015].

[7] MagicDraw. Available:
http://www.nomagic.com/products/magicdraw.html retrieved:
July, 2015].

[8] Modelio. Available: https://www.modelio.org/about-
modelio/features.html retrieved: July, 2015].

[9] Model Interchange Wiki. Available:
http://www.omgwiki.org/model-interchange/doku.php?id=
[retrieved: July, 2015].

[10] UML/SysML Tool Vendor Model Interchange Test Case
Results Now Available. Available:
http://www.omg.org/news/releases/pr2011/12-01-11.htm,
retrieved: July, 2015].

[11] S. Covert, OMG Announces Model Interchange Working
Group. Available:
http://www.omg.org/news/releases/pr2009/07-08-09.htm,
retrieved: July, 2015].

[12] NIST XMI validator. Available: http://validator.omg.org/se-
interop/tools/validator, retrieved: July, 2015].

[13] Test Case 1 - Simple Class Model. Available:
http://www.omgwiki.org/model-
interchange/doku.php?id=test_case_1_uml_2.3, retrieved:
July, 2015].

[14] Test Case 4 - Simple (fUML) Activity Model. Available:
http://www.omgwiki.org/model-
interchange/doku.php?id=test_case_4_uml_2.3, retrieved:
July, 2015].

[15] Test Case 8 - Use Cases. Available:
http://www.omgwiki.org/model-
interchange/doku.php?id=test_case_8_uml_2.3, retrieved:
July, 2015].

456Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

