
Using Cloud Services To Improve Software Engineering Education for Distributed

Application Development

Jorge Edison Lascano
1,2

, Stephen W. Clyde
1

1
Computer Science Department, Utah State University, Logan, Utah, USA

2
Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador

email: edison_lascano@yahoo.com, Stephen.Clyde@usu.edu

Abstract—Software-engineering education should help

students improve other development skills besides design and

coding. These skills, referred to here as A2R (Analysis to

Reuse), include analysis, technology evaluation, prototyping,

testing, and reuse. The need for improved A2R skills is

particularly pronounced in advanced areas like distributed

application development. Hands-on programming assignments

can be an important means for improving A2R skills, but only

if they focus on the right details. This paper presents a case

study of programming assignments offered in a graduate-level

class on distributed application development, where the

assignments required the students to use cloud services and

programming tools that were heretofore unfamiliar to the

students. Direct observation by the instructor and a post-class

survey provided evidence that the assignments did in fact help

students improve their A2R skills. The post-class survey also

yielded some interesting insights about the potential impact of

well-designed programming assignments, which in term led to

ideas for future research.

Keywords-computer science education; software-engineering

education; cloud computing; virtual environments; distributed

systems.

I. INTRODUCTION

Imagine yourself at a worktable with four or five of your
peers. In the center of the table is a pile of seemingly random
objects, including two dozen sheets of paper, paper clips, a
small roll of tape, pins, and several small wooden sticks. A
quick glance around the room reveals a dozen other groups
just like yours with similar piles in front of them. An
individual, who is introduced as your customer, stands at the
front of the room and says that you have 30 minutes to build
a “great” tower. What do you do first? How do you put all
that you know about paper, clips, tape, wooden sticks, etc.
into practice to satisfy the customer’s request for a tower and
do so within 30 minutes?

Such is the typical scene on the first day of class in the
undergraduate introductory course on software engineering
at Utah State University (USU). In general, all the students
have a good working knowledge of objects at their disposal
and even some inkling on how they may combine several of
them to create new more structural useful objects. Most
groups succeed in creating something that stands on its own
and roughly resembles a tower within 30 minutes. However,
at the end of that time, the customer surprises the students by
giving them a few more objects, e.g., more paper and tape,
and asks them to take 15 more minutes to make their towers

taller or stronger. Many groups fail to do so in the limited
allotted time. In fact, about half of them end up destroying
their original towers in the attempt.

Afterwards the instructors and students discuss the
experience in terms of what worked well for the group,
particular difficulties that hindered progress, how the group
organized itself, and how they decided on an overall
approach. The discussion usually leads to some very
interesting comparisons with common aspects of software
engineering, such as group work, tool evaluation,
prototyping, design patterns, testing, extensibility, reuse, and
more. Over the years, one of the authors, who is a long-time
instructor for this introductory software engineering course,
has observed the following:

1. Virtually no student or group ever asks the
customer what a “great” tower means. Most assume
that they already know and proceed to build without
each researching the requirements.

2. Virtually no student or group ever looks around to
see what other groups have done or are doing,
evaluates the ideas they see, and then tries to adapt
or improve on them.

3. Only a small percentage of the groups try
prototyping an idea to explore its characteristics.

4. Only rarely does a group test the properties (e.g.,
stability or strength) of a component or the whole
tower and then try to make modifications to
improve those properties.

5. Only a few groups try to establish patterns or “best
practices” either in their building processes or the
components they create, and then reuse those ideas.

Each of these observations represents a potential
engineering pitfall or negative practice that can lead to
inefficiency or failure. Software-engineering education needs
to help students avoid these and other related pitfalls by
connecting theory with best practices in the context of real
non-trivial problems [1]. Doing so goes well beyond
teaching the “How To’s” of a specific technology, like a
programming environment. Instead, it requires educators and
students alike to address the “How To’s” of the overall
development process, including:

1. How do we know when we understand the
customer’s problem sufficiently?

2. How can we benefit from existing technology or
from what others have tried in the past?

3. How can we prototype part of a problem or
alternative solutions to answer critical questions?

438Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

4. How can we test what we build?
5. How can we find good solutions to reoccurring

problems and reuse that knowledge?
More concisely, software-engineering education needs to

help students make analysis, technology evaluation,
prototyping, testing, and reuse an effective and integral part
of their development activities [1]. Here, we’ll refer to these
as Analysis to Reuse (A2R) skills.

The need for better A2R skills is prevalent in every
software-engineering domain, but is pronounced in the
development of distributed applications. Distributed-
application development, or distributed-system development
at large, has all of the challenges of traditional software
development, plus the complexities introduced by inter-
process communications, concurrency, the potential of
partial failure, and replication that exist for performance
improvements or fault tolerance [2].

Now let us roll our classroom scene forward several
years to a graduate software-engineering class that focuses
on distributed applications. Students entering in this class
have solid foundations in software-engineering
fundamentals, programming languages, inter-process
communications using sockets, and many other areas of
computer science. Yet, they still need to strengthen their
A2R skills, especially in the context of distributed
applications, and the best way to do that is through hands-on
experience [3]. So, from an education perspective, the
challenge is to provide realistic and engaging assignments
that will strengthen the A2R skills and are doable within the
allotted time.

Because distributed applications are relatively complex
[4] by their very nature, there are two negative tendencies for
program assignments in this area: a) abstracting away too
many interesting aspects of the problem and b) getting
bogged down with unnecessary application-domain details.

The first tendency is very common in advanced CS
courses, because simpler assignments are more manageable,
teachable, and easier to fit within a given allotted time.
Advanced courses usually have to operate within same time
constraints as introductory courses. Even though, they are
more complex, it is essential that advanced assignments
include reasonable limits on the expected time and effort [4].
Simplicity in their design is a necessity and by itself is not a
problem. Focusing on the wrong details and abstracting away
all interesting parts of the problem, however, is a serious real
pitfall. For example, scalability is a real and very common
aspect of most distributed applications [2]. Even though
removing scalability requirements would simplify an
assignment, it would rob the students of a valuable
opportunity to improve A2R skills in a relevant area.

The second tendency is to allow an assignment to get
bogged down in application-domain details, shifting focus
away from the learning objectives. Assignments in advanced
courses, like distributed-application development, work best
if they are grounded in a meaningful real-world domain.
However, most distributed applications and their domains
are relatively complex. If not careful, an instructor could
easily use all available time explaining the sample
application domain, instead about the core course topics.

Keeping assignments focused on a small set of functional
requirements that require minimal application-domain
knowledge, is essential to making sure that they are doable
within time limits and achieve the learning objectives.

This paper describes a case study of programming
assignments conducted in an advanced software-engineering
class on distributed-application development, where all of
the assignments required students to use cloud resources for
their execution environment. The hoped-for result was that
the assignments provided students significant opportunities
to improve their A2R skills, while introducing them to new
concepts and development tools. Section 2 describes the
course’s programming assignments in terms of their learning
objectives, the application domains that act as backdrops,
and their requirements. Section 2 also explains the tools and
technologies introduced for each assignment. Section 3
summarizes the instructor’s observations made throughout
the semester and assignment design learnings. To evaluate
the effectiveness of the assignments, we conducted a post-
class survey. Section 4 describes this survey and presents the
resulting raw data. Since the class was a second-year
graduate class, the enrollment was small. So, we cannot
make many generalizations from the survey data.
Nevertheless, they do lead us to some interesting insights.
We share those insights in Section 4.B. Section 5 explores
related work in software-engineering education using cloud
resources and hands-on learning. Finally, Section 6 provides
conclusions, along with ideas for future research that could
further advance software-engineering education relative to
A2R skill development.

II. PROGRAMMING ASSIGNMENT FOR A DISTRIBUTED

APPLICATION DEVELOPMENT COURSE

CS 6200 at USU is a second-year graduate course in
software engineering that focuses on the development of
distributed applications. Its prerequisite, CS 5200, provides
students with a strong foundation in inter-process
communication, protocols, concurrency, and communication
subsystems. CS 5200 is also a programming intensive
course, which means that students who successfully
complete it have confidence in their ability to implement
non-trivial software systems. The overall learning objectives
for CS 6200 are as follows:

 Master theoretical elements of distributed
computing, including: models of computation and
state, logical time, vector timestamps, concurrency
controls, and deadlock;

 Become familiar with the provisioning and use of
virtual computational and storage resources in a
cloud environment;

 Become familiar with cloud-based tools for
processing large amounts of data efficiently; and

 Become familiar with distributed transactions and
resource replication.

For the Spring 2015 semester, the homework was broken
down into five assignments, each lasting two to three weeks.

439Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

A. Assignments 1 & 2 – Disease Tracking System

For the first two assignments, the student implemented a set

of processes that worked together to form a disease tracking

and outbreak monitoring system. They had to deploy

multiple processes on EC2 instances within Amazon Web

Services (AWS) cloud. The first type of processes were

simulations of Electronic Medical Records Systems

(EMR’s) that randomly generated notifications of diagnoses

for infectious diseases, like influenza. The EMR’s sent these

disease notifications to Health District Systems (HDS’s),

which collated diagnoses and then sent periodic disease

counts to Disease Outbreak Analyzers (DOA’s). Each DOA

monitored outbreaks for a single type of disease. See Figure

1. The specific learning objectives for these two

assignments included:

 Review inter-process communications;

 Become familiar with vector timestamps and how
they behave in a distributed system under varied
conditions;

 Become familiar with setting up and using
computational resources in a cloud, e.g., AWS; and

 Become familiar with setting up a simple name
service.

The students were asked to learn and use Node.js as the
primary programming framework [5][6]. Because Node.js
was new to all the students, some class time was dedicated to
teaching Node.js, but only enough to get them started. Their
unfamiliarity with Node.js was also the reason this first
system was split into two assignments. They built and tested
approximately half of the functionality in the first assignment
and the remainder in the second.

To deploy their systems to EC2 instances on AWS, the
students had to learn about security on AWS, create security
keys, and setup their own user accounts using Amazon’s
Identity and Access Management (IAM). They also had to
setup and learn the AWS’s command-line language interface
(AWSCLI), so they could automate the deployment and
launching of their systems.

B. Assignment 3 – Twitter Feed Analysis

In this assignment, the students explored how to process
big data using MapReduce on AWS and how to configure
cloud resources using AWS’s Cloud Formation tools.
Specifically, they were to capture tweets through Twitter’s
API and then analyze them for positive or negative sentiment
relative to some key phrase, like “health care”. The learning
objectives for this assignment were as follows:

 Become familiar with setting up and using
MapReduce with a cloud-based distributed file
system;

 Become familiar with tools for provisioning
collections of resources that are needed for a
distributed system; and

 Explore the types of problems that are well suited
for a MapReduce solution

To complete this assignment, students setup and learned
how to use AWS’s S3, MapReduce, and Cloud Formation
services. Some also used this assignment to learn about a
Node.js module for working directly with AWS; while others
strengthened their knowledge of AWSCLI.

C. Assignment 4 – Distributed Election

In this assignment, the students implemented a
distributed system consisting of dozens of processes that
shared access to common data files, which were collectively
treated as one large shared resource, like a database. One of
the processes played the role of Resource Manager (RM) and
accessed the common data files in response to requests from
the other processes. If RM died, then the other processes had
to detect that failure and elect one of the remaining processes
to be the new RM seamlessly. The learning objectives for
this assignment were:

 Master at least one distributed election algorithm;

 Master the concept of resource managers for
controlling access to share resources; and

 Become more familiar with tools for provisioning
collections of resources in a cloud.

To complete this assignment, we allowed students to use
any of the tools they had learned thus far, but they had to
deploy their systems to multiple EC2 instances and
demonstrate that the system would elect a new RM if the
current one was stopped. They had to show that the system
has as a whole, lost no work.

D. Assignment 5 – Distributed Transactions

In this assignment, the students had to build a simple
transaction management system with locking capabilities.
Like Assignment 4, this system had to support multiple
concurrent worker processes, but went a step further in
requiring multiple shared resources and multiple concurrent
RM’s. Each RM had to keep track of a single resource and
support lock, read, write, and unlock operations on that
resource. The system also had to include a transaction
manager that supported starting, committing, and aborting of
transactions. Assignment 5’s learning objectives included:

 Become familiar with locking; and

Figure 1. Programs built as part of Assignments 1 & 2, plus an

illustration of sample processes.

Electronic
Medical Record

Simulator

Disease
Outbreak
Analyzer

Health District
System

Disease Notifications
(webservice) Disease Counts (UDP)

Output Alerts (webservice)

EMR - P0

EMR - P1

EMR - P2

EMR - P3

EMR - P4

EMR - P5

EMR - P6

EMR - P7

HDS - P9

HDS - P10

HDS - P11

DOA - P12

DOA - P13

DOA - P14

EMR - P8

P
ro

gr
am

s
Sa

m
p

le
 P

ro
ce

ss
e

s

Outbreaks  Alerts
(webservice)

440Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 Become familiar with transaction management in a
distributed system.

Like Assignment 4, the students could use any of the tools
that they learned to this point in completing Assignment 5.

III. INSTRUCTOR OBSERVATIONS

Seven students took CS 6200 in the Spring 2015

semester: 5 who were registered for credit and 2 who

audited the class. It’s impossible to recap all that took place

during the semester, but we summarize a few observations

prior to presenting the post-class survey to help set the stage

for the survey and our conclusions.

First, we observed that all of seven students started the

class with roughly equivalent software-engineering

backgrounds and programming skills, even through they

were not all seeking the same degree nor did they have the

same programs of study. None of the students had used

Node.js before and only one had any exposure to cloud

computing, and that was only a light exposure.

Second, we observed that requiring students to setup and

managing their own cloud resources not only helped them

with core concepts and development skills, but it also

allowed them to improve their A2R skills relative to

figuring out what the most important requirements were,

tool evaluation, and testing. For example, in the first two

assignments, the students had to deploy their system to EC2

instances. For most of the students, this was the first time

deploying something that they built to an execution

environment different from their development environment,

along an execution environment consisting of multiple

virtual machines. It opened their eyes to new challenges,

such as firewall issues, file permissions, and missing

dependencies. Time was made available in every class

period for them to talk about the challenges that they were

facing and get ideas from other students or the instructor

about how to address those challenges. Similar discussion

also took place on an online forum. By the end of

Assignment 2, the classroom and online discussions showed

that the students had stepped up their efforts to understand

the assignment requirements, evaluate the tools available to

them, and test their work.

Even though the purposes of Assignments 4 and 5 were

considerably different from the first three, they possessed

some of the same challenges, like resource name resolution

and deployment into a cloud environment. It was

encouraging to see that the students solved these problems

by adapting techniques used in the earlier assignments and

improving upon them – evidence of them practicing A2R

skills.

We were happy to see that the students learned some

unexpected, but very relevant lessons. For example, one

student stored his access keys in a text file and committed

that file to a public Git repository. It wasn’t long before

someone hacked his AWS account. Amazon and the student

caught the problem relatively quickly and simultaneously,

but not before the hacker had used over $600 of resources.

He ended up taking extra time learning more about security

from unauthorized use. Thankful, Amazon worked with him

to recover the expenses, so he did not have to pay for the

lost out of pocket. Still, it proved to be a valuable learning

experience that he will not forget.

With respect to the selected cloud AWS, we observed

that it provided a mature and full-featured set of services for

the students to learn from. In some areas, AWS’s learning

curve was steeper than necessary, but with supplementary

examples and good discussions, it was manageable. From an

education perspective, a good thing about AWS is that it has

features in three main categories: Infrastructure as a Service

(IaaS), Software as a Service (SaaS), and Platform as a

Service (PaaS) [2].

One negative experience with AWS occurred during

Assignment 3, which depended on an Amazon-provided

template for setting up a MapReduce cluster. That template

was changed by its authors in the middle of assignment,

causing several of the students not to complete all of the

requirements. To avoid this problem in the future, the

instructors will make private copies of public or external

resources, so changes to them will not affect assignments in

progress.

A. Assignment Design Learning

When instructors design assignments oriented to

networking or distributed applications, they need to consider

distribution concepts, but at the same time bear in mind the

limitations for the students’ capabilities and hardware

environment. Before cloud resources became available, this

typically consisted of one computer [7] or small number of

computers on a local area network (LAN) in a school lab.

Assignments that work well on one computer or a LAN may

not allow the students to gain appreciation for more realistic

networking challenges, performance issues, and reliability

problems [8]. With cloud resources, assignments can now

be designed having a broad range of resources in mind,

while still considering good software-engineering practices

for analysis, technology evaluation, testing, deployment and

even reuse.

IV. POST-CLASS SURVEY

To assess the value of the programming assignments for
CS 6200, we designed a post-class survey and conducted that
survey with two populations: students registered in CS 6200
for credit and students who just audited the class. Those
registered for credit had to complete all of the assignments to
receive a grade; those just auditing the class did not. In fact,
it is important to note that none of the second group
completed any assignment.

A. Survey design

We organized the survey into two parts. The first part
asked students to rate their knowledge and skills in areas
related to the course and the assignments, as they were
before the class started, using a 1-to-5 scale. The second part
asked them to do the same relative to the end of class. Table

441Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

and Table list the concepts (knowledge areas) and skills
respectively covered in both parts of the survey. The survey
used a Matrix Table format, with the concepts and skills as
rows and possible ratings as columns. See Figure 2 for
partial view of the survey instrument for Part 1.

The difference between each individual’s answers to
corresponding questions from two parts provides a glimpse
of that person’s perceived change in knowledge or skill
levels as a consequence of the course.

We could have administered a pre-class survey similar to
the first part, but considerable differences in each student’s
personal rating scheme would likely have evolved over the
semester, making it difficult to assess perceived change. We
could have also administered pre and post exams to measure
their proficiency objectively, but there was no common
knowledge basis for a pre exam. So, the study would have
degenerated into the interpretation of just post exam results.

TABLE I. KNOWLEDGE SURVEY QUESTIONS.

No Knowledge/Concept Acronym

Q1.1 Inter-process communications patterns, like

Request-Reply, Request-Reply Acknowledge,

and Reliable Multicasts

IPC

Q1.2 Partial ordering of events in a distributed
system, as represented by mechanism like

Vector Timestamps

VTS

Q1.3 Message serialization/deserialization S/D

Q1.4 Intra-process concurrency IntraPC

Q1.5 Computation resources in a cloud-computing

environment, such as AWS

AWS

Q1.6 Namespaces, name services, and name

resolution

NS

Q1.7 Deployment, execution and testing
techniques in a distributed environment

Deploy

Q1.8 Deployment, execution and testing

techniques in the cloud.

Testing

Q1.9 Distributed election algorithms DEA

Q1.10 Resource managers RM

Q1.11 Fault tolerance in a distributed environment. FT

Q1.12 Tools for provisioning collection of resources

needed for a distributed system.

Tools

Q1.13 Cloud Computing resources CCR

Q1.14 Infrastructure as a Service (IaaS) IaaS

Q1.15 Platform as a Service (PaaS) PaaS

Q1.16 Inter-process concurrency InterPC

TABLE II. SKILLS SURVEY QUESTIONS.

No Skill Acronym

Q2.1 AWS Users and key pairs (Identity and

Access management -IAM)

AWS-IAM

Q2.2 AWS Virtual PC Instances (EC2) AWS-EC2

Q2.3 AWS Storage (S3, EBS) AWS-

S3,EBS

Q2.4 AWS-CLI (Command Line Interface) AWS-CLI

Q2.5 AWS SDK (Software Development Kit) AWS-SDK

Q2.6 Managing instances in AWS:
creating/launching, starting, stopping,

terminating

EC2-
Instances

Q2.7 AWS Billing AWS-Billing

Q2.8 Using Node.js to Develop Distributed

Systems

Node.js_DS

Q2.9 Using Node.js to deploy and run
Distributed Systems in the cloud

Node.js_Clo
ud

Q2.10 Designing and developing TCP/UDP/Web

Services-based systems with Node.js

Node.js_C/S

Q2.11 Writing scripts to Deploy/execute
applications in distributed environments

DS_Scripts

Q2.12 Designing and Developing Resource

Managers

RM_DD

Q2.13 Designing and Developing Distributed
Election Algorithms

DEA_DD

B. Survey Results

All seven students completed both parts of the survey.
Figures 3 and 4 show averages of the students’ raw estimates
of their knowledge and skill levels for before and after class.
The blue lines represent the levels before and the red lines
after. The (a) graphs are for the first population, namely the
students who registered for credit and the (b) graphs are for
the auditing students. Figure 5 shows the average net change
in the levels, broken down by the two populations.

One interesting result that is worth pointing out
immediately, is that the first group of students, in general,
rated their before-classes level lower than the second
population. We believe that this can be contributed to the
common adage, “You don’t know what you don’t know”.
The first group of students did the assignments and soon
discovered how much they really didn’t know, whereas the
second group did not come to the same realization. For
example, the auditors’ perception about their AWS and
Node.js skills was that they knew those technologies
relatively well before starting the class; meanwhile the first
group of students came to realize that their skills were almost
nil.

Next, notice that the estimated pre-class knowledge
levels are higher than the estimated pre-class skill levels. In
general, the students felt they had a conceptual
understanding of the course concepts, including AWS, which
only one student had exposure to before class. From this, we
can see that students (and perhaps all people) tend to believe
that they are able to generalize conceptual knowledge into
new areas that they have not seen before.

Figure 2. Partial view of the survey.

442Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 5 shows evidence that the first group of students
truly improved their skills. Their net change for every skill
was higher than the net change for the second group.
Interestingly, the same is not true in the knowledge area. At

first glance, this might seem odd, but considering the timing
and relative nature of the self-made estimates, there is a
possible explanation. Specifically, the students who didn’t do
the assignments naturally felt that their biggest growth was
in increase of conceptual knowledge.

V. RELATED WORK

Other higher-education institutions are using cloud
computing resources in courses that focus on distributed
applications or network programming. Clearly, these
platforms allow the students to use realistic testing and
production environments. Moreover, there are large research
universities that have implemented private clouds on their
campuses and use them in the classroom. For example,
Syracuse University provides a local virtual machine lab
used to form virtual networks for security projects [9]. North
Carolina State University supplies computing resources over
the Internet with their Virtual Computing Lab [10], Arizona
State University developed V-lab for Networking Courses
[3], and Okanagan College and King’s university College
talk about using a cloud for educational collaboration [11].
Nevertheless, these private solutions are often not
economically viable for many universities [7], and therefore
they can only consider public cloud solutions.

Programming assignments that use public or private
clouds can add value to the learning experience and increase
students’ skills directly related to possible professional
careers [4] in network programming [7], distributed systems
[11], systems administration [4], security [4][9], data
processing [12], among others. Furthermore, a major benefit
is that students do not need to simulate network

Figure 3. Before and After Knowledge Levels.

Figure 5. Perception of acquired knowledge: differences between the

after and the before.

Figure 4. Before and After Skills Levels.

443Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

communications over a localhost interface [7]; instead, they
can use multiple virtual machines and real network
communications to better understanding the distributed
system components, their roles, and the related concepts.

Using a public cloud for hands-on activities offers
benefits such as scalability, flexibility, security, cost-
efficiency and accessibility [7], which all are key
characteristics of distributed systems [2]. Public clouds also
add an interesting and valuable dimension to the execution
and debugging of distributed applications [12], without
needing huge budgets for private-cloud or physical-machines
infrastructure. Most of the public cloud providers, e.g.,
Amazon, Google, Microsoft, IBM, offer grants for academic
institutions that want to use their resources for educational
purposes. For example, at the time of this study, Amazon
offered grants up to $100 per students [13]. Other benefits to
public clouds include ready access to different operating-
system platforms, communication protocols, development
tools, open-source code, public forums, and more.

VI. CONCLUSIONS AND FUTURE WORK

For this small case study, we conclude that programming

assignments with requirements to use cloud resources were

successful in helping the CS 6200 students to improve their

A2R skills, as well as their core distributed-application

development skills. Both the instructor’s observations and

the post-class survey provide anecdotal evidence of their

improvement.

We also found some evidence that students are willing

and even excited to learn new tools and skills, especially if

they can see how it lets them put theory into practice. Even

though the assignments were based on carefully crafted and

sanitized requirements, they were realistic enough for the

students to experience real problems and see how theoretical

concepts, like vector timestamps and distributed election,

could be used to solve those real problems.

Some important design criteria for assignments included:

a) hiding unnecessary details, like all the other capabilities

of an EMR beside the generation of disease notifications, b)

focusing on requirements that put theory into practice, like

the election of an RM in Assignment 4, c) including non-

trivial non-functional requirements, like scalability, and d)

wherever possible allow students to reuse components or

knowledge acquired in previous assignments.

The survey data also opened some doors to possible

future research. Specifically, we would like to conduct a

broader experiment across multiple software-engineering

classes of various kinds and at different levels, to explore

specific ways that the design of assignments can improve

A2R skills in general. From that, we hope to publish more

concrete guidelines for programming-assignment design for

software-engineering classes at all levels.

ACKNOWLEDGMENT

We would like to thank Amazon for providing funding
for the students to use AWS resources for this class.

REFERENCES

[1] C. Ramamoorthy, "Computer Science and Engineering Education,"

IEEE Transactions on Computers, Vols. C-25, no. NO. 12, December
1976, pp. 1200-1206.

[2] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed

Systems: Concepts and Design, 5th ed., Boston, MA: Addison-Wesley
Publishing Company, 2011, p. 1008.

[3] L. Xu, D. Huang, and W.-T. Tsai, "A Cloudbased Virtual Laboratory

Platform for Hands-On Networking Courses," in ITiCSE '12 the 17th
ACM annual conference on Innovation and technology in computer

science education, New York, 2012, pp. 256 - 261.

[4] C. Leopold, Parallel and distributed Computing, New York: John
wiley & Sons, Inc., 2001.

[5] C. Gonzalez, C. Border, and T. Oh, "Teaching in Amazon EC2," in

SIGITE'13, Special Interest Group for Information Technology
Education, Orlando, Florida, 2013, pp. 149-150.

[6] D. Howard, Node.js for PHP Developers, S. S. L. a. M. Blanchette,

Ed., Sebastopol, CA: O'Reilly Media, Inc, 2012.

[7] node.js, "node.js," Joyent, 2015. [Online]. Available:

https://nodejs.org/. [Accessed 28 04 2015].

[8] W. Zhu, "Hands-On Network Programming Projects in the Cloud," in
SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, New York, 2015, pp. 326-331.

[9] j. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson,
"Seattle: A Platform for Educational Cloud Computing," in 40th ACM

technical symposium on Computer science education SIGCSE'09,
New York, 2009, pp. 111-115.

[10] W. Du and R. Wang, "SEED: A Suite of Instructional Laboratories for

Computer Security Education," Journal on Educational Resources in
Computing (JERIC), vol. 8, no. 1, March 2008, pp. 3:1-3:24.

[11] H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and M.

A. Vouk, "NCSU's Virtual Computing Lab: A Cloud Computing
Solution," Computer, vol. 42, no. 7, July 2009, pp. 94 - 97.

[12] Y. Khmelevsky and V. Voytenko, "Cloud computing infrastructure

prototype for university education and research," in WCCCE '10, 15th
Western Canadian Conference on Computing Education, New York,

2010.

[13] A. Rabkin, C. Reiss, R. Katz, and D. Patterson, "Using clouds for
MapReduce measurement assignments," ACM Transactions on

Computing Education (TOCE), vol. 13, no. 1, January 2013, pp. 2:1-

2:18.

[14] AWS, "AWS in Education Grants," Amazon, [Online]. Available:

http://aws.amazon.com/grants/. [Accessed 01 07 2015].

444Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

