ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Cif: A Static Decentralized Label Model (DLM) Analyzer

to Assure Correct Information Flow in C

Kevin Miiller
and Sascha Uhrig
Airbus Group Innovations
Munich, Germany
Email: Kevin.Mueller@airbus.com
Sascha.Uhrig@airbus.com

Abstract—For safety-critical and security-critical Cyber-Physical
Systems in the domains of aviation, transportation, automotive,
medical applications and industrial control correct software
implementation with a domain-specific level of assurance is
mandatory. Particularly in the aviation domain, the evidence
of reliable operation demands new technologies to convince
authorities of the proper implementation of avionic systems
with increasing complexity. Two decades ago, Andrew Myers
developed the Decentralized Label Model (DLM) to model and
prove correct information flows in applications’ source code.
Unfortunately, the proposed DLM targets Java applications and is
not applicable for today’s avionic systems. Reasons are issues with
the dynamic character of object-oriented programming or the in
general uncertain behaviors of features like garbage collectors
of the commonly necessary runtime environments. Hence, highly
safety-critical avionics are usually implemented in C. Thus, we
adjusted the DLM to the programming language C and developed
a suitable tool checker, called Cif. Apart from proving the
correctness of the information flow statically, Cif is also able
to create a dependency graph to represent the implemented
information flow graphically. Even though this paper focuses on
the avionic domain, our approach can be applied equally well to
any other safety-critical or security-critical system.

This paper demonstrates the power of Cif and its capability
to graphically illustrate information flows, and discusses its utility
on selected C code examples.

Keywords—Security, High-Assurance, Information Flow, Decen-
tralized Label Model

I. INTRODUCTION

In the domain of aviation, software[1] and hardware [2]
development has to follow strict development processes and re-
quires certification by aviation authorities. Recently developers
of avionics, the electronics on-board of aircrafts, have imple-
mented systems following the concepts of Integrated Modular
Avionics (IMA) [3] to reduce costs. For security aspects, there
are recent research activities in the topic of Multiple Inde-
pendent Levels of Security (MILS) [4][5]. Apart from having
such architectural approaches to handle the emerging safety
and security requirements for mixed-criticality systems, the de-
velopers also need to prove the correct implementation of their
software applications. For safety, the aviation industry applies
various forms of code analysis [6][7][8] in order to evidently
ensure correct implementation of requirements. For security, in
particular secure information flow, the aviation industry only
has limited means available, which are not mandatory yet.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Michael Paulitsch

Thales Austria GmbH
Vienna, Austria
Email: Michael.Paulitsch@
thalesgroup.com

Georg Sigl

Technische Universitit Miinchen
Munich, Germany
Email: sigl@tum.de

Here, the Decentralized Label Model (DLM) [9] that was de-
veloped two decades ago, is a promising approach as it is able
to prove correct information flows according to a defined flow
policy by introducing annotations into the source code. These
annotations allow the modeling of the information flow policy
directly on source code level avoiding additional translations
between model and implementation. In short, DLM extends
the type system of a programming language and ensures that
the defined information flow policy using label annotations of
variables is not violated in the program flow.

DLM is currently available only for Java[10]. Hence, our
research challenge is to adapt this model to the C programming
language for being able to use it for highly critical avionic
applications. We believe annotated source code allowing to
check the information flow against the formally proven DLM
will help to achieve future security certifications following the
framework of Common Criteria with assurance levels beyond
EAL4 [11][12][13] or equivalent avionics security levels. In
this paper, we focus our contributions 1) on demonstrating the
powerful features of our DLM instantiation for the C language
called Cif, 2) including the ability of graphically represent the
information flows in C programs, and 3) on presenting and
discussion common use case examples presented in C code
snippets. The instantiation of DLM to C extends its field of
use to verify information flow properties to high-assurance
embedded systems. The great importance of this research
can only be acknowledged if safety software development of
aerospace systems and its (in-)ability to use Java has been fully
understood. Java is a relatively strongly typed language and,
hence, appears at first sight as a very good choice. Among
others, the dynamic character of object-oriented languages
such as Java introduces additional issues for the certification
process [14]. Furthermore, common features such as the Java
Runtime Environment introduces potentially unpredictable and
harmful delays during execution, which are not acceptable
in high-criticality applications requiring high availability and
real-time properties like low response times (e.g., avionics).

The remainder of this paper is organized as follow: Sec-
tion II discusses recent research papers fitting to the topic of
this paper. In Section III, we introduce the DLM as described
by Myers initially. Our adaptation of DLM to the C language
and the resulting tool checker Cif are described in Section IV.
In Section V, we discuss common code snippets and their
verification using Cif. This also includes the demonstration

369

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

of the graphical information flow output of our tool. Finally,
we conclude our work in Section VL

II. RELATED WORK

Sabelfeld and Myers present in [15] an extensive survey on
research of security typed languages within the last decades.
The content of the entire paper provides a good overview
to frame the research contribution of our paper. Myers and
Liskov present in[9] their ideas of the decentralized trust
relation in program information flows called DLM. The authors
instantiated DLM to the programming language Java. Known
applications (appearing to be of mostly academic nature) using
Jif as verification method are:

e (Civitas: a secure voting system
e JPmail: an email client with information-flow control
e Fabric, SIF and Swift: being web applications.

In this paper, DLM is adapted to the programming language
C for extending the field of use to high-assurance embedded
systems. In[16] Nielson et al. present their research work
on the application of DLM and propose improvements to
the model that have been identified as useful during the
application activities. Both research groups, Nielson’s one and
the author’s one, have been in close exchange in the recent
years, particularly discussing the application of DLM to C and
discovering related use cases.

Greve proposed in[17] the Data Flow Logic (DFL). This
C language extension augments source code and adds security
domains to variables. Furthermore, flow contracts between
domains can be formulated. These annotations describe an
information flow policy, which can be analyzed by a DFL
prover. DFL has been used to annotate the source code of a
Xen-based Separation Kernel [18]. Compared to this approach
of using mandatory access control, we used a decentralized
approach for assuring correct information flow in this paper.
The decentralized approach introduces a mutual distrust among
data owners, all having an equal security level. Hence, DLM
avoids the automatically given hierarchy of the approaches of
mandatory access control usually relying on at least one super
user.

Khedker et al. published a book [19] on several theoretical
and practical aspects of data flow analysis. However, Khedker
does not mention DLM as technology. Hence, the DLM
research extends his valuable contributions.

III. DECENTRALIZED LABEL MODEL (DLM)
A. General Model

The DLM [9] is a language-based technology allowing to
prove correct information flows within a program. The model
uses principals to express flow policies. By default a mutual
distrust is present between all defined principals. Principals
can delegate their authority to other principals and, hence, can
issue a trust relation. In DLM, principals own data. On this data
they define read (confidentiality) and write (integrity) policies
for other principals in order to grant access to it. Confidential-
ity policies are expressed by owners—->readers. Integrity
policies use the syntax: owners<-writers. The union of
owners and readers or writers respectively defines the effective
set of readers or writers of a data item. DLM offers two special
principals:

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

1) Top Principal *: As owner representing the set of all
principals; as reader or writer representing the empty set
of principals, i.e. effectively no other principal except the
involved owners of this policy

2) Bottom Principal _: As owner representing the empty set
of principals; as reader or writer representing the set of
all principals.

Additional information on this are provided in [20]. In
practice, DLM policies are expressed by labels that annotate
variables in the source code. An example is:

int {Alice—>Bob; Alice<—_} x;
int {x—>_; x<—x} y;
Listing 1. Declaration of a DLM-annotated
Variable

This presents a label definition using curly braces as roken.
The remainder will use the compiler technology-based term
token and the DLM-based term annotation as synonyms. In
the example of Listing 1, the principal Alice owns the data
stored in the integer variable x for both the confidentiality
and integrity policy. The first part of the label A1ice->Bob
expresses the confidentiality or readers policies. In this exam-
ple, the owner Alice allows Bob to read the data. The second
part of the label A11ice<—_ defines that Alice allows all other
principals write access to the variable x. For the declaration of
v, the reader policy expresses that all principals believe that
all principals can read the data and the writer policy expresses
that all principals believe that no principal has modified the
data. Overall, this variable has low flow restrictions.

In DLM, one may also form a conjunction of princi-
pals, like A1ice&Bob—>Chuck. This confidentiality policy
is equivalent to Alice—->Chuck; Bob—>Chuck and means
that both, the beliefs of Alice and Bob, have to be fulfilled [21].

B. Information Flow Control

Using these augmentations on a piece of source code,
a static checking tool is able to prove whether all beliefs
expressed by labels are fulfilled. A correct information flow
is allowed if data flows from a source to an at least equally
restricted destination. In contrast, an invalid flow is detected if
data flows from a source to a destination that is less restricted
than the source. A destination is at least as restricted as the
source if:

e the confidentiality policy keeps or increases the set of
owners and/or keeps or decreases the set of readers, and

e the integrity policy keeps or decreases the set of owners
and/or keeps or increases the set of writers

Listing 2 shows an example of a valid direct information
flow from the source variable z to the destination y. Apart from
these direct assignments, DLM is also able to detect invalid
implicit flows. The example in Listing 3 causes an influence on
variable x if the condition y == 0 is true. Hence, depending
on the value of y the data in variable z gets modified, i.e., by
observing the status of z it is possible to retrieve the value of
y. However, y is more restrictive than z, i.e., z is not allowed
by the defined policy to observe the value of y. Thus, the flow
in Listing 3 is invalid.

370

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

int {Alice—Bob; Alice<—_} x = 1;
int {Alice&Bob—>%; Alice<—_} y = 0;

y = X3
Listing 2. Valid Direct Information Flow

int {Alice—>Bob; Alice<—_} x

= 1’
int {Alice&Bob—>x; Alice<—_} y =

0;
if(y == 0)
x = 0;

Listing 3. Invalid Implicit Information Flow

To analyze those implicit flows, DLM also examines each
instruction against the current label of the Program Counter
(PC). Using Jif as template, the PC represents the current
context in the program and not the actual program counter
register [22]. A statement is only valid if the PC is no more
restrictive than the involved variables of the statement. The PC
label is calculated for each program block and re-calculated at
its entrance depending on the condition the block has been
entered.

IV. DECENTRALIZED LABEL MODEL (DLM) FOR C
LANGUAGE (CIF)

A. Extending the C Language with DLM Annotations

1) Type Checking Tool: The first step of our work was to
define C annotations in order to apply DLM to this language.
An annotated C program shall act as input for the DLM
checker, in the following called C Information Flow (Cif).
Cif analyzes the program according to the defined information
flow policy. Depending on the syntax of the annotations, the
resulting C code can no longer be used as input for usual C
compilers, such as the gcc. To still be able to compile the
program, three major possibilities for implementing the Cif
are available:

1) a Cif checking tool that translates the annotated input
source code into valid C code by removing all labels

2) a DLM extension to available compilers, such as gcc

3) embedding labels into compiler-transparent comments
using /* label */

We decided for Option 1. We did not consider Option 2 to
avoid necessary coding efforts for modifying and maintaining
a special C compiler. We also did not take Option 3, due to the
higher error-proneness resulting from the fact that our checker,
additionally, had to decide whether a comment’s content is a
label or a comment. If a developer does not comply with the
recognition syntax for labels, the checker could interpret actual
labels as comments and omit their analysis. In worst-case the
checker indicates that a program’s information flow is correct
without verification of labels. Hence, it would introduce the
risk of false-positives.

For being able to analyze the C source code statically, the
first step in the tool chain is to resolve all macro definitions and
to include the header files into one file. Fortunately, this step
can be performed by using the gcc, since the compiler does not
perform a syntax verification during the macro replacement.
The resulting file then is used as input for our Cif checking
tool. If Cif does not report any information flow violation, the
tool will create a C-compliant source code by removing all

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

annotations. This plain C source file can be used as input file
for further source code verifications, e.g., by Astrée [7], or as
input for the compilation of the final binary.

2) Syntax Extension of C Language: For the format and
semantics of annotations, we decided to adapt the concepts of
Java Information Flow (Jif) [22], the DLM implementation for
Java. We use curly braces as token for the labels. For variable
declarations, these labels have to be placed in between the
type indicator and the name of the variable (cf.Listing 1).
Compared to the reference implementation of Jif, in Cif we
additionally had to deal with pointers of the C language. We
annotate and handle pointers the same way as usual variables,
i.e. when using a pointer to reference to an array element or
other values, the labels of pointer and target variable have
to match accordingly to DLM. However, pointer overflows
reasoned by pointer calculations are not further monitored by
Cif. We expect that such coding errors can be covered by
additional tools, such as Astrée[7]. This tool is already used
successfully for checking code of avionic equipment.

In addition to the new label tokens, we extended the syntax
of the C language with five further tokens:

principal p1, ..., pn: This token announces all used principals
to the Cif.

actsFor(p, ¢): This token statically creates a trust relation that
principal p is allowed to act for principal ¢ in the entire
source code.

declassify(variable, {label}): This token allows to loosen a
confidentiality policy in order to relabel variables if re-
quired. Cif checks whether the new confidentiality policy
is less restrictive than the present one.

endorse(variable, {label}): This token allows to loosen an in-
tegrity policy in order to relabel variables if required. Cif
checks whether the new integrity policy is less restrictive
than the present one.

PC_bypass({label}): This token allows to relabel the PC label
without further checks of correct usage.

3) Function Declaration: In the C language functions
can have a separate declaration called prototype. For the
declaration of functions and prototypes, we also adapted the
already developed concepts from Jif. In Jif a method (the
representation for a function in object-oriented languages) has
four labels:

1) Begin Label defines the side effects of the function like
access to global variables. The begin label is the initial
PC label for the function’s body. From a function caller’s
perspective the current caller’s PC label needs to be no
more restrictive than the begin label of the called function.

2) Parameter Labels define for each parameter the corre-
sponding label. From a caller’s perspective these param-
eter labels have to match with the assigned values.

3) Return Label defines the label of the return value of the
function. In Cif a function that returns void cannot have a
return label. From a caller’s perspective the variable that
receives the returned value needs to be at least equally
restrictive as the return label.

4) End Label defines a label for the caller’s observation how
the function terminates. Since C does not throw excep-
tions and functions return equally every time, we omitted
verifications of end labels in our Cif implementation.

371

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

48 48 {77 main () T
> —> —> | 1 ! |
Left-hand Right-hand |] [!
. Bypass/ side variable
. Operation/ : . h : Block/Compound
Variable Assignment DE:Ida::slfey/ incl. line number (#x) Function incl. start line (#x)

Figure 1. Legend for Flow Graphs

return label

—_——
int {Alice—>Bob} func {param} (int {Alice—>%} param)

polymorph begin label

parameter label end label

—_—~— —_—~
{Alice —>x};

Listing 4. Definition of a function with DLM annotations in Cif.

Listing 4 shows the syntax for defining a function prototype
with label annotations in Cif.

The definition of function labels regarding their optional
prototype labels needs to be at least as restrictive, i.e. Cif
allows functions to be more restrictive than their prototypes.
All labels are optional augmentation to the C syntax. If the de-
veloper does not insert a label, Cif will use meaningful default
labels that basically define the missing label most restrictively.
Additionally, we implemented pseudo-polymorphism, i.e. it
is possible to inherit the real label of a caller’s parameter
value to the begin label, return label or other parameter labels
of the function. This feature is useful for the annotation of
system library functions, such as memcpy(...) that are used
by callers with divergent parameter labels and can have side
effects on global variables. At this stage Cif does not support
full polymorphism, i.e. the inheritance of parameter labels to
variable declarations inside the function’s body.

V. USE CASES

This section demonstrates the power of Cif by showing
some real-world code snippets. For all examples Cif verifies
the information flow modeled with the code annotations. If the
information flow is valid according to the defined policy, Cif
will output an unlabeled version of the C source code and a
graphical representation of the flows in the source code. The
format of this graphical representation is “graphml”, hence,
capable to further parsing and easy to import into other tools
as well as documentation. Figure 1 shows the used symbols and
their interpretations in these graphs. In general, the # symbol
shows the line of the command’s or flow’s implementation in
the source code.

A. Direct Assignment

The first use case presented in Listing 5 is a sequence of
normal assignments.

principal Alice, Bob, Chuck;

void main {_—>_;x<—x} ()

int {Alice—>Bob} y;

1
2
3
4
5 int {Alice—>Bob, Chuck} x = 0;
6
7 int {Alice —>x} z;

8

9 y = X;
10 Z =1y,
11 z = X;
12 }

Listing 5. Sequence of Valid Direct Flows

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

In this example z is the least restrictive variable, y the second
most restrictive variable and z the most restrictive variable.
Thus, flows from * — y, y — 2z and * — z are valid. Cif
verifies this source code successfully and create the graphical
flow representation depicted in Figure 2.

(T T T Assignment)

Figure 2. Flow Graph for Listing 5

B. Indirect Assignment

Listing 6 shows an example of invalid indirect information
flow. Cif reports an information flow violation, since all flows
in the compound environment of the true if statement need to
be at least as restrictive as the label of the decision variable
z. However, x and y are less restrictive and, hence, a flow to
z in the assignment is not allow. Additionally, this example
shows how Cif can detect coding mistakes. It is obvious that
the programmer wants to prove that y is not equal to 0 to
avoid the Divide-by-Zero fault. However, the programmer puts
the wrong variable in the if statement. Listing 7 corrects
this coding mistake. For this source code, Cif verifies that
the information flow is correct. Additionally, it generates the
graphical output shown in Figure 3.

principal Alice, Bob;

void main {_—>_;x<—x} ()

1

2

3

4

5 int {Alice—Bob} x, y;
6 int {Alice—>%} z = 0;
7

8

if(z !'= 0) {
9 x =x/y;
10 }
11 Z = X;
12 }

Listing 6. Invalid Indirect Flow

372

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1 principal Alice, Bob;
2
3 void main {_—_;x<—x} ()
4
5 int {Alice—>Bob} x, y;
6 int {Alice—>x} z = 0;
b
8 if(y '= 0) {
9 Xx =x/y;
10 }
11 Z = X;
12 }
Listing 7. Valid Indirect Flow
- Devidel

main ()}

Figure 3. Flow Graph for Listing 7

Remarkable in Figure 3 is the assignment operation in line 9,
represented inside the block environment of the if statement
but depending on variables outside the block. Hence, Cif
parses the code correctly. Also note, that in the graphical
representation z depends on input of z and y, even if the
source code only assigns x to z in line 11. This relation is also
depicted correctly, due to the operation in line 9, on which y
influences x and, thus, also z indirectly.

Another valid indirect flow is shown in Listing 8. In-
teresting on this example is the proper representation of
the graphical output in Figure 4. This output visualizes the
influence of z on the operation in the positive ¢ f environment,
even if z is not directly involved in the operation.

1 principal Alice, Bob;

2

3 void main {_—_;x<—x} ()

4

5 int {Alice—>Bob} x, y, z;
6

7 if(z 1= 0) {

8 X =X +Y;

9 1}

10 }

Listing 8. Valid Indirect Flow

C. Function Calls

A more sophisticated example is the execution of func-
tions. Listing 9 shows a common function call using pseudo-
polymorph DLM annotations. The function is called two times
with different parameters on line 14 and line 15. The graphical
representation of this flow in Figure 5 identifies the two
independent function calls by the different lines of the code in
which the function and operation is placed.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

__ N

(Divide:

(T T a)

Figure 4. Flow Graph for Listing 8

1 principal Alice, Bob;
2

3 float {a} func (int {Alice—>Bob} a,
float {a} b)

return a + b;

int {*—>x} main {_—>_} ()

10 int {Alice—Bob} y;
11 float {Alice—>Bob} x;
12 float {Alice —>x} z;

13

14 x = func(y,x);
15 z = func(y,0);
16

17 return 0;

18 }

Listing 9. Valid Function Calls

Figure 5. Flow Graph for Listing 9

D. Declassify, Endorse and Bypassing the PC

1) Using Declassify and Endorse: Strictly using DLM
forces the developer to model information flows from a low
restrictive source to more restrictive destinations. This unavoid-
ably runs into the situation that information will be stored in
the most restrictive variable and is not allowed to flow to some
lower restricted destinations. Hence, sometimes developers
need to manually declassify (for confidentiality) or endorse

373

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(for integrity) variables in order to make them usable for some
other parts of the program. These intended breaches in the
information flow policy need special care in code reviews and,
hence, it is desirable that our Cif allows the identification
of such sections in an analyzable way. Listing 10 provides
an example using both, the endorse and declassify statement.
To allow an assignment of a to b in line 9 an endorsement
of the information stored in a is necessary. The destination
of this flow b is less restrictive in its integrity policy than
a, since Alice believes that Bob is not allowed to modify
b anymore. In line 10, we perform a similar operation with
the confidentiality policy. The destination c is less restrictive
than b, since Alice believes for b that Bob cannot read the
information, while Bob can read c.

The graphical output in Figure 6 depicts both statements
correctly, and marks them with a special shape and color in
order to attract attention to these elements.

1 principal Alice, Bob;
2
3 void main {_—>_;x<—x} ()
4
5 int {Alice —>x; Alice<—Bob} a;
6 int {Alice —>x%; Alice<—%} b;
7 int {Alice—>Bob; Alice<—x*} c;
8
9 b = endorse(a, {Alice —>x;
Alice <—%});
10 ¢ = declassify (b, {Alice—Bob;
Alice <—%});
1}
Listing 10. Endorse and Declassify
(T T T T T T T T T T T T T T T T declassify_endorsel
T T T T T T T T main ()}
I

Figure 6. Flow Graph for Listing 10

2) Bypassing the PC label: In example of Listing 11 we
use a simple login function to prove a user-provided ulD
and pass against the stored login credentials. If the userID
and the password match, a global variable loggedIn shall
be set to 1 to identify other parts of the application that
the user is logged in. This status variable is owned by the
principal System and only this principal is allowed to read
the variable. The input variables uI/D and pass are both
owned by the principal User. The interesting lines of this
example are lines 16—18, i.e., the conditional block that checks
whether the provided credentials are correct and change the
status variable loggedIn. Note, that this examples also presents
Cif’s treatment of pointers on the strcmp function. Due to
the variables in the if statement, the PC label inside the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

following block is System-> & User->. However, this PC
is not more restrictive than the label of loggedIn labeled
with System—>. Hence, Cif would report an invalid indirect
information flow on this line. To finally allow this actual
violation of the information flow, the programmer needs to
manually downgrade or bypass the PC label as shown in
line 17. In order to identify such manual modifications of
the information flow policy, Cif also adds this information in
the generated graphical representation by using a red triangle
indicating the warning (see Figure 7). This shall enable code
reviewers to identify the critical sections of the code to perform
their (manual) review on these sections intensively.

principal User, System;

1
2
3 int {System—>x} loggedIn = 0;
4
5 int {x—>x} strecmp {x—>x}

(const char {x—>x} xstrl,
const char {*—>x} xstr2)

6

7 for (; *strl==xstr2 && *strl; strl++,
str2 ++) ;

8 return *xstrl — xstr2;

9 }

10

11 void checkUser {System—>x}
(const int {User—>x} ulD,
const char {User—>%} % const pass)

12 {

13 const int {System—>x} regUID = 1;

14 const char {System—>x} const
regPass[] = 77;

15

16 if (regUID == ulD &&
I'strcmp (regPass, pass)) {

17 PC_bypass ({System —>%});
18 loggedIn = 1;

19

20 }

Listing 11. Login Function

#18

Ty Y [stemp()

loggedin

Figure 7. Flow Graph for Listing 11

374

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

VI. CONCLUSION

In this paper we presented C Information Flow (Cif), a
static verification tool to check information flows modeled
directly in C source code. Cif is an implementation of the
Decentralized Label Model (DLM) [9] for the programming
language C. To the best of our knowledge this is the first time
DLM is applied to the C language. During the application of
DLM to C, we tried to stick to the reference implementation
of Java/Jif. However, we had to discuss and solve some
language-specific issues, such as pointer arithmetic or the
absence of exceptions. Additionally, we added the possibility
of defining annotations to function prototypes only, in case a
library’s source code is not available for public access. We
then also introduced rules for differing annotations of function
prototypes compared to function implementations.

In various code snippets, we discussed information flows
as they appear commonly in C implementations. Cif is able
to verify all of these examples successfully. In case of valid
information flows through the entire source code, Cif generates
a graphical representation of the occuring flows and dependen-
cies. This covers direct assignments of variables, logical and
arithmetic operations, indirect dependencies due to decision
branches and function calls. DLM also introduces operations
to intentionally loosen the strict flow provided by the model.
These methods are called endorsement and declassification.
Cif also implements these possibilities and specially marks
them inside the graphical representation. Since DLM-annotated
source code shall reduce the efforts of manual code reviews,
these graphical indications allow to identify critical parts
of the source code. Such parts usually require then special
investigation during code reviews.

We also used Cif to implement and verify a larger inter-
nal demonstrator project. For high assurance and verification
reasons, the demonstrator uses a loosely coupled software
design (inspired by [5]) composed of several components with
local, analyzable security services working together to pro-
vide the software’s services. The information flow modeling
using annotations helped us to concentrate the implementation
on the component’s functional purposes only. Furthermore,
the information flow evaluation of the component identified
several issues in the source code and, finally, could increase
the code quality significantly. Particularly, the visualization
of indirect flows, e.g., Listing 7 or Listing 8, and function
calls, e.g.,Listing 9, was very useful during the evaluation.
Additionally, this activity showed that Cif is able to cover
larger projects, too.

Finally, Cif allows to verify information flows in appli-
cation implementations with a high level of assurance. This
pioneers to create sufficient evidence for security evaluation
on high assurance levels, e.g. EAL7 of the Common Ceriteria.

ACKNOWLEDGMENT

This work was supported by the ARTEMIiS Project
SeSaMo, the European Union’s 7th Framework Programme
project EURO-MILS (ID: ICT-318353), the German BMBF
project SiIBASE (ID: 01IS13020) and the project EMC2 (grant
agreement No 621429, Austrian Research Promotion Agency
(FFG) project No 84256,8 and German BMBF project ID
01IS14002). We want to express our gratitude to our project
partner at the Danish Technical University, in particular Flem-
ming Nielson. We also thank Kawthar Balti for her input.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

(1]

(2]

(3]

(4]

[5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

EUROCAE/RTCA, “ED-12C/DO-178C: Software Considerations in
Airborne Systems and Equipment Certification,” European Organisa-
tion for Civil Aviation Equipment / Radio Technical Commission for
Aeronautics, Tech. Rep., 2012.

, “ED-80/D0-254, Design Assurance Guidance for Airborne Elec-
tronic Hardware,” European Organisation for Civil Aviation Equipment
/ Radio Technical Commission for Aeronautics, Tech. Rep., 2000.

H. Butz, “The Airbus Approach to Open Integrated Modular Avionics
(IMA): Technology, Methods, Processes and Future Road Map,” Ham-
burg, Germany, March 2007.

J. Rushby, “Separation and Integration in MILS (The MILS Constitu-
tion),” SRI International, Tech. Rep. SRI-CSL-08-XX, Feb. 2008.

K. Miiller, M. Paulitsch, S. Tverdyshev, and H. Blasum, “MILS-Related
Information Flow Control in the Avionic Domain: A View on Security-
Enhancing Software Architectures,” in Proc. of the 42™% International
Conference on Dependable Systems and Networks Workshops (DSN-W).
Boston, MA, USA: IEEE, Jun. 2012, pp. 1-6.

K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A
Practical Tutorial on Modified Condition/Decision Coverage,” NASA,
Tech. Rep. May, 2001.

D. Kistner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret,
A. Miné, X. Rival, L. Mauborgne, A. Angewandte, I. Gmbh, S. Park,
and D. Saarbriicken, “Astrée: Proving the Absence of Runtime Errors,”
in Proc. of the Embedded Real Time Software and Systems (ERTS2’10),
Toulouse, France, 2010, pp. 1-9.

J. C. King, “Symbolic Execution and Program Testing,” Communica-
tions of the ACM, vol. 19, no. 7, pp. 385-394, Jul. 1976.

A. C. Myers and B. Liskov, “A Decentralized Model for Information
Flow Control,” in Proc. of the 16t" ACM symposium on Operating
systems principles (SOSP’97). Saint-Malo, France: ACM, 1997, pp.
129-142.

A. C. Myers, “JFlow: Practical Mostly-Static Information Flow Con-
trol,” in Proc. of the 26" ACM Symposium on Principles of Program-
ming Languages (POPL’99). ACM, Jan. 1999, pp. 228-241.

Common Criteria, “Common Criteria for Information Technology Se-
curity Evaluation - Part 1: Introduction and general model,” 2009.

——, “Common Ceriteria for Information Technology Security Evalua-
tion - Part 2: Security functional components,” 2009.

——, “Common Ceriteria for Information Technology Security Evalua-
tion - Part 3: Security assurance components,” 2009.

EASA, “Notification of a Proposal to Issue a Certification Memoran-
dum: Software Aspects of Certification,” EASA, Tech. Rep., Feb. 2011.

A. Sabelfeld and A. C. Myers, “Language-Based Information-Flow
Security,” IEEE Journal on Selected Areas in Communications, vol. 21,
pp- 5 — 19, Jan. 2003.

H. R. Nielson, F. Nielson, and X. Li, “Disjunctive Information Flow,”
DTU Compute, Technical University of Denmark, Denmark, 2014.

D. Greve, “Data Flow Logic: Analyzing Information Flow Properties
of C Programs,” in Proc. of the 5th Layered Assurance Workshop
(LAW’11). Orlando, Florida, USA: Rockwell Collins, Research
sponsored by Space and Naval Warfare Systems Command Contract
N65236-08-D-6805, Dec. 2011.

D. Greve and S. Vanderleest, “Data Flow Analysis of a Xen-based
Separation Kernel,” in Proc. of the 7th Layered Assurance Workshop
(LAW’13). New Orleans, Louisiana, USA: Rockwell Collins, Research
sponsored by Space and Naval Warfare Systems Command Contract
N66001-12-C-5221, Dec. 2013.

U. P. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory
and Practice. CRC Press, 2009.

S. Chong and A. C. Myers, “Decentralized Robustness,” in Proc. of
the 19" IEEE Computer Security Foundations Workshop (CSFW’06).
Washington, D.C, USA: IEEE, Jul. 2006, pp. 242-253.

L. Zheng and A. C. Myers, “End-to-End Availability Policies and Non-
interference,” in Proc. of the 18" IEEE Computer Security Foundations
Workshop (CSFW’05). 1EEE, Jun. 2005, pp. 272-286.

S. Chong, A. C. Myers, K. Vikram, and L. Zheng, Jif Reference Man-
ual, http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html, Feb 2009,
jif Version: 3.3.1; [retrieved: Sept, 2015].

375

