
Model Transformation Applications from Requirements Engineering Perspective

Sobhan Yassipour Tehrani, Kevin Lano
Department of Informatics, King’s College London, London WC2R 2LS, U.K.

E-mail: {sobhan.yassipour tehrani,kevin.lano}@kcl.ac.uk

Abstract—Requirements Engineering (RE) is an essential pro-
cess in the development of effective software systems, and it
is the basis for subsequent development processes. At present,
the focus of Model Transformation (MT) is mainly on the
specification and implementation stages. Transformations are not
using engineering principles, which may not be an issue within
a small project, but it will be problematic in large scale industry
projects. One of the main reasons that hinders a systematic
RE process to be used before starting the development could
be the false assumption that it is a waste of time/cost and
would delay the implementation. The goal of this paper is to
evaluate model transformation technology from a requirements
engineering process point of view. We identify techniques for the
RE of MT, taking into account specific characteristics of different
categories of model transformations.

Keywords- model transformations; requirements engineer-
ing; requirements engineering framework.

I. INTRODUCTION

Requirements engineering has been a relatively neglected
aspect of model transformation development because the em-
phasis in transformation development has been upon specifi-
cations and implementations. The failure to explicitly identify
requirements may result in developed transformations, which
do not satisfy the needs of the users of the transformation.
Problems may arise because implicitly-assumed requirements
have not been explicitly stated; for instance, that a migration
or refactoring transformation should preserve the semantics of
its source model in the target model, or that a transformation
is only required to operate on a restricted range of input
models. Without thorough requirements elicitation, important
requirements may be omitted from consideration, resulting in
a developed transformation which fails to achieve its intended
purpose.

We use the RE process model proposed by Kotonya and
Sommerville [1] and adapt it according to our specific needs.
This process model is widely accepted by researchers and
professional experts. The following are the most important
phases of RE, which have to be applied: domain analysis and
requirements elicitation, evaluation and negotiation, specifica-
tion and documentation, validation and verification.

In this paper we focus on the specification stage, which
makes precise the informal requirements agreed with the
stakeholders of the proposed development. By providing a
comprehensive catalogue of model requirement types, this
paper can help transformation developers to ensure that all
requirements of a transformation are explicitly considered.

Section 3 gives a background on requirements engineering
for model transformations as well as transformation semantics
and its nature. We also identify how formalised requirements

can be validated and can be used to guide the selection of
design patterns for the development of the transformation. In
Section 4 we examine some published requirements statements
of model transformation to identify their gaps and subsequent
consequences on the quality of the solutions. In Section 5
we give a case study to illustrate the benefits of systematic
requirements engineering for model transformations.

II. STATE OF THE ART

As Selic [2] argues, “we are far from making the writing of
model transformations an established and repeatable technical
task”. The software engineering of model transformations has
only recently been considered in a systematic way, and most
of this work [3][4][5] is focussed upon design and verification
rather than upon requirements engineering. The work on
requirements engineering in transML [3] is focussed upon
functional requirements, and the use of abstract syntax rules
to express them. Here, we consider a full range of functional
and non-functional requirements and we use concrete syntax
rules for the initial expression of functional requirements.

In order to trace the requirements into subsequent steps,
transML defines a modelling language, which represents the
requirements in the form of Systems Modeling Language
(SysML) [6] diagrams. This would allows the transformer(s)
to link requirements of a model transformation to its corre-
sponding analysis and design models, code and other artifacts.
Having a connection amongst different artifacts in the model
transformation development process enables the transformer(s)
to check the correctness and completeness of all requirements
[7]. At present, transformations are not using engineering prin-
ciples which may not be an issue within a small project, but it
will be problematic in large scale industry projects. Jumping
straight to an implementation language might be possible for
simple transformations, however it would be problematic for
large ones. Transformations should be constructed by applying
engineering principles especially if they are to be used in an
industry. Therefore, the development of the transformation’s
life-cycle should include other phases in addition to coding
and testing, namely, requirements engineering process [3].

In this paper, we describe a requirements engineering pro-
cess for transformations based on adaptions of the RE process
model, and specialisations of RE techniques for transforma-
tions.

III. REQUIREMENTS FOR MODEL TRANSFORMATIONS

Requirements for a software product are generally divided
into two main categories: functional requirements, which iden-
tify what functional capabilities the system should provide,

313Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

and non-functional requirements, which identify quality char-
acteristics expected from the developed system and restrictions
upon the development process itself.

The functional requirements of a model transformation τ :S
→T, which maps models of a source language S to a target
language T are defined in terms of the effect of τ on model
m of S, and the relationship of the resulting model n of
T to m. It is a characteristic of model transformations that
such functional requirements are usually decomposed into a
set of mapping requirements for different cases of structures
and elements within S. In addition, assumptions about the
input model should be identified as part of the functional
requirements.

It can be observed in many published examples of model
transformations that the initial descriptions of their intended
functional behaviour is in terms of a concrete syntax for the
source and target languages, which they operate upon. For
instance in [8], the three key effects of the transformation
are expressed in terms of rewritings of Unified Modeling
Language (UML) class diagrams. In [9], the transformation
effects are expressed by parallel rewritings of Petri Nets and
statecharts. In general, specification of the intended func-
tionality of the transformation in terms of concrete syntax
rules is more natural and comprehensible for the stakeholders
than is specification in terms of abstract syntax. However,
this form of description has the disadvantage that it may be
imprecise; there may be significant details of models, which
have no representation in the concrete syntax, or there may be
ambiguities in the concrete syntax representation. Therefore,
conversion of the concrete syntax rules into precise abstract
syntax rules is a necessary step as part of the formalisation of
the requirements.

Requirements may be functional or non-functional (e.g.,
concerned with the size of generated models, transformation
efficiency or confluence). Another distinction, which is useful
for transformations is between local and global requirements:

• Local requirements are concerned with localised parts of
one or more models. Mapping requirements define when
and how a part of one model should be mapped onto a
part of another. Rewriting requirements dictate when and
how a part of a model should be refactored/transformed
in-place.

• Global requirements identify properties of an entire
model. For example that some global measure of com-
plexity or redundancy is decreased by a refactoring trans-
formation. Invariants, assumptions and postconditions of
a transformation usually apply at the entire model level.

Figure 1 shows a taxonomy of functional requirements for
model transformations based on our experience of transforma-
tion requirements.

We have also created a taxonomy of the non-functional
requirements that one has to consider during the RE process.
Figure 2 shows a general decomposition of non-functional
requirements for model transformations. The quality of service
categories correspond closely to the software quality charac-

Figure. 1. A taxonomy of functional requirements

teristics identified by the IEC 25010 software quality standard
[10].

Figure. 2. A taxonomy of non-functional requirements for MT

Non-functional requirements for model transformations
could be further detailed. For instance, regarding the perfor-
mance requirements, boundaries (upper/lower) could be set
on execution time, memory usage for models of a given size,
and the maximum capability of the transformation (the largest
model it can process within a given time). Restrictions can also
be placed upon the rate of growth of execution time with input
model size (for example, that this should be linear). Taxono-
mizing the requirements according to their type not only would
make it clearer to understand what the requirements refer to,
but also by having this type of distinction among them will
allow for a more semantic characterization of requirements.

Maturity and fault tolerance are a subset of reliability re-
quirements for a transformation. Depending on its history and
to the extent to which a transformation has been used, maturity
requirements could be measured. Fault tolerance requirements
can be quantified in terms of the proportion of execution
errors, which are successfully caught by an exception handling
mechanism, and in terms of the ability of the transformation
to detect and reject invalid input models.

As depicted in the above figure, the accuracy characteristic
includes two sub-characteristics: correctness and complete-
ness. Correctness requirements can be further divided into the
following forms [11]:
• Syntactic correctness: a transformation τ is syntactically

correct when a valid input model m from source language
S is transformed to target language T, then (if it termi-
nates) it produces a valid result, in terms of conformation
to the T’s language constraints.

• Termination: a transformation τ will always terminate if
applied to a valid S model.

• Confluence: all result models produced by transformation
τ from a single source model are isomorphic.

• Model-level semantic preservation: a transformation τ
is preserved model-level semantically, if m and n have
equivalent semantics under semantics-assigning maps
SemS on models of S and SemT on models of T.

314Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

• Invariance: some properties Inv should be preserved as
true during the entire execution of transformation τ [11].

An additional accuracy property that can be considered is
the existence of invertibility in a transformation σ : T → S
which inverts the effect of τ . Given a model n derived from
m by τ , σ applied to n produces a model m′ of S isomorphic
to m. A related property is change propagation which means
that small changes to a source model can be propagated to the
target model without re-executing the transformation. A further
property of verifiability is important for transformations which
is part of a business-critical or safety-critical process. This
property identifies how effectively a transformation can be
verified. Size, complexity, abstraction level and modularity are
contributory factors to this property. The traceability property
is the requirement that an explicit trace between mapped
target model elements and their corresponding source model
elements should be maintained by the transformation, and be
available at its termination. Under interface are requirements
categories of User interaction (subdivided into usability and
convenience) and software interoperability. Usability require-
ments can be decomposed into aspects, such as understand-
ability, learnability and attractiveness [12]. Software interop-
erability can be decomposed into interoperability capabilities
of the system with each intended environment and software
system, with which it is expected to operate.

Based on [12], we define suitability as the capability of
a transformation approach to provide an appropriate means
to express the functionality of a transformation problem at an
appropriate level of abstraction, and to solve the transformation
problem effectively and with acceptable use of resources
(developer time, computational resources, etc.). In [8] we
identified the following subcharacteristics for the suitability
quality characteristic of model transformation specifications:
abstraction level, size, complexity, effectiveness and develop-
ment effort.

Requirements of single transformations can be documented
using the SysML notation adopted in [3], but with a wider
range of requirement types represented. Use case diagrams
can be used to describe the requirements of a system of
transformations. Each use case represents an individual trans-
formation which may be available as a service for external
users, or which may be used internally within the system as
a subtransformation of other transformations.

We have investigated a specific functional requirements
taxonomy according to the characteristic of model transforma-
tions (Table I). All types of functional requirements for model
transformations including: mapping, assumptions and post-
conditions requirements could be formalized as predicates or
diagrams at the concrete and abstract syntax levels. Concrete
syntax is often used at the early stages (RE stages) in the
development cycle in order to validate the requirements by
stakeholders since the concrete syntax level is more conve-
nient, whereas abstract syntax rule, is often used in the im-
plementation phase for developers. However, there should be
a direct correspondence between the concrete syntax elements

TABLE I. TRANSFORMATION REQUIREMENTS CATALOGUE

Refactoring Refinement Migration
Local
Functional

Rewrites/
Refactorings

Mappings Mappings

Local Non-
functional

Completeness(all
cases considered)

Completeness (all
source entities,
features considered)

Completeness
(all source
entities,
features
considered)

Global
Functional

Improvement in
quality measure(s),
Invariance of
language
constraints,
Assumptions,
Postconditions

Invariance,
Assumptions,
Postconditions

Invariance,
Assump-
tions,
Postcondi-
tions

Global
Non-
functional

Termination,
Efficiency,
Modularity,
Model-level
semantic
preservation,
Confluence, Fault
tolerance, Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence, Fault
tolerance, Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence,
Fault
tolerance

in the informal/semi-formal expression of the requirements,
and the abstract syntax elements in the formalised versions.

IV. APPLICATION OF RE IN MT

In model transformation, requirements and specifications
are very similar and sometimes are considered as the same
element. Requirements determine what is needed and what
needs to be achieved while taking into account the different
stakeholders, whereas specifications define precisely what is
to be developed.

Requirements engineering for model transformations in-
volves specialised techniques and approaches because trans-
formations (i) have highly complex behaviour, involving non-
deterministic application of rules and inspection/ construction
of complex model data, (ii) are often high-integrity and
business-critical systems with strong requirements for relia-
bility and correctness.

Transformations do not usually involve much user inter-
action, but may have security requirements if they process
secure data. Correctness requirements which are specific to
transformations, due to their characteristic execution as a series
of rewrite rule applications, with the order of these applications
not algorithmically determined, are: (i) confluence (that the
output models produced by the transformation are equivalent,
regardless of the rule application orders), (ii) termination
(regardless of the execution order), (iii) to achieve specified
properties of the target model, regardless of the execution order
which is referred to as semantic correctness.

The source and target languages of a transformation may be
precisely specified by metamodels, whereas the requirements
for its processing may initially be quite unclear. For a migra-
tion transformation, analysis will be needed to identify how
elements of the source language should be mapped to elements
of the target. There may not be a clear relationship between
parts of these languages, there may be ambiguities and choices
in mapping, and there may be necessary assumptions on the

315Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

input models for a given mapping strategy to be well-defined.
The requirements engineer should identify how each entity
type and feature of the source language should be migrated.

For refactorings, the additional complications arising from
update-in-place processing need to be considered and the
application of one rule to a model may enable further rule ap-
plications which were not originally enabled. The requirements
engineer should identify all the distinct situations which need
to be processed by the transformation such as arrangements
of model elements and their inter-relationships and significant
feature values.

A. Application of RE Techniques for MT

A large number of requirements elicitation techniques have
been devised. Through the analysis of surveys and case studies,
we have identified the following adaption of RE techniques for
MT.

The following techniques are the most suitable RE tech-
niques to use during the requirements elicitation stage, which
have been adapted according to the nature of model transfor-
mation technology.

Structured interviews: in this technique the requirements
engineer asks stakeholders specific prepared questions about
the domain and the system. The requirements engineer needs
to define appropriate questions which help to identify issues
of scope and product (output model) requirements, similar
to that of unstructured interviews. This technique is relevant
to all forms of transformation problems. We have defined a
catalogue of MT requirements for refactorings, refinements
and migrations, as an aid for structured interviews, and as a
checklist to ensure that all forms of requirements appropriate
for the transformation are considered.

Rapid prototyping: in this technique a stakeholder is asked
to comment on a prototype solution. This technique is relevant
for all forms of transformation, where the transformation can
be effectively prototyped. Rules could be expressed in a con-
crete grammar form and reviewed by stakeholders, along with
visualisations of input and output models. This approach fits
well with an Agile development process for transformations.

Scenario analysis: in this approach the requirements en-
gineer formulates detailed scenarios/use cases of the system
for discussion with the stakeholders. This is highly relevant
for MT requirements elicitation. Scenarios can be defined for
different required cases of transformation processing. The sce-
narios can be used as the basis of requirements formalisation.
This technique is proposed for transformations in [3]. A risk
with scenario analysis is that this may fail to be complete and
may not cover all cases of expected transformation processing.
It is more suited to the identification of local rather than global
requirements.

Regarding the requirements evaluation and negotiation
stage, prototyping techniques are useful for evaluating require-
ments, and for identifying deficiencies and areas where the
intended behaviour is not yet understood. A goal-oriented anal-
ysis technique such as Knowledge Acquisition in automated
specification (KAOS) or SySML can be used to decompose

requirements into sub-goals. A formal modelling notation such
as Object Constraint Language (OCL) or state machines/state
charts can be used to expose the implications of requirements.
For transformations, state machines may be useful to identify
implicit orderings or conflicts of rules which arise because
the effect of one rule may enable or disable the occurrence
of another. Requirements have to be prioritized according to
their importance and the type of transformation. For instance,
in a refinement transformation, the semantics of the source and
target model have to be equivalent as the primary requirement
and to have a traceability feature as a secondary requirement.
Also, there should be no conflict among the requirements. For
instance, there is often a conflict between the time, quality
and budget of a project. The quality of the target model
should be satisfactory with respect to the performance (time,
cost and space) of the transformation. Several RE techniques
exist which could be applicable to the transformation of RE
during the requirements specification phase in which business
goals are represented in terms of functional and non-functional
requirements. In the following Table 2, requirements have been
categorised according to the type of the transformation.

TABLE II. REQUIREMENTS PRIORITY FOR DIFFERENT
TRANSFORMATIONS

Category Primary requirement Secondary
requirement

Refactoring

Model quality improvement
Model-level semantic preservation Invariance
Syntactic correctness Confluence
Termination

Migration
Syntactic correctness Invertibility
Model-level semantic preservation Confluence
Termination Traceability

Refinement

Syntactic correctness

TraceabilityModel-level semantic preservation
Confluence
Termination

Techniques for requirements specification and documenta-
tion stage include: UML and OCL, structured natural lan-
guage, and formal modelling languages. At the initial stages
of requirements elicitation and analysis, the intended effect of
a transformation is often expressed by sketches or diagrams
using the concrete grammar of the source and target languages
concerned (if such grammars exist), or by node and line
graphs if there is no concrete grammar. A benefit of concrete
grammar rules is that they are directly understandable by
stakeholders with knowledge of the source and target language
notations. They are also independent of specific MT languages
or technologies. Concrete grammar diagrams can be made
more precise during requirements formalisation, or refined
into abstract grammar rules. An informal mapping/refactoring
requirement of the form of

“For each instance e of entity type E, that satisfies
condition Cond, establish Pred ”

can be formalised as a use case postcondition such as:

316Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

E::
Cond′ ⇒ Pred′

where Cond′ formalises Cond, and Pred′ formalises Pred.
For requirements verification and validation stage, the for-

malised rules can be checked for internal correctness prop-
erties such as definedness and determinacy, which should
hold for meaningful rules. A prototype implementation can
be generated, and its behaviour on a range of input models
covering all of the scenarios considered during requirements
elicitation can be checked. When a precise expression of the
functional and non-functional requirements has been defined,
it can be validated with the stakeholders to confirm that it
does indeed accurately express the stakeholders intentions
and needs for the system. The formalised requirements of
a transformation τ : S → T can also be verified to check
that they are consistent; the functional requirements must be
mutually consistent. The assumptions and invariant of τ , and
the language constraints of S must be jointly consistent. The
invariant and postconditions of τ , and the language constraints
of T must be jointly consistent. Each mapping rule Left-Hand
Side (LHS) must be consistent with the invariant, as must each
mapping rule Right-Hand Side (RHS).

These consistency properties can be checked using tools
such as Z3 or Alloy, given suitable encodings [13], [14].
Model-level semantics preservation requirements can in some
cases be characterised by additional invariant properties which
the transformation should maintain. For each functional and
non-functional requirement, justification should be given as to
why the formalised specification satisfies these requirements.
For example, to justify termination, some variant quantity Q :
Integer could be identified which is always non-negative and
which is strictly decreased by each application of a mapping
rule [11]. Formalised requirements in temporal logic could
then be checked for particular implementations using model-
checking techniques, as in [15].

V. RE PROCESS ON REFACTORING TRANSFORMATION

Refactoring is a type of model transformation. The general
idea behind refactoring is to improve the structure of the
model to make it easier to understand, and to make it more
maintainable and amenable to change. According to Fowler,
refactoring could be defined as “changing a software system in
such a way that it does not alter the external behaviour of the
code, yet improves its internal structure” [16]. We describe an
example [17] of an in-place endogenous transformation which
refactors class diagrams to improve their quality by removing
redundant feature declarations. Figure 3 shows the metamodel
of the source/target language of this transformation.

In this section, we are going to apply RE on a refactoring
[18] transformation case study. The properties for this type
of transformation are: endogenous, model-to-model, many-to-
many (source to target model), horizontal, semantics preser-
vation, explicit control/rule application scoping, rule iteration,
traceable and that it is a unidirectional transformation. The
following general requirements for refactoring transformations
should be satisfied:

Figure. 3. Class diagram metamodel [18]

• Functionality: suitability, accuracy, interoperability, secu-
rity, functionality compliance

• Reliability: maturity, fault tolerance, recoverability, relia-
bility compliance

• Usability: understandability, learnability, operability, at-
tractiveness, usability compliance

• Efficiency: time behaviour, resource utilisation, efficiency
compliance

• Maintainability: analysability, changeability, stability,
testability, maintainability compliance

• Portability: adaptability, installability, co-existence, re-
placeability, portability compliance

1) Requirements elicitation for Refactoring: The initial
requirements statement is to refactor a UML class diagram to
remove all cases of duplicated attribute declarations in sibling
classes (classes which have a common parent). This statement
is concerned purely with functional behaviour. Through struc-
tured interviews with the customer (and with the end users
of the refactored diagrams and the development team) we
can further uncover, non-functional requirements as follows:
efficiency, the refactoring should be able to process diagrams
with 1000 classes and 10,000 attributes in a practical time (less
than 5 minutes), correctness, the start and end models should
have equivalent semantics, minimality: the number of new
classes introduced should be minimized to avoid introducing
superfluous classes into the model, confluence, would be
desirable but is not mandatory.

The functional requirements can also be clarified and more
precisely scoped by the interview process. A global functional
requirement is the invariance of the class diagram language
constraints meaning that there is no multiple inheritance,
and no concrete class with a subclass. It is not proposed to
refactor associations because of the additional complications
this would cause for the developers. Only attributes are to be
considered. Through scenario analysis using concrete grammar
sketches, the main functional requirement is decomposed into
three cases: (i) where all (two or more) direct subclasses of
one class have identical attribute declarations, (ii) where two
or more direct subclasses have identical attribute declarations,
(iii) where two or more root classes have identical attribute
declarations.

2) Evaluation and negotiation for Refactoring: At this
point we should ask whether these scenarios are complete
and if they cover all intended cases of the required refactor-

317Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

ings. Through the analysis of the possible structures of class
diagrams, and by taking into account the invariant of single
inheritance, it can be deduced that they are complete. Through
exploratory prototyping and execution on particular examples
of class diagrams, we can identify that the requirement for
minimality means that rule 1 Pull up attributes should be
prioritised over rule 2 Create subclass or 3 Create root class.
In addition, the largest set of duplicated attributes in sibling
classes should be removed.

3) Requirements formalisation for Refactoring: To for-
malise the functional requirements, we express the three
scenarios in the abstract grammar of the language. Rule1: If
the set g = c.specialisation.specific of all direct subclasses of
a class c has two or more elements, and all classes in g have
an owned attribute with the same name n and type t, add an
attribute of this name and type to c, and remove the copies
from each element of g. Rule 2: If a class c has two or more
direct subclasses g = c.specialisation.specific, and there is a
subset g1 of g, of size at least 2, all the elements of g1 have
an owned attribute with the same name n and type t, but there
are elements of g - g1 without such an attribute, introduce a
new class c1 as a subclass of c. c1 should also be set as a
direct superclass of all those classes in g which own a copy
of the cloned attribute. Add an attribute of name n and type t
to c1 and remove the copies from each of its direct subclasses.
Rule 3: If there are two or more root classes all of which have
an owned attribute with the same name n and type t, create
a new root class c. Make c the direct superclass of all root
classes with such an attribute, and add an attribute of name n
and type t to c, and remove the copies from each of the direct
subclasses.

4) Validation and verification for Refactoring: The func-
tional requirements can be checked by executing the prototype
transformation on test cases. In addition, informal reasoning
can be used to check that each rule application preserves
the invariants. For example, no rule introduces new types, or
modifies existing types, so the invariant that type names are
unique is clearly preserved by rule applications. Likewise, the
model-level semantics is also preserved. Termination follows
by establishing that each rule application decreases the number
of attributes in the diagram, i.e., Property.size. The efficiency
requirements can be verified by executing the prototype trans-
formation on realistic test cases of increasing size.

VI. CONCLUSION AND FUTURE WORK

We have identified ways in which requirements engineer-
ing can be applied systematically to model transformations.
Comprehensive catalogues of functional and non-functional
requirements categories for model transformations have been
defined. We have examined a case study which is typical of
the current state of the art in transformation development,
and identified how formal treatment of functional and non-
functional requirements can benefit such developments. In
future work, we will construct tool support for recording
and tracing transformation requirements, which will help to
ensure that developers systematically consider all necessary

requirements and that these are all formalised, validated and
verified correctly.

We are currently carrying out research into improving
the requirements engineering process in model transforma-
tion. We will investigate formal languages to express the
requirements, as formalised rules can be checked for internal
correctness properties, such as definedness and determinacy,
which should hold for meaningful rules. Temporal logic can
be used to define the specialised characteristics of particular
transformation and to define transformation requirements in a
formal but language-independent manner languages as model
transformation systems necessarily involve a notion of time.
Finally, we will be evaluating large case studies in order to
compare results with and without RE process.

REFERENCES

[1] I. Sommerville and G. Kotonya, Requirements engineering: processes
and techniques. John Wiley & Sons, Inc., 1998.

[2] B. Selic, “What will it take? a view on adoption of model-based methods
in practice,” Software & Systems Modeling, vol. 11, no. 4, 2012, pp.
513–526.

[3] E. Guerra, J. De Lara, D. S. Kolovos, R. F. Paige, and O. M. dos Santos,
“transml: A family of languages to model model transformations,” in
Model Driven Engineering Languages and Systems. Springer, 2010,
pp. 106–120.

[4] K. Lano and S. Kolahdouz-Rahimi, “Model-driven development of
model transformations,” in Theory and practice of model transforma-
tions. Springer, 2011, pp. 47–61.

[5] K. Lano and S. Rahimi, “Constraint-based specification of model trans-
formations,” Journal of Systems and Software, vol. 86, no. 2, 2013, pp.
412–436.

[6] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.

[7] T. Yue, L. C. Briand, and Y. Labiche, “A systematic review of trans-
formation approaches between user requirements and analysis models,”
Requirements Engineering, vol. 16, no. 2, 2011, pp. 75–99.

[8] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Science of Computer Programming, vol. 85, 2014, pp. 5–40.

[9] P. Van Gorp and L. M. Rose, “The petri-nets to statecharts transformation
case,” arXiv preprint arXiv:1312.0342, 2013.

[10] I. Iso, “Iec 25010: 2011,,” Systems and Software EngineeringSystems
and Software Quality Requirements and Evaluation (SQuaRE)System
and Software Quality Models, 2011.

[11] K. Lano, S. Kolahdouz-Rahimi, and T. Clark, “Comparing verification
techniques for model transformations,” in Proceedings of the Workshop
on Model-Driven Engineering, Verification and Validation. ACM, 2012,
pp. 23–28.

[12] I. O. F. S. E. Commission et al., “Software engineering–product quality–
part 1: Quality model,” ISO/IEC, vol. 9126, 2001, p. 2001.

[13] K. Anastasakis, B. Bordbar, and J. M. Küster, “Analysis of model trans-
formations via alloy,” in Proceedings of the 4th MoDeVVa workshop
Model-Driven Engineering, Verification and Validation, 2007, pp. 47–
56.

[14] L. de Moura and N. Bjørner, “Z3–a tutorial,” 2006.
[15] S. Yassipour Tehrani and K. Lano, “Temporal logic specification and

analysis for model transformations,” in Verification of Model Transfor-
mations, VOLT 2015, 2015.

[16] C. Ermel, H. Ehrig, and K. Ehrig, “Refactoring of model transforma-
tions,” Electronic Communications of the EASST, vol. 18, 2009.

[17] K. Lano and S. K. Rahimi, “Case study: Class diagram restructuring,” in
Proceedings Sixth Transformation Tool Contest, TTC 2013, Budapest,
Hungary, 19-20 June, 2013., 2013, pp. 8–15.

[18] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Science of Computer Programming, vol. 85, 2014, pp. 5–40.

318Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

