
An Automated Signature Generation Method for Zero-day Polymorphic Worms
Based on C4.5 Algorithm

Mohssen M. Z. E. Mohammed1, Eisa Aleisa2, Neco Ventura3

1,2College of Computer and Information Sciences, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
2Department of Electrical Engineering, University of Cape Town, Rondebosch, South Africa

m_zin44@hotmail.com, aleisa@ccis.imamu.edu.sa, neco@crg.ee.uct.ac.za

Abstract— Polymorphic worms are considered as the most
critical threats to the Internet security, and the difficulty lies in
changing their payloads in every infection attempt to avoid the
security systems. In this paper, we propose an accurate
signature generation system for zero-day polymorphic worms.
We have designed a novel double-honeynet system, which is
able to detect zero-day polymorphic worms that have not been
seen before. To generate signatures for polymorphic worms,
we have two steps. The first step is the polymorphic worms
sample collection, which is done by the double-honeynet
system. The second step is the signature generation for the
collected samples, which is done by a decision tree algorithm
(C4.5 algorithm). The main goal for this system is to get
accurate signatures for Zero-day polymorphic worm.

Keywords- Honeynet; Polymorphic; Worms; Machine Learning;
Algorithm.

I. INTRODUCTION

Due to the enormous threat from the worms, many
efforts have been taken previously to tackle worms by
detecting and preventing them. Later in this paper, the
relevant works are discussed. However, in this section,
internet worm defense methods and their limitations are
mentioned in brief.

One avenue to deal with worms is prevention. We
usually know that prevention is better than cure. Since
worms need to exploit software defects, by eliminating all
software defects we could eradicate worms. While
theoretically this seems to be easy, the reality finds this as
an almost impossible goal. Although significant progress
has been made on software development, testing, and
verification, empirical evidence [1][12] suggests that we are
still far from producing defect-free software.

Another avenue to solve the worm problem is
containment. Containment systems accept that software has
defects that can be exploited by worms, and they strive to
contain a worm epidemic to a small fraction of the
vulnerable machines. The main challenge in designing
containment systems is that they need to be completely
automatic, because worms can spread far faster than humans
can respond [1]. Recent works on automatic containment
[14][15] have explored network-level approaches. These
rely on heuristics to analyze network traffic and derive a
packet classifier that blocks or rate-limits forwarding of
worm packets.

It is hard to provide guarantees on the rate of false
positives and false negatives with these approaches because
there is no information about the software vulnerabilities
exploited by worms at the network level. False negatives
allow worms to escape containment, while false positives
may cause network outages by blocking normal traffic. We
believe that an automatic containment systems will not be
widely deployed unless they have a negligible false positive
rate.

It should be noted here that dealing with the prevention
mechanisms is out of the scope of this paper because our
work mainly focuses on containment mechanism of the
worms.

We use a supervised Machine Learning (ML) algorithm
[16] to generate signatures for polymorphic worms.
Supervised machine learning is the search for algorithms
that reason from externally supplied instances to produce
general hypotheses, which then make predictions about
future instances. In other words, the goal of supervised
learning is to build a concise model of the distribution of
class labels in terms of predictor features. There are several
applications for ML, the most significant of which is data
mining. People are often prone to making mistakes during
analyses or, possibly, when trying to establish relationships
between multiple features. This makes it difficult for them
to find solutions to certain problems. Machine learning can
often be successfully applied to these problems, improving
the efficiency of systems and the designs of machines.
Every instance in any dataset used by machine learning
algorithms is represented using the same set of features. The
features may be continuous, categorical or binary. If
instances are given with known labels (the corresponding
correct outputs) then the learning is called supervised [16],
in contrast to unsupervised learning [16], where instances
are unlabeled. By applying these unsupervised (clustering)
algorithms, researchers hope to discover unknown, but
useful, classes of items. Another kind of machine learning
is reinforcement learning [16]. The training information
provided to the learning system by the environment
(external trainer) is in the form of a scalar reinforcement
signal that constitutes a measure of how well the system
operates. The learner is not told which actions to take, but
rather must discover which actions yield the best reward, by
trying each action in turn [16].

This paper is organized as follows: After Section I,
Section II gives an introduction to decision tree algorithms.
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Section III discusses the related works regarding automated
signature generation systems. Section IV talks about the
preliminaries of worms and their attacks. Section V
discusses our Double-Honeynet system. Section VI
introduces the proposed C4.5 algorithm. Section VII
concludes the paper.

II. OVERVIEW FOR DECISION TREES

Decision trees classify instances by sorting them down
the tree from the root to some leaf node, where:

• Each internal node specifies a test of some
attribute.

• Each branch corresponds to a value for the tested
attribute.

• Each leaf node provides a classification for the
instance.

Figure 1 is an example of a decision tree for the training
set of Table I.

Figure 1. A decision tree.

TABLE I. TRAINING SET

at1 at2 at3 at4 Class

a1 a2 a3 a4 Yes

a1 a2 a3 b4 Yes

a1 b2 a3 a4 Yes

a1 b2 b3 b4 No

a1 c2 a3 a4 Yes

a1 c2 a3 b4 No

b1 b2 b3 b4 No

c1 b2 b3 b4 No

Decision trees classify instances by sorting them down
the tree from the root to some leaf node, which provides the
classification of the instance [3].  

Here, we give some explanation of Figure 1. The
instance 〈at1 = a1, at2 = b2, at3 = a3, at4 = b4〉 would sort
to the nodes: at1, at2, and finally at3, which would classify
the instance as being positive (represented by the values
“Yes”). The problem of constructing optimal binary
decision trees is an NP-complete problem and thus
theoreticians have searched for efficient heuristics for
constructing near-optimal decision trees.

The feature that best divides the training data would be
the root node of the tree. There are numerous methods for
finding the feature that best divides the training data, such as
information gain and gini index. While myopic measures
estimate each attribute independently, ReliefF algorithm
estimates them in the context of other attributes. However, a
majority of studies have concluded that there is no single
best method. Comparison of individual methods may still be
important when deciding which metric should be used in a
particular dataset. The same procedure is then repeated on
each partition of the divided data, creating sub-trees until
the training data is divided into subsets of the same class.

Below, we present a general pseudo-code for building
decision trees.

Check for base cases
For each attribute a
Find the feature that best
divides the training data such as
information gain from splitting on a

Let a_best be the attribute with the
highest normalized information gain

Create a decision node node that
Splits on a_best

Recurse on the sub-lists obtained by
splitting on a_best and add those
nodes as children of node

A decision tree, or any learned hypothesis h is said to
overfit training data if another hypothesis h′ exists that has
a larger error than h when tested on the training data, but a
smaller error than h, when tested on the entire dataset. There
are two common approaches that decision tree induction
algorithms can use to avoid over-fitting training data which
are [3]:

• Stop the training algorithm before it reaches a point
at which it perfectly fits the training data,

• Prune the induced decision tree. If the two trees
employ the same kind of tests and have the same prediction
accuracy, the one with fewer leaves is usually preferred.

The most straightforward way of tackling over-fitting is
to pre-prune the decision tree by not allowing it to grow to
its full size. Establishing a non-trivial termination criterion
such as a threshold test for the feature quality metric can do
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that. Decision tree classifiers usually employ post-pruning
techniques that evaluate the performance of decision trees,
as they are pruned by using a validation set. Any node can
be removed and assigned the most common class of the
training instances that are sorted to it. Elomaa [16]
concluded that there is no single best pruning method.

Even though the divide-and-conquer algorithm is quick,
efficiency can become important in tasks with hundreds of
thousands of instances. The most time consuming aspect is
sorting the instances on a numeric feature to find the best
threshold t. This can be expedited if possible thresholds for
a numeric feature are determined just once, effectively
converting the feature to discrete intervals, or if the
threshold is determined from a subset of the instances.
Elomaa and Rousu [16] stated that the use of binary
discretization with C4.5 [3] needs about the half training
time of using C4.5 multi splitting. In addition, according to
their experiments, multi-splitting of numerical features does
not carry any advantage in prediction accuracy over binary
splitting.

Decision trees use splits based on a single feature at each
internal node, so that they are usually univariate. In fact,
most decision tree algorithms cannot perform well with
problems that require diagonal partitioning. The division of
the instance space is orthogonal to the axis of one variable
and parallel to all other axes. Therefore, the resulting
regions after partitioning are all hyperrectangles. However,
there are a few methods that construct multivariate trees. S.
B. Kotsiantis [16] presented Zheng’s work, who improved
the classification accuracy of the decision trees by
constructing new binary features with logical operators such
as conjunction, negation, and disjunction. In addition,
Zheng created at-least M-of-N features. For a given
instance, the value of an at o trees. In this model, new
features are computed as linear combinations of the
previous ones.

In the fact, decision trees can be significantly more
complex representation for some concepts due to the
replication problem. A solution to this problem is using an
algorithm to implement complex features at nodes in order
to avoid replication. In [16], S. B. Kotsiantis discussed
Markovitch and Rosenstein work, and they presented the
FICUS construction algorithm, which receives the standard
input of supervised learning as well as a feature
representation specification, and uses them to produce a set
of generated features. While FICUS is similar in some
aspects to other feature construction algorithms, its main
strength is its generality and flexibility. FICUS was
designed to perform feature generation given any feature
representation specification complying with its general
purpose grammar.

III. RELATED WORKS

Honeypots are an excellent source of data for intrusion
and attack analysis. Levin et al. [4] described how Honeynet
can be used to assist the system administrator in identifying
malicious traffic on an enterprise network and how
Honeypot-extracts with details of worm can be analyzed to

generate detection signatures. The signatures are generated
manually.

One of the first systems proposed was Honeycomb
developed by Kreibich and Crowcroft [5]. Honeycomb
generates signatures from traffic observed at a Honeypot via
its implementation as a Honeyd plugin. The Longest
Common Substring (LCS) algorithm, which looks for the
longest shared byte sequences across pairs of connections, is
at the heart of Honeycomb. Honeycomb generates
signatures consisting of a single, contiguous substring of a
worm’s payload to match all worm instances. These
signatures, however, fail to match all polymorphic worm
instances with low false positives and low false negatives.

Kim and Karp [6] described the Autograph system for
automated generation of signatures to detect worms. Unlike
Honeycomb, Autograph’s inputs are packet traces from a
DMZ (demilitarized zone) that includes benign traffic.
Content blocks that match “enough” suspicious flows are
used as input to COPP [6], an algorithm based on Rabin
fingerprints that searches for repeated byte sequences by
partitioning the payload into content blocks. Similar to
Honeycomb, Auto-graph generates signatures consisting of
a single, contiguous substring of a worm’s payload to match
all worm instances. These signatures, unfortunately, fail to
match all polymorphic worm instances with low false
positives and low false negatives.

Singh et al. [7] described the Earlybird system for
generating signatures to detect worms. This system
measures packet-content prevalence at a single monitoring
point, such as a network DMZ. By counting the number of
distinct sources and destinations associated with strings that
repeat often in the payload, Earlybird distinguishes benign
repetitions from epidemic content. Earlybird, also like
Honeycomb and Autograph, generates signatures consisting
of a single, contiguous substring of a worm’s payload to
match all worm instances. These signatures, however, fail to
match all polymorphic worm instances with low false
positives and low false negatives.

New content-based systems, like Polygraph [8], Hamsa
[10] and LISABETH [11], have been deployed. All these
systems, similar to our system, generate automated
signatures for polymorphic worms based on the following
fact: there are multiple invariant substrings that must often
be present in all variants of polymorphic worm payloads
even if the payload changes in every infection. All these
systems capture the packet payloads from a router, so in the
worst case, these systems may find multiple polymorphic
worms but each of them exploits a different vulnerability
from each other. So, in this case, it may be difficult for the
above systems to find invariant contents shared between
these polymorphic worms because they exploit different
vulnerabilities. The attacker sends one instance of a
polymorphic worm to a network, and this worm in every
infection automatically attempts to change its payload to
generate other instances. So, if we need to capture all
polymorphic worm instances, we need to give a
polymorphic worm, chance to interact with hosts without
affecting their performance. So, we propose a new detection
method “Double-honeynet” to interact with polymorphic
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worms and collect all their instances. The proposed method
makes it possible to capture all worm instances and then
forward these instances to the Signature Generator which
generates signatures, using a particular algorithm.

An Automated Signature-Based Approach against
Polymorphic Internet Worms by Tang and Chen [9]
described a system to detect new worms and generate
signatures automatically. This system implemented a
Double-honeypot (inbound Honeypot and outbound
Honeypot) to capture worms payloads. The inbound
Honeypot is implemented as a high-interaction Honeypot,
whereas the outbound Honeypot is implemented as a low-
interaction Honeypot. This system has limitations. The
outbound Honeypot is not able to make outbound
connections because it is implemented as low-interaction
honeypot which is not able to capture all polymorphic worm
instances. Our system overcomes this disadvantage by using
Double-honeynet (high-interaction Honeypot), which
enables us to make unlimited outbound connections between
them, so that we can capture all polymorphic worm
instances.

All of the above works have used different algorithms to
generate signatures for polymorphic worms, but there is no
one in the above works using data mining algorithms to
detect polymorphic worms. Data mining is a new
technology and has successfully applied on a lot of fields;
the overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use. Data mining is
mainly used for model classification and prediction.
classification is a form of data analysis that extracts models
describing important data classes. C4.5 [16] is one of the
most classic classification algorithms on data mining. So, in
this paper, we used C4.5 algorithm for polymorphic worm
classification. The C4.5 algorithm can classified each type
of polymorphic worm into group.

The objective of using C4.5 is to generate signatures for
polymorphic worms.

The advantages of using C4.5 algorithm over the others
algorithms is the C4.5 can generate an accurate signatures
for polymorphic worms.

IV. PRELIMINARIES OF WORM AND WORM ATTACKS

In this section, we talk about worms, so that the readers
can learn how worm can attack victim computers connected
to the Internet.

Worms are basically computer programs that self-
replicate without requiring any human intervention;
especially, by sending copies of their code in network
packets and ensuring the code is executed by the computers
that receive it. When computers become infected, they
spread further copies of the worm and possibly perform
other malicious activities.

A. Worm Infection

Remotely infecting a computer requires coercing the
computer into running the worm code. To achieve this,
worms exploit low-level software defects, also known as
vulnerabilities. Vulnerabilities are common in current

software, because today’s software is usually large,
complex, and mostly written in unsafe programming
languages. Several different classes of vulnerabilities have
been discovered over the years. Currently, buffer overflows,
arithmetic overflows, memory management errors, and
incorrect handling of format strings, are among the most
common types of vulnerabilities exploitable by worms.

While we should expect new types of vulnerabilities to
be discovered in the future, the mechanisms used by worms
to gain control of a program’s execution should change less
frequently. Currently, worms gain control of the execution
of a remote program using one of three mechanisms:
injecting new code into the program, injecting new control-
flow edges into the program (e.g., forcing the program to
call functions that should not be called), and corrupting data
used by the program.

B. Spread of Internet Worms

After infecting a computer, worms typically use it to
infect other computers, giving rise to a propagation process
which has many similarities with the spread of human
diseases.

The spread of the worm in its most basic sense depends
mostly on how it chooses its victims. This not only affects
the spread and pace of the worm network but also its
survivability and persistence as cleanup efforts begin.
Classically, worms have used random walks of the Internet
to find hosts and attack. However, new attack models have
emerged that demonstrate increased aggressiveness.

C. Components of Worm

There are five basic components of worm:
Reconnaissance. The worm network has to hunt out

other network nodes to infect. This component of the worm
is responsible for discovering hosts on the network that are
capable of being compromised by the worm’s known
methods.

Attack Components. These are used to launch an attack
against an identified target system. Attacks can include the
traditional buffer or heap overflow, string formatting
attacks, Unicode misinterpretations (in the case of IIS
(Internet Information Server) attacks), and
misconfigurations.

Communication Components. Nodes in the worm
network can talk with each other. The communication
components give the worms the interface to send messages
between nodes or some other central location.

Command Components. Once compromised, the nodes
in the worm network can be issued operation commands
using this component. The command element provides the
interface to the worm node to issue and act on commands.

Intelligence Components. To communicate effectively,
the worm network needs to know the location of the nodes
as well as characteristics about them. The intelligence
portion of the worm network provides the information
needed to be able to contact with other worm nodes, which
can be accomplished in a variety of ways [21].
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V. OUR HONEYNET SYSTEM

We propose a Double-honeynet system to detect new
worms automatically. A key contribution of this system is
the ability to distinguish worm activities from normal
activities without the involvement of experts.

Figure 2 shows the main components of the Double-
honeynet system. Firstly, the incoming traffic goes through
the Gate Translator which samples the unwanted inbound
connections and redirects the sample connections to
Honeynet 1. The gate translator is configured with publicly-
accessible addresses, which represent wanted services.
Connections made to other addresses are considered
unwanted and redirected to Honeynet 1 by the Gate
Translator.

Figure 2. Double-honeynet system.

Secondly, once Honeynet 1 is compromised, the worm
will attempt to make outbound connections. Each Honeynet
is associated with an Internal Translator implemented in
router that separates the Honeynet from the rest of the
network. The Internal Translator 1 intercepts all outbound
connections from Honeynet 1 and redirects them to
Honeynet 2, which does the same, forming a loop.

Only packets that make outbound connections are
considered malicious, and hence the Double-honeynet
forwards only packets that make outbound connections.
This policy is due to the fact that benign users do not try to
make outbound connections if they are faced with non-
existing addresses.

Lastly, when enough instances of worm payloads are
collected by Honeynet 1 and Honeynet 2, they are
forwarded to the Signature Generator component which
generates signatures automatically using specific algorithms
that will be discussed in the next section. Afterwards, the
Signature Generator component updates the IDS database
automatically by using a module that converts the signatures
into Bro or pseudo-Snort format.

The above mentioned system was implemented by using
Vmware Server 2 [13]. The details of the core
implementation matters are out of the scope of this paper
and were reported earlier; the readers are encouraged to read

on the Double-honeynet architecture in our previously
published work [13][17][18].

VI. C4.5 ALGORITHM

Motivation for Using C4.5 for Polymorphic Worms
Detection

As it is known that a polymorphic worm can change its
payload in every infection attempt, it is so difficult to know
all instances of a polymorphic worm. In this paper, we use a
well-known algorithm in classification problems, which is
the C4.5. The advantage of using the C4.5 is polymorphic
worm classifications.

We propose C4.5 algorithm to detects Zero-day
polymorphic worms. The most well-know algorithm for
building decision trees is the C4.5 [3]. C4.5 is an algorithm
used to generate a decision tree developed by Ross Quinlan.
This is an extension of Quinlan's earlier ID3 algorithm. The
decision trees generated by C4.5 can be used for
classification, and for this reason, C4.5 is often referred to
as a statistical classifier.

C4.5 builds decision trees from a set of training data in
the same way that ID3 does, using the concept of
information entropy. The training data are a set � = � � , � � , …
of already classified samples. Each sample, � � = � � , � � , … is
a vector where � � , � � , … represent attributes or features of
the sample. The training data is augmented with a vector
� = � � , � � , … where � � , � � , … represent the class to which
each sample belongs.

At each node of the tree, C4.5 chooses one attribute of
the data that most effectively splits its set of samples into
subsets enriched in one class or the other. Its criterion is the
normalized information gain (difference in entropy) that
results from choosing an attribute for splitting the data. The
attribute with the highest normalized information gain is
chosen to make the decision. The C4.5 algorithm then
recurses on the smaller subsists [3].

This algorithm has a few base cases:
• All the samples in the list belong to the same class.

When this happens, it simply creates a leaf node for the
decision tree saying to choose that class.

• None of the features provides any information
gain. In this case, C4.5 creates a decision node higher up the
tree using the expected value of the class.

• Instance of previously-unseen class encountered.
Again, C4.5 creates a decision node higher up the tree using
the expected value.

We should mention that machine learning algorithm are
very slow in working, so in the future work we would like
to use some of mathematical methods to enhances the our
machine learning algorithm efficiency.

VII. CONCLUSION

In this paper, we have proposed an automated signature
generation mechanism for zero-day polymorphic worms
using a decision tree algorithm (C4.5 algorithm). In fact,
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there are many other algorithms that have been proposed to
generate signatures for zero-day polymorphic worms, but
most of them have limitation to detect unknown pattern and
also they have high computational complexity. Therefore,
we have used C4.5 algorithm which overcomes these
problems (detecting unknown pattern and computational
complexity). One of the main advantages of machine
learning algorithms is their great capacity to extract
unknown and general information from a given data set
(polymorphic worms samples) and its application on new
data. The main goal of this paper was to use a machine
learning technique (C4.5 algorithm) which can get better
results than other algorithms such as string matching
algorithms or similar others.
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