

Measuring a Software Production Line

with IFPUG-based Function Points

Volkan Halil Bagci, Umut Orcun Turgut, Ali Ciltik, Semih Cetin, Recep Ozcelik

Cybersoft Information Technologies R & D Center

Istanbul, Turkey

e-mail: {volkan.bagci, umut.turgut, ali.ciltik, semih.cetin,recep.ozcelik}@cs.com.tr

Abstract – Software Production Lines (SPLs) aim to manage

cost-based activities for product delivery. Our company has

been using SPL engineering for about 10 years and successfully

implemented cost-controlled production cycles for SPLs during

past two years, which are based on well-known Function Point

(FP) approach supported by International Function Point User

Group (IFPUG). Cost-based product delivery in SPLs requires

the complete transformation of requirements gathering, cost

estimation, time planning and productivity measuring steps. At

the maturity level reached so far, every contributing part of

the production line can be measured and cost-attached effec-

tively and new targets can be set accordingly. Moreover, pro-

duction bandwidth can be estimated precisely based on statisti-

cal productivity coefficients of every working team. This paper

introduces our cost-controlled SPL approach, the achieve-

ments so far and our future plans for improvement.

Keywords-Function Point; Software Measurement; Software

Production Lines; Productivity Coefficient.

I. INTRODUCTION

Software is encountered in every part of our daily life

nowadays. Consistent and cost-effective software products

certainly make our life much easier. The consistency and

cost-effectiveness of any product can be controlled by strict

measurements and software is not an exception in that

sense. In other words, software engineering is not an appro-

priate term unless the size, quality and productivity are

measured accurately since unmeasured variables cannot be

managed in any engineering discipline [1].

Software measurement enables the estimation of team

productivity and improvement of existing processes based

on recorded productivity metrics. Many researchers focus

on new metrics to measure productivity [2] while others

analyze software team productivity efforts and make empir-

ical assessments for evaluating measurement efforts in soft-

ware companies [3][4].

 In particular to SPLs, the factors that accelerate and

prevent team productivity can be statistically determined

and exploited to the maximum extend for setting feasible

targets. The approach explained in this paper has been used

for the past two years in the banking SPL of our company

and particularly implemented for a mid-scale bank in Tur-

key.

The rest of this paper is organized as follows: Section II

discusses about the related works. Section III provides an

overview of the organization and roles. Section IV describes

the function point and its standard in the context of software

evolution. Section V introduces the cost estimation process

that is currently being held in our company. This section

also describes the results obtained in the last period. Section

VI discusses about the future work so as to improve the

processes as a whole. Finally, Section VII concludes this

paper.

II. RELATED WORKS

In the last decade many cost estimation models for soft-

ware production lines have been proposed. Some repre-

sentative proposals are: [5][6][7][8] and [9]. Poulin [5] pre-

sented a reuse metric and economics model that utilizes

systematic reuse method. Poulin’s model has two parame-

ters: the relative cost of reuse (RCR) and the relative cost of

writing for reuse (RCWR). Using these two parameters

Poulin calculates the costs of product line development, thus

provides extensive insight for the economics of software

production lines.

Clements, McGregor, and Cohen [6] proposed the struc-

tured intuitive model for product line economics (SIMPLE)

a general-purpose business model that supports the estima-

tion of the costs and benefits in a product line development

organization.

Lamine, Jilani, and Ghezala [7] proposed a new software

cost estimation model for product line engineering that is

based on integrated cost estimation model for reuse in gen-

eral and Poulin’s model of product line engineering. New

tool supporting the model is described along with UML

presentation.

Nóbrega, Almeida, and Meira [8] proposed integrated

cost model for product line engineering (InCoME). As well

as a new model is introduced along with its case study with

results, the paper highlights important factors to acquire an

effective model in terms of cost-benefit.

Nolan, and Abrahão [9] mentions about the experiences

gained by using of estimation tools for the software product

lines. It is clearly stated that a model is not only used for

estimating cost and schedule but also for estimating and

validating risks and opportunities. Future discussions about

how a new cost model should be built are given for projects

represented as number of Lines of Code (LOC).

202Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

III. MOTIVATION

Software Production Line is the adapted version of an

industrial product line for developing software product

families with the vision of managing cost and time-to-

market concerns, which are based on structured reusability

techniques [12]. The main supplier has its own SPL infra-

structure so-called Aurora that is used for the production of

different product families ranging from banking to insurance

and tax administration to Enterprise Resource Planning

(ERP) [10][11].

The customer bank decided to outsource the develop-

ment and maintenance of its own banking software to the

main supplier over its sister company the main contractor.

In this setup, the main supplier is the main banking products

supplier for many banks including the customer bank, and

the main contractor company is the main contractor for

customizing and maintaining the main supplier’s banking

products, particularly for the customer bank.

In order to provide high quality services to the customer

bank, the main supplier and the main contractor decided to

have a new unit called Product Management Department

(PMD) in their joint organization chart. New organization

chart including the PMD is given in Figure 1. PMD has a

sub-unit so-called Product Improvement Group (PIG),

which is responsible for inspecting and improving banking

products (called product restructuring) using modern soft-

ware engineering techniques as well as implementing cor-

rective actions on existing modules (called product refactor-

ing). Another sub-unit in PMD is Production Planning

Group (PPG), which is responsible for cost-estimation of

new inquiries, planning implementation tasks, and monitor-

ing the production cycles. The contract between the custom-

er bank and the main contractor is based on FP and inquiries

are implemented with FP-based cost. FP-based cost antici-

pates the cost model based on software product functionali-

ty.
Pricing a single FP is not a trivial task in contractual

terms since buyer and supplier do have different point of
views. In case of the customer bank, a well-known interna-
tional consulting group worked both with buyer and supplier
teams to set the price for an FP, based on existing implemen-
tation costs and pricing models [13]. Working timesheets
were examined, hourly and daily efforts were calculated and
an average cost for an FP has been determined. Additionally,
the FP-based cost estimation approach and related formula
have been double-checked by the consulting group. The
approach has been monitored for a while in real cases and
finally approved both by the customer bank and the main
contractor.

Figure 1. Organization schema of Product Management Department.

In this model, the customer bank Project Office (PO) on-
ly deals with the PPG as the single contact point of the main
contractor and the main supplier. Once PO forwards inquir-
ies, PPG prepares the Approximate Cost Form (ACF) for
each inquiry, including the estimated starting and finishing
dates of implementation. PO goes through each ACF and
approves accordingly. The approval of ACF initiates the real
planning of each inquiry with exact dates of implementation.
PPG is also responsible for allocating necessary resources for
the software development efforts. During the course of im-
plementing every inquiry, PPG keeps certain Key Perfor-
mance Indicators (KPI) to measure the effectiveness of every
conveyor in the software production line. Using these SPL
KPIs, PPG is expected to coordinate software development
teams, business analysts, and test units throughout the lifecy-
cle of a request.

IV. FUNCTION POINT

FP is a metric for measuring the functionality provided to
the user of an information system. The concept was intro-
duced by Albrecht in 1979 [14], and used widespread in the
world as of today in a variety of 6 different standards, such
as COSMIC FSM, FiSMA FSM, IFPUG FSM, MK II FPA,
NESMA, and the automatic FP supported by Object Man-
agement Group (OMG) [15][16][17][18][19][20]. The OMG
automatic FP standard is based on IFPUG approach in such a
way that it determines functions, differentiates internal and
external files, and calculates the FP accordingly.

IFPUG initiated the standardization of measuring soft-
ware projects, which is accepted by the International Stand-
ards Organization (ISO) with most up-to-date version 4.3. As
stated in IFPUG Counting Practices Manual (CPM) 4.3, FP
is the unit of measurement to express the amount of business
functionality [21]. IFPUG FP is calculated based on counting
the factors, including internal and external information
sources, external inputs, outputs, and queries. We particular-
ly prefer to use IFPUG FP within other FP approaches as
being the most widely used approach, being in line with
banking domain, providing access to an extensive database
of more than 5000 International Software Benchmarking
Standards Group (ISBSG) project performance cases, having
large volume of industrial data in management information
systems, and enabling the official certification option
[23][24].

203Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

V. COST ESTIMATION PROCESS

In this section of the study, cost estimation process is ex-
plained in detail while post process observations and out-
comes are shared in later parts of the section.

Works that are being performed by the main contractor
are handled via requests. Each request has a request type that
might have impact on cost estimation as given in detail in
Section A.

Figure 2. The view of a software application from the eyes of an FP practi-
tioner [22].

Our FP practitioners examine requests to identify data
and transaction functions using IFPUG FSM with similar
view of a software application as shown in Figure 2. Once
the initial examination of request is complete, project type
and request size is decided as explained in section B and
section C respectively. FP practitioners estimate cost of the
request by using the process factor and calculation method as
explained in section D.

After cost estimation is complete, planning and product
phase starts as explained in Section E. Observations and
importance of scope meeting are mentioned in Sections F
and G respectively.

A. Request Type

Prior to our cost estimation process implemented, when

a request is entered in the system, it is given a request type

based on the expected application size and application type.

In order to support these request types, general system char-

acteristics (GSC) [21] are decided for these request types,

making cost estimation balanced for a given type of request.

Thus, there are three request types given in our system;

which are project, improvement, and report.

Project and improvement types are both software appli-

cations that might involve brand new functionality and/or

modifications over existing application. Main difference is

the size of the application; for example, an estimated cost

threshold of 62 FP or less is being used as improvement

request type within our process. Any request that has esti-

mated cost size of 62 FP is of project request type.

TABLE I. CALCULATED VAF VALUES FOR REQUEST TYPES.

In our cost estimation process, request types can affect

variable adjustment factor (VAF) as shown in (2), thus have

impact on final cost estimation. VAF for project and im-

provement request types are set to 35 Total Degree of Influ-

ence Points (TDI), making VAF of these request types equal

to 1.0.

 65.0)01.0*(TDIVAF [21] (1)

Report is a special request type that addresses infor-

mation retrieval using offline databases via quick third party

development tools. VAF of report project type is calculated

as 0.65 once all TDIs of the GSC are set to 0 due to the

simple development efforts required for reports.

B. Request Requirements Category

Each request is represented by one or many require-

ments. These requirements can be identified as functional or

non-functional ones. In our cost estimation process, while

IFPUG FSM is used for functional requirements in terms of

cost estimating, estimating cost of non-functional require-

ments handled using our non-functional point system. In

order to cover a cost estimation process that would address

requests with different possibility of requirement types, a

request requirements category (RRC) is introduced as an

element of decision node in our cost-estimation flow-chart,

which is shown in Figure 3.

Based on the possible combination of the request re-

quirement varieties, there are three RRCs as follows.

1) Functional RRC: Functional RRC addresses require-

ments that include only functional ones. Thus the cost of the

request can be calculated according to IFPUG FSM v.4.3

standard. Whether the request has a functional component or

not can be identified by examining the requirements of the

request. If it has at least one function among Internal Logi-

cal File (ILF), External Interface File (EIF), External Input

(EI), External Output (EO) or External Inquiry (EQ), then

request may be processed as a functional RRC. Examples of

functional projects are listed below.

- Data Migration (Customer data entrance, sending con-

trol signal)

- Data Transformation (Bank interest calculation, aver-

age temperature derivation)

- Data Storage (Customer order record, environment

temperature record)

204Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

- Data Query (Listing current personnel, querying coor-

dinate data)

Figure 3. The cost estimation flow-chart.

2) Non-functional RRC: If the request does not contain a

functional requirement, then the cost cannot be calculated

using IFPUG FSM. The total cost of the request is

calculated using non-functional point system by summing

all of the separate FP costs of items, which are listed below

in detail.

- Project Management, Coordination, Requirement

Gathering

- Analysis, High Level Design, Quality Control

- Design, Software Development, Integration

- Functional Tests, Acceptance Tests, Technical Support

Services

- Deployment, Fixed-Works

The costs of these types of requests are reckoned accord-

ing to man/month data and used as NFP (Non-Function

Point) in the system for setting connection with FP.

a) Fixed-Works: In order to decrease the operational

cost of recurring non-functional requests, fixed-works list

has been set up. Fixed-works list is a living document. Not

only the FP practitioners, but also the planning experts and

module managers do the relevant updates as NFP on that

list.

3) Hybrid RRC: According to the standard of IFPUG FP

calculation v.4.3, if cost price of a request can be executed,

although it has non-functional requirements, this type of

requests are called hybrid requests. The cost of these types

of requests is calculated by summing the costs of both the

functional and non-functional components.

C. Request Size

Requests that have a size below a certain threshold are

classified as minor requests while the ones that are above

the threshold are classified as major requests. Requests go

through different states as shown in Table IV. Encompass-

ing the period from request entry to the deployment, several

output documents are created along these steps.

The aim of the request size classification is to have an

efficient production line. As it can be seen in Figure 4 and 5,

based on the request size, requests follow different path.

With a few exceptions, minor requests usually get involved

in a minor process pipeline, without passing through the

analysis and design steps; thus, most of the documentation

requirement is dropped off. On the other hand, major re-

quests have to follow the big route, which is passing through

quality processes and as a result, analysis and design docu-

ments are prepared in detail.

Current threshold in terms of FP is arranged to be just

more than a single function, thus meaning if a request has

more than a single function involved, it would be addressed

as a major request. Based on IFPUG CPM 4.3 [21], mini-

mum possible single function cost is 3 FPs; for example EI-

Low and EQ-Low both have 3 FPs. Therefore, in agreement

with the bank, it is decided to use 3 FPs as a threshold for

request size classification.

D. Process Factor and Cost Calculation

Process Factor (PF) is the sum of total coefficients of all

sub processes in the production line. It is used for reflecting

the costs of all sub-processes to the total cost in minor and

major requests. Besides distributing the total cost to the sub-

processes, PF also calculates the partial cost when the job,

which is being carried on the product line, is canceled. Max-

imum value for the PF can be 1.0. Table II details the PF

values for some of the sub-processes and these are calculat-

ed according to their portions in the production period.

Equation (2) shows how the process factor is calculated.

 BTATDEVQCDHLDAPF (2)

where A is the analysis process factor, HLD is the high level

design process factor, D is the design process factor, QC is

the quality control process factor, DEV is the development

process factor, AT is the alpha test process factor and BT is

the beta test process factor.

TABLE II. PROCESS FACTOR VALUES FOR EACH REQUEST TYPE.

205Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 uFPVAFaFP * (3)

 aFPPFCFP * (4)

As per definition given in [17] and shown in (3), adjusted

function point (aFP) is calculated using VAF and unadjusted

function point (uFP). Value of VAF can change based on

the project type. As it can be seen from (4), PF has a direct

consequence on the cost estimation. In (4), CFP is the cost

in FPs, PF is the process factor and aFP is the regulated FP.

TABLE III. SAMPLE NET COSTS.

With reference to the Table III, net CFP values for sam-

ple applications with distinct request types and request sizes

are calculated according to distinct process factors. In the

calculations, the threshold value is set to 3 FP.

E. Planning and Production Tracking

After estimating the cost of each request, planning ex-

perts decide on the deadline of the request, taking account of

the characteristic of the request, source and integration sta-

tus. Planned development time and the number of develop-

ers that are going to be assigned to the request are calculated

according to the basic Constructive Cost Model

(COCOMO) equations given in (7) and (8) [20]. In order to

use these equations, reference values for planned develop-

ment time and number of developers are calculated via (6)

instead of (5). For this reason, instead of using code line of

count parameter and COCOMO coefficients in (6), calculat-

ed effort value of product line is used and classical

COCOMO equation is adapted to the (6) for our system.

Since (5) is not being used directly, it does not have an ef-

fect on our productivity rates. cb and db values are decided

according to Boehm’s semi-detached software project

standards as stated in (7).

 b

b
KLOCbaE)(abbb

DM

CFP
E

 b
d

EbcD cbdb

D

E
P

where E is the effort applied (person-months), KLOC is the

estimated number of delivered lines of code for the project,

ab, bb, cb and db are COCOMO coefficients, CFP is the cost

in FP, D is the development time in months, DM is the av-

erage work day count in a month (20 work days) and P is

the count of required people.

TABLE IV. PRODUCTION LINE STATUS OF CORE BANKING UNIT.

In order to obtain production line status data as show in

Table IV, costs of requests are distributed among the request

states. The production line status data enables us to track the

current intensity of work load on each group and also to

foresee the upcoming intensity of work load status of each

group as well. By monitoring the product line data as shown

in Table V, planned and completed work follow-up can be

carried out. Using the statistical data gathered, resource

planning and productivity performance analysis for each

software module & team can be successfully accomplished.

By taking goals and productivity coefficients into account,

pre-detection actions for restructuring the problematic soft-

ware modules can be put into practice in the future.

F. Cost and Planning Process Observations

In order to count functional size of any request, func-

tional requirements are needed. In the beginning of the tran-

sition phase, it was hard to complete the cost estimation

process because of lacking required information regarding

the request requirement specifications. Therefore, to deter-

mine functional and non-functional requirements for esti-

mating approximate costs for requests, meetings with the

participation of module owners and FP practitioners are

being held.

After calculating approximate costs of the requests, the

requests are planned by putting them on the production line

using available resources. Then as shown in Figure 4 and 5,

analysis, high level design, and design steps are performed

before the requests reach the final cost estimation step. On

this step, final cost is reckoned using the analysis and design

documents. Once the final cost estimation is complete and

approved by PO, software development efforts may begin

using the available resources.

206Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE V. THE MAIN CONTRACTOR’S PRODUCTION LINE

PLANNING AND PRODUCTION TRACKING.

As can be seen in Table V, in the new cost system, FP

calculations in the transition period are less than the other

periods. Total FP for January 2013 is 1824 and more re-

quests are being loaded to the production line in the follow-

ing months. The reasons behind the weak performance in

the transition period are technical problems, personnel re-

sistance fed from old habits and efforts spent for obtaining

functional requirements. In the succeeding step of our pro-

cess enhancement, one to one negotiations for functional

requirement inference, which is examined in the transition

period, are left and a new document, namely preliminary

requirement analysis document, is organized with the con-

tributions of business analysts and module owners in order

to calculate true approximate cost.

Figure 4. Software Production Process Pipeline Part 1.

G. Scoping Meetings

One of the ongoing improvement efforts is improving

the efficiency of scoping meetings, which are performed at

an intense pace. In order to perform more effective and

more conscious monthly and quarterly plans, comprehensive

requirement gathering activities are conducted for creation

of a request pool, which consists of requests that have initial

cost estimations. Project office, business unit, business ana-

lysts, module owners and production planning experts are

participating in these activities. Utilizing the outcomes of

the scoping meetings, due to assessing the situation of the

production line from a wider perspective, long-term busi-

ness targets will be identified and prioritized.

1) Observations: Difficulties in requirement gathering

activities, especially requests that require integration of

different modules, are noted and it is anticipated to cause

inconveniences for accurate cost estimation efforts.

However, in order to increase the efficiency of the software

development efforts, we desire to minimize the participation

of the relevant module’s software engineers in requirement

gathering activities. However, considering the lack of

technical background of the business analysts at the

moment, software engineers are still important assets for the

scope meetings.

VI. FUTURE WORK

Because of historical reasons, software engineers have

led scoping and requirements gathering activities. This role

actually belongs to business analysts and we need to train

them to increase their competence in business architecture.

Accordingly, business analysts will contribute more in the

scoping and requirements gathering meetings, so this affects

efficiency of the Software Production Line, since software

engineers will involve less in these meetings and activities,

and focus only software development phase. Moreover,

once problematic modules will be identified by observing

productivity ratios, Product Improvement team will conduct

necessary restructuring and re-factoring activities.

Figure 5. Software Production Process Pipeline Part 2.

When it comes to cost estimation process, it is under con-

tinuous quality control, which let us fine-tune of productivi-

ty calculations. Establishing Software Product Line will be

much easier after measuring all metrics of software produc-

tion line, which is the next goal of the company.

VII. CONCLUSION

The main contractor and the main supplier have been

capable of measuring several metrics related to the software

production line via IFPUG functional size measurement

207Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

method. In the process of adaptation to the new system, a

resistance fed from old habits is faced and new steps have

been added to the production process to achieve the desired

effect in requirement gathering activities.

Within the scope of adaptation of function points to the

production line, arrangements are made on existing request

types, request sizes, and project types. In order to estimate

total cost for different request types with different request

sizes on various project types, process factor is defined and

is used as shown in the Table III. Simple COCOMO equa-

tions are adapted for FP and statistical data of the product

line, hereby, are gathered. In consequence of available data,

the condition of the production line can show the actual and

planned works along with the accumulated workload on the

business units. Making use of these indicators, production

and resource planning can be made more efficiently and

factors adversely affecting the process can be observed.

Scoping meetings are made in requirement of detailed

information to accurately estimate cost of a request and new

methods for the solution are actively being searched. Annual

software development goals can be determined by produc-

tivity calculations that are based on FP for each team. By

utilizing productivity factors, modules that have low

productivity performance are identified. Once the identifi-

cation process is complete, the identified modules are tar-

geted for restructuring purposes to improve development

productivity.

REFERENCES

[1] C. Jones, Applied software measurement: global analysis of
productivity and quality. McGraw-Hill, 2008, ISBN 978-0-
07-150244-3.

[2] M. Solla, A. Patel, C. Wills, “New metric for measuring
programmer productivity,” Proc. IEEE Symp. Computers and
Informatics, IEEE, 2011, pp. 177-182.

[3] N. Ramasubbu , M. Cataldo , R. K. Balan , J. D. Herbsleb,
“Configuring global software teams: a multi-company
analysis of project productivity, quality, and profits,”
Proceedings of the 33rd International Conference on Software
Engineering, USA, May 21-28, 2011, pp. 261-270.

[4] O. T. Pusatli, S. Misra, “Software Measurement Activities in
Small and Medium Enterprises: an Empirical Assessment,”
Acta Polytechnica Hungarica, 8 (5) , 2011, pp. 21-42.

[5] J. S. Poulin, “The Economics of Software Product Lines,”
International Journal of Applied Software Technology 3,
1997, pp. 20–34.

[6] P. Clements, J. McGregor, S. Cohen, The Structured Intuitive
Model for Product Line Economics (SIMPLE) (CMU/SEI-
2005-TR-003). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2005.

[7] S. B. Lamine, L. L. Jilani, H. H. B. Ghezala, “A Software
Cost Estimation Model for a Product Line Engineering
Approach: Supporting tool and UML Modeling,” 3rd ACIS
Conf. on Software Engineering Research, Management and
Applications, 2005, pp. 383-390.

[8] J. P. Nóbrega, E. S. Almeida, S. R. L. Meira, “InCoME:
Integrated Cost Model for Product Line Engineering,”
Proceedings of the 2008 34th Euromicro Conference Software
Engineering and Advanced Applications, 2008, pp. 27-34.

[9] A. J. Nolan, S. Abrahão, “Dealing with Cost Estimation in
Software Product Lines: Experiences and Future Directions,”

SPLC'10 Proceedings of the 14th international conference on
Software product lines, 2010, pp. 121-135.

[10] N. I. Altintas, M. Surav, O. Keskin, and S. Cetin, “Aurora
software product line,” 2nd National Software Engineering
Conference, Ankara, Turkey, Sep. 2005.

[11] N. I. Altintas, S. Cetin, A. H. Dogru, and H. Oguztuzun,
“Modeling Product Line Software Assets Using Domain-
Specific Kits,” IEEE transactions on software engineering,
vol. 38, Dec. 2012, pp. 1376-1402.

[12] D. E. Nye, America's Assembly Line. MIT Press, 2013, ISBN
978-0262018715.

[13] P. R. Hill, Practical software project estimation: a toolkit for
estimating software development effort and duration.
McGraw-Hill, 2010, ISBN 978-0-07-171791-5.

[14] A. J. Albrecht, “Measuring application development
productivity,” IBM Application Development Symposium,
OCT. 1979, pp. 83-92.

[15] ISO/IEC 19761, 2003 COSMIC Method Measurement
Manual v. 3.0.1.

[16] ISO/IEC 29881, 2008 Information technology Software and
systems engineering FiSMA 1.1 functional size measurement
method.

[17] ISO/IEC 20926, 2009 Software Engineering - IFPUG 4.3.1.
Unadjusted FSM Method - Counting Practices Manual.

[18] ISO/IEC 20968, 2002 Software Engineering - Mk II Function
Point Analysis - Counting Practices Manual.

[19] ISO/IEC 24570, 2005 Software Engineering - NESMA
Functional Size Measurement Method v.2.1 - Definitions and
counting guidelines for the application of Function Point
Analysis.

[20] Automated Function Points (AFP) Version 1.0 - Beta 1,
ptc/2013-02-01.

[21] The international function point users group: function point
counting practices manual release 4.3.1., 2010, ISBN 978-0-
9753783-4-2.

[22] Borland Conference. How to determine your application size
using function points. [Online]. Available from
http://conferences.embarcadero.com/article/32094.

[23] P. Morris, “Mapping the rules for IFPUG and COSMIC-FFP
function size method,” IFPUG Fall Conference, Scottsdale,
Arizona, USA, 2003, pp. 299-319.

[24] Common Software Measurement International Consortium. A
Comparison of the Key Differences between the IFPUG and
COSMIC Functional Size Measurement Methods. [Online].
Available from: http://www.cosmicon.com/portal/public/

IFPUG_COSMIC_Key_Comparison.pdf.

[25] B. W. Boehm, Software engineering economics. Englewood
Cliffs, NJ:Prentice-Hall, 1981, ISBN 0-13-822122-7.

208Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

