
Towards Agile Composition of Service Oriented Product Lines: A Mashup-based

Approach

Ikram Dehmouch, Bouchra El Asri, Zineb Mcharfi

IMS Team, SIME Laboratory
ENSIAS, Mohammed V Rabat University

Rabat, Morocco

{ikram.dehmouch@gmail.com, elasri_b@yahoo.fr, zineb.mcharfi@gmail.com}

Abstract—Large scale product lines cover multiple domains

with different concepts and concerns. Thus, involving domain

users in the development life cycle is a key factor for the success

of the composition process combining the different subdomains of

the intended resulting large scale system. In fact, domain users

master the domain concepts, the scope of each subdomain and

the interactions between the different subdomains to be

composed. This makes them key actors in the composition

process. Adopting agile principles is then required to offer

intuitive and simple composition techniques for end-users. One of

these emergent techniques is Mashup, which is mainly concerned

with web service composition in an ad hoc way. This paper

proposes using a Mashup component as an underlying

composition technique for large scale service oriented product

lines in order to bring agility to the process of composing the

different subdomains services. The proposed Mashup component

in allows incremental composition to achieve agility and to

address scalability issue as well.

Keywords—Product Line Engineering; Feature Model; Agile

Software Development; Service Oriented Computing; Mashup

I. INTRODUCTION

The Product line approach has been already successfully

applied to various industrial domains, such as avionics [1] and

automotive systems [2], etc. With regard to software

engineering, Software Product Line Engineering (SPLE)

constitutes a major advance, as it allows building software

from a set of previously developed and tested parts, based on

the domain knowledge. This generates considerable benefits in

terms of time, quality and resources [3].

However, traditional SPLE is no more enough to face

modern applications, which tend to be cross-industry and to

cover multiple domains simultaneously. This has led to the

advent of the large scale product lines concept combining

various subdomains with heterogeneous crosscutting concerns

such as health, telecommunication, transport, etc. Thus,

composing these subdomains to generate the intended large

scale system is becoming a crucial concern [4]. The

composition process in such systems becomes more

problematic, since it should scale to big development projects

sizes with hundreds of users/developers from several fields.

On the other hand, domain users are an important ingredient

of this composition process success, since they master the

scope and the different concepts within the subdomains to

compose. Thus, one possible way to address the scalability

issue is to involve end-users in the composition process.

Consequently, opting for Agile Software Development

(ASD) in combination with SPLE is the key to make the

composition process simple and intuitive for end-users, solve

possible conflicts that may occur in such heterogeneous

crosscutting environments and allows incremental

development, which meets the scalability issue.

In fact, ASD put end-users at the heart of the software

development process, since it is based on constant interaction

with customers [5].

In this context, we propose in this article an agile

composition approach for large scale product lines based on a

consumer-centric technique called “Mashup”. In fact, Mashup

is an extremely consumer-centric and lightweight service

composition technology [6], which can be exploited to address

scalability issue throughout bringing agility to the proposed

product line composition approach.

To explore how Mashup facilitates this service

composition, this paper is organized as follows: In Section 2,

we present some basic concepts related to two main paradigms

involved in our work, which are SPLE and ASD. Section 3

draws up the motivations of our work. Section 4 discusses

about the related work. Section 5 presents an overview of our

approach. A motivating scenario showing the interest of our

approach is described in Section 6. Finally, Section 7

concludes the paper.

II. BASIC CONCEPTS

 SPLE

SPLE is an emergent paradigm which is the result of

bringing the reuse-based product line concept, adopted mainly

in industry, to software engineering development process [7].

It consists of constructing software products from reusable

core assets. This results in lower costs, shorter time-to-market,

and higher quality, since a family of products is generated

instead of developing them one by one from scratch [8].

According to Kang et al. [9], the product line is defined as a

set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a

particular market segment or mission, but that still show

distinct and different characteristics.

The SPLE process is usually divided in two main

complementary phases: Domain engineering and Application

engineering [3]. While the first one deals with the

development and maintenance of reusable core or domain

assets, the second one is about using those assets in order to

build individual software products. The first step in domain

engineering is business scoping which is performed using

specific models called Feature Models (FM). The notion of

FM was proposed by Kang et al. [9] to represent

commonalities and variabilities among the products within the

same domain. In fact, FM is a tree structure representation of

features—“a prominent or distinctive user-visible aspect,

quality or characteristic of a software system or systems—[9]

and the relationships between them. A feature can be either

mandatory, optional, alternative (Xor group) or part of an Or

group. Thus, multiple products can be built form a set of

reusable assets depending on which alternative was selected

185Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:ikram.dehmouch@gmail.com

during product configuration. This leads us to a core principle

in SPLE, which is Variability [3].

Domain engineering includes also the definition of a

reference architecture, and the development of Software

reusable components. At application engineering level, the

FMs, reference architecture and software reusable components

are then used as a basis for deriving a specific domain

application to meet needs of a specific end-user.

Thus, profitable SPLE requires an extensive up-front

investment to develop reusable domain assets for later

efficient use in products. This carries the risk of not getting a

viable return on investment if the pre-developed assets are not

sufficiently reused [10]; hence the need to resort to ASD.

 ASD

Most of today’s systems are evolving towards community-

driven development approaches where the end-users are

involved in the whole development life cycle. This kind of

software approach is known as ASD.

According to Larman [11], ASD is based on short

iterations. Each one is a self-contained, mini-project with

activities that span requirements analysis, design,

implementation, and test. This allows taking into account

feedback from users in iteration N so that needed refinements

and adaptations are made in iteration N+1. Hence, ASD give

mush importance to people and put them at the heart of the

development process.

Besides, research has shown that shorter iterations have

lower complexity and risk as they are concerned with small

fragments of the system, and allow then better feedback,

higher productivity and higher success rates [9]. One other

major characteristic of ASD is that it is basically built on

response to change rather than change prevention [5], which

fits the changing nature of software development in which

requirements, technology and development team are in

constant change.

ASD is based on four fundamental values and twelve

principles as presented in The Manifesto for Agile Software

Development written by a group of software consultants in

2001 [5]. Most of agile methods such as Extreme

Programming (XP) and Scrum [12] share these principles,

which are basically about frequent communication, frequent

deliveries of working software increments, short iterations and

active customer engagement throughout the whole

development life-cycle.

III. MOTIVATIONS

The wide scope covered by large scale Software Product

Lines (SPL) makes their management a very complex and

tedious task. One efficient way of making this task easier and

better mastered is the decomposition of these large scale

systems in smaller subdomains, each one covering a specific

field and involving only business users concerned with this

field. To get a final product variant of the large scale product

line, the corresponding feature models of the different

subdomains should be composed.

This composition process has several limitations when it

comes to cross-domain large scale systems. One major

limitation is that it would not be obvious to adopt a traditional

SPLE approach based on up-front development to assure valid

compositions. Thus, scalable product line composition

represents a central motivation for our work.

We believe that adopting ASD in this composition process

is the key to address the scalability issue. Three arguments

motivate our choice:

- ASD allows incremental composition: this meets the

modularity logic consisting of decomposing the large scale

system into many subdomains and then recomposing them in

an incremental way to get a specific product variant.

- ASD is consumer-centric: this allows better management

of the different stakeholders regardless of their heterogeneity.

Besides, users are involved in the whole development life

cycle which reduces the extensive up-front investment.

- ASD and SPLE combination generates many benefits: On

one hand, some of the central agile practices may increase

flexibility and customer collaboration. On the other hand, the

concepts of SPLE are needed in order to manage the diversity

of products, the large customer base, and the long-term

perspective, which are the characteristics of managing and

developing a product line over time.

IV. RELATED WORK

At first sight, ASD and SPLE seem to be contradictory

approaches, since SPLE is a proactive approach which

requires planning the development of assets in advance for

later reuse, in contrast to ASD, which is a reactive approach

that avoids up-front planning and development throughout

perpetual interactions with end-users.

Though, several experimentations showed that there is a

great interest in combining SPLE and ASD approaches [13].

Two case studies driven by Ghanam and Maurer [14][15]

show that, besides being practically feasible, the combination

of some XP practices and SPLE reduces rework and the cost

of producing customized solutions, since it enables customers

involvement.

Composite Feature Models (CFM) is another concept

combining SPLE and ASD. According to Urliand et al. [16],

CFM are an extension to classic Feature models, since these

latter are not powerful enough to handle agility challenges.

Separation of concerns is one of the main pillar on which

CFM are built. It offers end-users simple views on the system,

since they focus only on their domain concepts without being

overwhelmed by the other domain concepts. CFM concept is

also based on bottom-up modeling. In fact, users have the

possibility to change their requirements at any point of the

development life cycle. This modification is then introduced in

the corresponding partial feature model and an automated

algorithm is used to merge the modified partial FM into the

CFM [17]. Finally, automated refactoring allows CFM

handling vocabulary mismatch due to the heterogeneity in face

to face conversations with different groups of users, which is

an important agility issue.

On the other hand, some other researches show a growing

interest in how Service-Oriented Computing (SOC) [24] can

be adopted as a mean for enhancing agility and flexibility in

SPLE. Kotonya et al. [18] propose a consumer-centered

approach combining SPLE and SOC through the two

following main steps which are Feature analysis for

representing different services involved into a family of

Business Processes, and Service analysis in which dynamic

services are selected depending on whether the corresponding

features are selected or not in the FM configuration relevant to

a specific Business Process (BP). Cubo et al. [19] have also

developed DAMASCo framework (model-based service-

oriented architecture approach that makes the design,

186Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://dl.acm.org/author_page.cfm?id=81555141756&coll=DL&dl=ACM&trk=0&cfid=419043564&cftoken=96112013
http://dl.acm.org/author_page.cfm?id=81100001369&coll=DL&dl=ACM&trk=0&cfid=419043564&cftoken=96112013

development and deployment of processes more agile) in

combination with feature models to safely handle the

variability in the service composition at runtime. Thus, if the

client request changes, a new valid configuration of the

product family containing the required features is

automatically created.

Dynamic adaptation is another advantage of combining

SPLE and SOC. In fact, Alférez et al. [20] propose a

framework that uses variability models to support the dynamic

adaptation of service composition. These variability models

describe the dynamic configurations of the service

composition in terms of activation or deactivation of features.

The information captured in these models is combined with

context model, which collects context knowledge, and

composition model describing the service composition. This

combination is performed through the weaving model, which

connects the variability model to the composition model based

on the context model.
Some other works deal more with the scalability issue in

SPLE regardless of the agility aspect such as Dhungana et al.’s

work [21], which is about the System of Systems (SoS)

paradigm [4] (i.e., systems designed and constructed by

combining several heterogeneous subsystems that are

themselves composed of many components, data structures

and service, etc.) The composition process proposed in this

approach is performed through two injection mechanisms push

and pull that allow generating in a flexible way a conjoint

model representing a common model of the selected

components in the SoS, which can be deployed in a target

platform.

Table 1 shows a comparative assessment of works above

based on our motivations:

TABLE I. COMPARATIVE ASSESSMENT

V. AN AGILE MASHUP-BASED COMPOSITION APPROACH

FOR LARGE SCALE PRODUCT LINES

A. Approach overview

To address the scalability issue in the SPL composition

process while taking into account the ASD principles, our

approach uses a mix of both SPLE and SOC paradigms. On

one hand, SPLE brings a valuable knowledge about variability

within the large scale product line throughout the whole

development lifecycle. Consequently, late variability is also

handled allowing users to specify the services to compose

even at runtime. On the other hand, SOC allows loose

coupling among interacting services, which enables flexible

and agile service composition. Besides, its dynamic nature can

be exploited to guide dynamic adaptations at runtime in order

to fulfill specific business objectives according to context

information especially in terms of availability of dynamic

services, i.e., services that can be invoked only at runtime

(e.g., real-time information services about current weather).

As our approach is an SPL-based one, it should cover the

two main phases of SPLE, which are domain engineering and

application engineering.

From a domain engineering view, our approach proposes to

use a specific FM notation to distinguish dynamic services

from static ones in order to define the scope of dynamic

adaptations, which can take place at runtime. To this, features

corresponding to dynamic services are represented within a

dotted box in the FM. One other major information that should

be also captured at this level of SPLE is the standard business

workflow of service orchestration. We propose to represent

this information using a BPMN 2.0 model [22], as it is a

widely used standard for BP definition, not only as a graphical

representation, but also as an execution language. Besides, it is

a user-friendly model, which consolidates best practices from

different modeling techniques such as UML Activity Diagram,

IDEF, ebXML BPSS, Activity-Decision Flow (ADF)

Diagram, etc. As covering all possible cases in this generic

workflow is a very tedious task, we propose to use FM in

order to represent all the variation points of the BPMN 2.0

model using alternative features. Besides, domain engineering

includes also the definition of a service oriented reference

architecture and the development of reusable BPEL fragments

corresponding to the reusable parts of BP.

From an application engineering view, as our contribution

is a user-centered approach, it is the end-user who defines the

desired product configuration based on his needs. Thus, the

generic BPMN 2.0 model is refined according to this specific

need, the variation points are resolved, and the corresponding

BPEL code and the applicative architecture are generated. In

the following section we give more details about how our

approach brings agility to the composition process of service

oriented product lines.

B. Agility and Mashup

Agility is the central added value of our contribution. To

fulfill this, we propose using Mashup as an underlying service

composition technique, since it is a lightweight and quick way

to integrate multiple sources of applications into a single one,

supporting programming for end-consumers without complex

environment. In fact, we can take advantage from the Mashup

component proposed by Liu et al. [6]. It is composed of three

main parts, which are: User Interface (UI) component, Service

component and Action component. Adopting this Mashup

component allows bringing more agility to our proposed

approach through three main principles, which are: Separation

of concerns, Dynamic adaptation and Incremental

development. Hereafter, we develop each one of these

principles:

 Separation of concerns

As the large scale product line is a cross domain system, we

propose to decompose it into several subdomains. To

emphasize the agility principle, our approach involves end-

users from the earlier steps of the development lifecycle. As

depicted in Figure 1, each subdomain is represented using a

swimlane and it is managed by a group of domain users and

experts, as they are the best placed for defining domain feature

models configurations and BP instances, as explained in the

previous section. It is the UI component of the Mahsup

component who offers the end-users a user interface to

perform all those definitions and to transmit this information

about the services retained and the workflow orchestrating

them to the Action component.

Related work Handling
scalability

Handling
agility

Adaptability
to Service

Oriented

product line

Dynamic
adaptation

[14][15] - ++ - -

[16][17] + ++ - +

[18][19][20] - ++ +++ +

[21][4] +++ - - -

187Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Besides being an agile principle, separation of concerns

allows also better control of large scale systems, which meets

our scalability issue.

Figure 1. Separation of concerns.

 Dynamic adaptation

Distinguishing dynamic services from static ones in FM

offers our approach the possibility of dynamic adaptation at

runtime according to context changes. In fact, in contrast to

static services, getting the accurate information about the

availability of dynamic services providers can only be

performed at runtime. Based on this information, the final

variant of the sub-product line (subdomain) is generated.

But, there are several previous steps before achieving this

generation:

a. Generation of an FXML file from the FM configuration:

Based on the information provided by the UI component about

the FM configuration (service selection), an XML file is

generated corresponding to the current user’s requirements

called FXML. In fact, we propose that each feature in the FM

configuration has its corresponding XML element. To

distinguish dynamic services from static ones in the FXML,

we propose to use two kinds of xml tags: <dynamic_service>

for dotted boxes in FM configuration and <static_service> for

solid ones.

b. Parsing FXML file: At this step, the Action component

takes as input the generated FXML file and the BPEL 2.0 code

corresponding to the generic BPMN 2.0 subdomain model

(developed at implementation phase of domain engineering

level). In fact, the Action component parses the FXML file

based on a specific mapping relating FXML elements to

<invoke> BPEL elements. If a service has its XML element

retained in FXML file, then its corresponding invoke BPEL

fragment is kept in the final BPEL file, else it is removed.

Besides, certain fragments of the generic BPEL might be

moved to respect the order required by the end-user. Thus, the

Action component defines three actions: add, remove or move,

which are used in order to invoke the right services in the right

order according to the user’s needs. The action component

eliminates the variation from the final BPEL. In fact, each

variation point is represented by a variable in the generic

BPEL. Once the needed service is selected in the FM

configuration, the variable is set to the selected value.

c. Checking service provider’s availability: Before generating

the final BPEL file, the Action component sends a request to

the Service component in order to check the service provider

availability at runtime. Thus, if the service provider is

available then the corresponding BPEL fragment is kept in the

final BPEL file else it is removed. Thanks to this, context

changes are handled by our approach allowing dynamic

adaptations at runtime.

d. Generation of the new variant of the sub-product line: Once

the final BPEL file is constructed, it is executed by the service

component in a specific execution engine and the result is sent

to the Action component. This latter updates the user interface

by returning the result to the UI component.

Figure 2 presents the details about the proposed Mashup

component and the different steps covered before the

generation of the sub-product line variant:

Figure 2. Intra-domain Mashup component.

 Incremental development

At this stage, we have a product variant at the output of

each swimlane. This output is validated by the domain users,

since it has been produced according to their definition of BP.

We propose that each one of these output is composed with

the following one in an incremental composition process until

covering all swimlanes, and thus, covering the large scale

product line, as depicted in Figure 3.

Figure 3. Inter-domain Mashup-based composition.

188Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The underlying composition approach in this inter-domain

composition phase is the same Mashup component. However,

there is a slight difference, which is the adoption of design by

contracts [23] as a set of pre- and post-conditions annotating

the BPELs 2.0, relevant to the sub-product lines to be

composed, at the input of the inter-domain Mashup

component. In fact, design by contracts allows defining the

interconnection order rules between the different subdomains,

as their respective domain users are not intended to know

these cross domain rules. The Action component uses these

latter to apply the action move in order to put the services in

the right order in the output composite BPEL 2.0. In fact, if all

pre-conditions of a BPEL 2.0 fragment relevant to the first

subdomain are fulfilled, the appropriate BPEL 2.0 fragment,

relevant to the second subdomain, is invoked and placed at a

specific binding point in the resulting composite BPEL 2.0.

VI. MOTIVATING SCENARIO: DIABETES SELF-MANAGEMENT

SYSTEM

We choose as a motivating scenario to demonstrate the

results of our approach the Diabetes self-management system,

i.e., a system allowing diabetes patients to do a regular

monitoring of their health and of the different risk factors,

which may influence their disease and imply complications.

In the following, we present the three main steps of

applying our proposed approach to this example. These steps

are:

Separation of concerns: the first step consists of

decomposing the Diabetes self-management system in two

main subdomains, which are telecommunication domain and

health domain managed by patients and doctors respectively.

At this level, the UI component offers doctors a specific user

interface in order to define the objectives that should be

fulfilled throughout the daily treatment and monitoring

proposed to their patients based on their criticality degree.

These objectives are represented as features in the health

subdomain FM such as taking insulin injections or tablets,

performing health records (e.g., blood pressure, blood glucose,

etc.), walking during thirty minutes, note unusual symptoms,

etc. The doctor’s feature selection is then transmitted to the

Action component in order to determine which services to

invoke and in which order. In fact, once the treatment

objectives are selected, their corresponding order can be

retrieved from the generic BPMN 2.0 model as it has already

been defined by the doctors.

On the other hand, another user interface allows patients to

choose the most suited way of interaction with their doctors,

(e.g., Telephone, SMS, Interactive Voice Responder (IVR),

etc.), as a means of telecommunication. Besides, service

orchestration is also possible for patients throughout the

definition of the interaction frequency with their doctors via

the specified mean of telecommunication. For example, if a

patient chooses IVR as mean of interaction, he should define a

specific schedule of virtual home visits accomplished via IVR

based on his availability.

 Dynamic adaptation: at this level, FXML files

corresponding to both health and telecommunication

subdomains are generated based on the information provided

by the UI component. The action component then parses the

FXML files in order to update the generic BPELs files. For

example: for a specific patient, the daily treatment consists of

making a blood glucose record, sending the record result to the

doctor in charge, receiving response and applying doctor’s

recommendations (i.e., taking a tablet of a specific medicine,

walking during twenty minutes, visiting the doctor, etc.), etc.

The generic health BPEL is then updated according to this

order.

In order to send the appropriate recommendations to the

patient, doctors need the accurate values of health records.

These values could be transferred instantly to the system via

mobile recording devices such as Personal Digital Assistant

(PDA). According to our approach, the next step consists of

checking the availability of the service, which collects the

health records information from the mobile device at runtime

in order to generate the right health BPEL.

Incremental development: According to our approach, we

have as a result two BPELs, each one corresponding to one

subdomain. To generate the composite diabetes self-

management variant, we use the pre- and post-conditions

annotating the input BPEL fragment at the input of the intra-

domain Mashup component. For example, the BPEL fragment

corresponding to the IVR services cannot be invoked until the

patient notices an unusual symptom; else the system simply

sends SMS to remind the patient about medicines and regular

health records.

VII. CONCLUSION AND FUTURE WORK

Combining ASD and SPLE has proven to be a worth

exploring track as it generates many advantages in terms of

reduced time to market and valuable return on investment.

In this paper, we proposed to take advantage from this

combination in large scale product lines composition. The

main finding was that bringing agility to the composition

process throughout the Mashup component ensures the

scalability of our composition approach. In fact, the iterative

and incremental nature of ASD allows modularity and thus a

better control of each sub-system of the large scale system. On

the other hand, the user-centric nature of ASD involves only

domain users concerned with the appropriate subsystem,

which optimizes the time and cost of development.

As users are put at the heart of our agile approach, the main

challenge of our future work is dealing with the perpetual

changes reflecting the new user requirements. Our future work

will then emphasize on the definition of a weaving model

relating the FM to the BPMN 2.0 model, in our proposed

Mashup component, in order to ensure the repercussion of the

new user requirements on the resulting composite product

variant.

REFERENCES

[1] F. Dordowsky, R. Bridges and H. Tschope, “Implementing a software

product line for a complex avionics system”. In 15th International
SoftwareProduct Line Conference (SPLC), IEEE, 2011, pp. 241-250.

[2] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick, “A case study
in applying a product line approach for car periphery supervision
systems”, (No. 2001-01-0025), SAE Technical Paper, 2001.

[3] K. Pohl, G. Böckle, and F. Van Der Linden, “Software product line
engineering”. Springer, 10, 2005, pp. 3-540.

[4] M. Jamshidi, “Systems of Systems Engineering: Principles and
Applications”.Taylor & Francis, ISBN 9781420065893, 2010.

[5] M. Fowler and J. Highsmith,“The agile manifesto. Software
Development”,9(8), 2001, pp. 28-35.

[6] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards Service Composition
Based on Mashup,” 2007 IEEE Congr. Serv. (Services 2007), Jul.
2007, pp. 332–333.

189Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 [7] F. J. Linden, K. Schmid, and E. Rommes. “Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering”.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[8] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review”, Information
Systems, 35(6), 615-636, 2010.

[9] K. C Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study” (No.
cmu/sei-90-tr-21). Carnegie-Mellon Univ Pittsburgh, Software
Engineering Inst, 1990.

[10] I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271-350.

[11] C. Larman, “Agile and Iterative Development: A Manager's Guide”.
Boston: Addison Wesley, 2004.

[12] R. C. Martin, “Agile software development: principles, patterns, and
practices”. Prentice Hall PTR, 2003.

[13] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial case
study on agile software product line engineering”. Journal of Systems
and Software, 81(6), 2008, pp. 843-854.

[14] Y. Ghanam and F. Maurer, “Extreme product line engineering:
Managing variability and traceability via executable specifications”
In Agile Conference, 2009. AGILE'09, August. 2009, pp. 41-48.

[15] Y. Ghanam and F. Maurer, “Extreme Product Line Engineering–
Refactoring for Variability: A Test-Driven Approach”. In Agile
Processes in Software Engineering and Extreme Programming ,
Springer Berlin Heidelberg, 2010, pp. 43-57.

[16] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, “Using composite
feature models to support agile software product line evolution”.
InProceedings of the 6th International Workshop on Models and
Evolution, ACM, October.2012, pp. 21-26.

[17] M. Acher, P. Collet, P. Lahire, and R. B. France, “Separation of
concerns in feature modeling: support and applications”. In Proceedings
of the 11th annual international conference on Aspect-oriented
Software Development, ACM, March. 2012, pp. 1-12.

 [18] G. Kotonya, J. Lee, and D. Robinson, “A consumer-centred approach
for service-oriented product line development,” 2009 Jt. Work.
IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw. Archit., September.
2009, pp. 211–220.

[19] J. Cubo, N. Gamez, L. Fuentes, and E. Pimentel, “Composition and
Self-Adaptation of Service-Based Systems with Feature Models”,
In Safe and Secure Software Reuse, Springer Berlin Heidelberg, 2013,
 pp. 326-342.

[20] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models”,
J. Syst. Softw., vol. 91, May. 2014, pp. 24–47.

[21] D. Dhungana, A. Falkner, and Haselböck, “Generation of conjoint
domain models for system-of-systems”. In Proceedings of the 12th
international conference on Generative programming: concepts &
experiences, ACM, October. 2013, pp. 159-168.

[22] T. Allweyer, “BPMN 2.0: introduction to the standard for busines
process modeling”. BoD–Books on Demand, 2010.

[23] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and G. Saake, “Applying
Design by Contract to Feature-Oriented Programming”. In Proceedings
of the International Conference on Fundamental Approaches to
Software Engineering (FASE), Springer, 2012, pp 255–269.

[24] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles”. Internet Computing, IEEE, 9(1), 2005, pp.
75-81.

190Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

