
Cybernetic Aspects in the Agile Process Model Scrum

Michael Bogner, Maria Hronek, Andreas Hofer, Franz Wiesinger

University of Applied Sciences Upper Austria
Department of Embedded Systems Engineering

Hagenberg, Austria
Email: [michael.bogner, maria.hronek, andreas.hofer, franz.wiesinger]@fh-hagenberg.at

Abstract—Agile process models provide guidelines for modern
software development. As one of their main purposes is to
complete projects under external influences as successfully as
possible, the question arises as to how reliably and routinely
given project goals can be achieved by means of such process
models. This is all the more relevant as today, unfinished software
projects frequently lack certain functionality, or missed project
deadlines are still on the daily agenda in software development.
Therefore, research has been done to identify the coherences
between agile process models and cybernetics. Cybernetics is a
natural science based on biocybernetics which forms the basis
for well-functioning processes. It was analysed how it helps to
cope with complexity, thus allowing for viable complex systems or
processes. Cybernetics, as a science of functioning, is also relevant
for agile process models. Once the basic cybernetic aspects are
applied, processes are kept under control and organized in ways
that ensure long-term viability. This paper reports the results of
the selected agile representative Scrum. It shows that although
some major cybernetic aspects like communication, feedback
and circularity are covered, other basic cybernetic principles are
missing in Scrum. Yet, these shortcomings can be compensated in
order to get essential reliability, especially in critical situations.

Keywords–agile software development; Scrum; cybernetics; bio-
cybernetics.

I. INTRODUCTION

A major challenge of today’s project management is the in-
creasing complexity and the dynamics of changing conditions.
Project requirements are getting more and more complex and
therefore often cause serious problems for project managers.
To meet these requirements in modern software development
and to cope with complexity we use process models like the
agile model Scrum [1]. It is easily understandable but not
absolutely easy to use. In some cases, complex problems can
result in loss of control [2]. To counteract this, we typically
try to eliminate one problem after the other arising during the
development cycle. But this leads to higher costs and missed
project deadlines. As a result, the product quality is strongly
affected and the project goals will be missed in some cases.

We often overlook that there is a science that can help
to cope with complexity. It helps to lead a project in the right
way from the beginning to the end. It shows how to survey the
complexity and how to deal with it without fighting against it.
This science is called cybernetics. It is a natural science which
is the basis of many well-functioning processes. Processes and
procedures can be kept under control with this science [3].
Cybernetics is an integrative multidisciplinary meta-science.

It comprises various theories, primarily the theories of infor-
mation and communication, and the theory of regulation and
control. Without the laws of cybernetics, almost nothing would
work - no aircraft, no computer, no large city and no organism
[4]. As one of the most fundamental and powerful sciences,
cybernetics incorporates the essential mechanisms in order to
cope with complexity: self-control, self-regulation and self-
organization. In our world of increasing complexity, cyber-
netics provides the invariant laws of functioning. This holds
true for biological, technical, physical, social and economic
systems, but most people are not aware of that [5] [6].

As cybernetics is the powerful meta-science which helps
to accomplish complex processes successfully, the question
arises, whether agile software process models fulfill the basic
requirements of cybernetics to reliably guide the entire devel-
opment cycle. This question addresses not just certain business
cases, but is effectively a fundamental question. Cybernetics
defines the basic laws, which have to be fulfilled otherwise
the development process could get out of control [3]. We have
started our research activities with the agile process model
Scrum. Scrum is not only well-known, but also widely used.
Therefore, we have selected it as our first research candidate.
The cybernetic aspects in Scrum have been worked out and
they will be described and discussed below to show if they
keep the development process under control. The results are
presented in this paper.

In addition, we have analysed the aspects of biocybernetics
to see if the process model meets the requirements to be
long-term viable. Whether certain processes or systems will
be viable and capable of ”surviving” permanently depends on
how far they obey certain basic principles of biocybernetics
[7]. These principles and the results of our research have been
summarized and are also included in this paper.

This paper is divided as follows: Section II briefly presents
the main aspects of Scrum being relevant for this paper. Section
III introduces cybernetics in order to make a comparison
afterwards in Section IV. Biocybernetics with its basic rules
is introduced in Section V. Each rule is discussed with regard
to Scrum. Finally, Section VI summarizes the relationship of
Scrum and cybernetics and concludes the paper.

II. SCRUM

Scrum is a lightweight agile process model developed
by Ken Schwaber and Jeff Sutherland [1]. It provides a
framework to manage complex product development and it
has clearly defined rules and regulations. The development

167Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

process remains flexible and transparent all the time. Scrum
is based on iterations where each one usually lasts one to a
maximum of four weeks. This iteration is called a Sprint. In
the beginning, basic product requirements must be known and
committed to the Product Backlog. The requirements are split
into tasks and stored in the Sprint Backlog in order to start
a Sprint. This process is shown in Figure 1. These tasks are
the most important tasks which should be handled during the
next iteration. The intention is to have a potentially executable
product at the end of a Sprint, called the product increment.
The functionality grows from Sprint to Sprint.

Product
Backlog

Sprint
Backlog

Product Owner

Product
Increment

Sprint

Daily Scrum
Meeting

Scrum Master

Team

Figure 1. The Scrum Process

There are three essential roles that bring Scrum to life.
The Scrum Team consists of a group of seven plus/minus two
people. They execute the tasks from the Sprint Backlog. The
team works in a self-organized fashion. Another important role
is the Scrum Master. He or she has to see that impediments
to the team’s progress are removed. The Scrum Master also
has to ensure that the process model is proceeded correctly.
The Product Owner is the third defined role. He or she argues
the project goal and defines and prioritizes the single work
packages in order to maintain the Product Backlog.

Communication in Scrum is essential. Therefore, there
are four significant meetings. During the Planning Meeting
all three roles decide together which requirements from the
Product Backlog should be processed during the next Sprint.
They move all tasks to the Sprint Backlog. In the Daily Scrum
Meeting, the team meets the Scrum Master for some short
feedback. The Product Owner can participate. In the end of
a Sprint there is the Review Meeting where the team shows
the Product Owner what they have done. And there is also
the Retrospective Meeting that acts as a feedback meeting for
the team and the Scrum Master. In this meeting, they evaluate
the last sprint and discuss what could be improved in the next
sprint [8] [9] [10].

III. CYBERNETICS

According to Norbert Wiener, cybernetics is the science
of control and the regulation of systems under real-time
conditions. This also includes the automation and information
processing of such systems. It is important to note regularities
and to recognize the functional patterns of complex systems
instead of specific details [3]. The real origin of cybernetics lies
in nature and not - as often mistakenly assumed - in computer
science. The most important factors of cybernetics are control,

regulation and feedback. It can be referred to as a science of
functioning [5].

This section provides a brief overview of the characteristics
of complex systems and the fundamentals of cybernetics. At
the end of this section, all the essential and relevant aspects for
the comparison with the process model Scrum are summarized.

A. Characteristics of complex systems

In general, we have to distinguish between simple and
complex systems. Simple systems are easily predictable. They
are also easily applicable even without having knowledge of
cybernetics. Complex systems can cause substantial problems
if not held under control as they are much more interconnected
and highly dynamic. It is not possible to intervene easily
because this can result in unpredictable side effects [5].

The term ”system” regarding cybernetics always means
open systems, which interact with the environment and adapt
to it over time. In contrast, closed systems do not interact and
are self-contained. In such a given open and complex system,
we cannot reduce complexity in order to simplify it, as it is
often claimed. Complexity means variety. It is inevitable if
the system has to accomplish all of its tasks reliably. If the
complexity would be reduced, also variety would be reduced.
Under certain conditions the system would fail. So we have to
master complexity and to make use of it instead of eliminating
it [2].

B. Importance of feedback

Due to cybernetics, ”information” was recognized as third
essential basic item supplementing the two basic elements
”energy” and ”matter”, which both are not sufficient to explain
how a system behaves. Information is the key which describes
how things are organized in a dynamic system [2]. And to
handle and manage such systems reliably, a special kind of
information is needed, namely feedback. Without feedback it
is simply impossible to hold a complex system under control
[3].

C. Basic rules to control complex systems

Cybernetics presents the laws of nature which are respon-
sible for the reliable functioning of complex systems. Relevant
rules are mentioned below:

1) Circularity: Circularity is gained by regular feedback. A
cybernetic system works because of control loops, circularity
and feedback. That means that the system gives itself feedback.
Through that process, the systems can excuse errors and are
very robust [7]. The technical representation of this aspect
is the well-known feedback control loop in Figure 2. It uses
the cybernetic terminology and shows that the regulator com-
pensates the influences of any disturbance keeping the system
under control. Such systems follow an evolutionary approach.
They are self-adjusting. And this is why such systems are
viable in the long-term.

2) Self-organization and self-regulation: The mentioned
self-adjusting aspect includes also self-organization and self-
regulation. A cybernetic system is not externally directed.
Instead, it is autonomous in the context of the whole system.
It directs and controls itself in order to cope with complexity.

168Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

regulator

control factor

guide factor

exchange value

disturbance factor

sensoractuator

environment

 current valuecontrol value

target value

Figure 2. Feedback control loop according to Vester [7].

3) Theory of recursive systems: Cybernetic systems are
long-term viable if they consist of interconnected self-adjusting
subsystems building a recursive structure. The single systems
interact with each other to represent the whole system.

4) Law of requisite variety: If we want to control a
complex system, we need at least as much complexity and
variety in the control mechanism as the controlled system itself
has. If there is too less variety in the control system then
the controlled system will sooner or later get out of control,
as under certain conditions the control system cannot react
properly to dominate the situation. The British cyberneticist
and neurophysiologist W. Ross Ashby discovered the law of
requisite variety, also called ”Ashby’s Law” [11]:”Only Variety
can destroy Variety”. It is the basic law of complexity. In
simple terms, consider a switch with the two possible states
”0” and ”1”. It is obvious that it is not able to control a system
having three or more states. In order to control a system, we
need as much variety (which means complexity) as the system
itself [2].

D. Patterns and interconnections instead of details

To understand a complex system, it is not necessary to
know as many details as possible. An abstract consideration
and the recognition of patterns is the right way to understand
a system. Interconnected thinking is extremely important. It
is not the details that are important in a system but the
coherences. The interconnections between the individual parts
are important.

E. Cybernetic aspects put together

To summarize, complexity cannot be reduced but domi-
nated. It is important that we work with it instead of fighting
against it. To master complexity we need:

• self-regulation and self-organization,

• circularity for repeated and continuous operation,

• regular feedback in real-time for deterministic adjust-
ments,

• communication and interconnectedness for a proper
and continuous flow of information,

• autonomy allowing self-organization and self-control,
and an

• evolutionary approach for possible adaptation due to
changing conditions in the environment over time.

IV. CYBERNETICS AND SCRUM

Having shown the fundamental concepts, we will now
compare Scrum with the essentials of cybernetics to verify
whether it supports all the requirements of a sustainable and
functional process. This includes mastering complexity, circu-
larity, feedback, communication, real-time aspects, intercon-
nectedness, autonomy, evolutionary approach, self-organizing
and self-adjustment.

Circularity: The process model Scrum works in iterations.
Scrum is already cyclically arranged since Sprints recur after
a certain amount of time. During the Review Meeting the
Product Backlog can be filled with new requirements from
the customer as well. The result of the Retrospective Meeting
is that the team can work better than in the Sprint before
because they have reviewed the problems and obstacles. All the
meetings improve the effectiveness of the team and the product
quality. Therefore, the behaviour of the next Sprint is positively
influenced. The iterations in Scrum represent the circularity
required by cybernetics. It is the basis for continuous adaption
and optimization and forms the control loop to keep the system
under control.

Feedback in real-time: Feedback is established in various
ways in Scrum. Considering the Sprint, which is determined
by a duration of up to four weeks, there is the Sprint Backlog,
which should be executed in order to get the product increment.
At the same time, the Scrum Master gets the feedback of the
team from a technical and a personal point of view out of
the Review and Retrospective Meeting. Equally important is
the feedback from the Product Owner and the customer which
plays a minor role in Scrum. It is essential in order to detect
problems early and to reach the goal in time. The Daily Scrum
Meeting can also be seen as a feedback loop. This is real-
time feedback. The Scrum Master can immediately react and
appropriately guide the project if a team member is blocked by
an obstacle and not able to work. Also, the team gets feedback
from the outside world representing an open system.

Communication: Communication occurs between all the
roles. In the Daily Scrum, regular communication takes place
every single working day and also during all the other meet-
ings. Through this constant communication, decision making
processes improve. The purpose is that information flows
between all stake holders. This is achieved in Scrum.

Interconnectedness: All the roles in a Scrum project are
working together. All are interconnected, and this leads to a
simplified coordination and a higher product quality as there
are short communication paths. This is very important for
direct information exchange.

169Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Autonomy: The guidelines of Scrum let all team members
work independently. They are free to act and decide during
a sprint. This allows the team to do the right things right, as
they are the experts in their specific domain. Autonomy also
happens at the beginning of a Sprint when the development
time of each work package has to be estimated. Every member
estimates his task for the next sprint autonomously, which
ensures much higher accuracy. Autonomy comes through the
self-organizing teams, which means that they bear a great
responsibility to work in a disciplined manner. Despite the
autonomy, Scrum functions as a superior guideline.

Evolutionary approach: An evolutionary approach is in-
herent in every cybernetic system. It ensures a continuous
development and adaption to changing conditions surrounding
the system. So, the evolutionary approach keeps the cybernetic
system viable. Looking at Scrum, it shows that changes of the
agile process model are basically possible. Change proposals
can be submitted. But one has to bear in mind that it is
at the sole discretion of Jeff Sutherland and Ken Schwaber
to apply any changes to the process model itself. Strictly
speaking, this follows not the idea behind an evolutionary
approach. Cybernetic systems are free to adapt to changing
conditions as soon as they appear. Such systems do not have
to wait for anything or anyone and are in an continuous
process of adaption. In contrast, Scrum argues that it changes
its framework infrequently.

From the strict cybernetic point of view, the process itself is
not designed to change or adapt itself according new require-
ments appearing from the outside world. This is a missing
aspect in scrum that cybernetic systems must inherently have.
It means that the process model will support today’s projects
but unless adaptions it is uncertain if it will fit in future
projects.

Self-organizing and self-adjusting: For the members of
the Scrum Team, there is no precise formal rule or guideline
how they have to do their job. Therefore, they can freely adapt
to unknown complex project in the required way. They adjust
independently to the task to be solved. That means that Scrum
Teams regulate and organize themselves. So, they are working
more efficiently, more motivated and more effectively because
they have no precise rules to which they must adhere. Due
to all these characteristics, the productivity can be sustainably
increased.

So far we see that Scrum serves well as a lightweight agile
process model, which helps to cope with the development of
products with a complex scope. The structure of the agile
process model combined with the distribution of the different
roles overcomes the challenge of complexity and delivers
a satisfactory result. If it comes to mastering complexity,
everything collaborates including iterations, communication
and regular feedback, self-organization and self-regulation. As
Scrum supports todays projects well, we identified a lack
in Scrum itself. It is not designed to adapt itself to new
requirements.

V. BIOCYBERNETICS AND SCRUM

Cybernetics has its origin in biocybernetics. As a natural
science, biocybernetics represents the fundamentals of the way

living systems and organisms in the nature function success-
fully. Most natural systems have to deal with substantially
more complexity than any technical system made by humans.
Since billions of years, nature functions reliable and most
efficient [12]. Frederic Vester, the founder of biocybernetics,
defined eight basic rules every complex biological system
has to fulfill in order to survive. Simply, these rules are
principles of nature [7]. They can guarantee a successful
evolutionary existence as they present possibilities for long-
lasting development and survival of any living system - if it is
a human being, an ecological system, a company or a city [13].
So biocybernetics represents the natural basis of cybernetics,
which means that cybernetics comprises the corresponding
science. Therefore, every technical system or process has to
fulfill this eight rules of biocybernetics to be long-term viable.

As this is rather important, research has been done to
analyse the biocybernetic aspects of Scrum. As an in-depth
discussion of biocybernetics goes far beyond the scope of this
paper, we give a short introduction to each of the eight rules
and present our results afterwards. We recommend Vester’s
book, The Art of Interconnected Thinking, [7] for a compre-
hensive discussion of biocybernetics.

1st rule: Negative feedback cycles must dominate over
positive feedback: In cybernetics, this means that for a system
it is very important to be stable against interfering influences.
To explain the principle briefly, an example for negative
feedback is the control loop of the thermostat of a heating
system. If a certain temperature is reached the energy input
has to be decreased in order to not exceed the temperature
value. If the temperature is too low, the energy input would
be elevated. Negative feedback can also be found in nature.
In general, there is almost exclusively negative feedback in
order to keep the system stable. Positive feedback in nature
appears in avalanches or steppe fire, for example. They build
up continuously and achieve a new order at the end, which is
exactly not desired in stable systems. That is why negative
feedback has to dominate positive feedback, otherwise the
system would collapse.

Negative feedback is therefore based on a control or
feedback loop balancing the system. In terms of the Scrum
model, this feedback control system means that the control
factor would be the project and the regulator can be seen as
Product Owner and Scrum Master. The guide factor leading
the way would be the customer together with the market who
will specify the product requirements. The team represents the
actuator, which adjusts the actual and the desired condition.
The current value is reported through direct communication
and through test results of the product increment. Misconcep-
tions can be critical for the process. They are reflected by the
disturbance factor in the control loop. Misunderstandings can
arise between the individual developers or between the team
and the Product Owner or the Scrum Master. Also, longer
absences due to illness or information deficits and wrong
assumptions or misinterpretation of the requirements can lead
to problems, which are solved through communication and
correcting feedback during the sprint. And the feedback of
the team at the end of a sprint leads to improvements that will
be implemented in the next sprint.

In Scrum, the negative feedback mechanism is represented
by this inherent control loop. It reliably prevents the process

170Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

to run out of control.

2nd rule: The function of the system has to be inde-
pendent of quantitative growth: A system passes through
metamorphoses while growing in order to survive. Based on
the self-organization of cybernetic systems it does not have to
be dependent on growth. Instead, there must be a restructuring
step during the growth in order to move from one stable state
to the next. After growth, the system is ready to get into the
next phase. Therefore, the growth resembles a sustained ”S”-
shaped curve. But if a system suffers from unrestricted linear
growth without proceeding to a stable state, it will lead to a
collapse in the end. A butterfly would be the best example for
growth and metamorphoses. The butterfly caterpillar pupates
after a certain growth and envelopes itself in its cocoon to
become a butterfly. At the hands of this transformation the
linear growth is stopped, and continues as a butterfly in the
next phase [7]. For complex systems, it can be deduced that
reconstruction and metamorphoses are not replaceable by pure
growth.

At this point the size of a Scrum Team matters. If a project
gets bigger and more than five to nine people must work in
a team, this team may not grow linearly. The project has to
be split in order to get smaller teams that can work more
effectively. This split is supported by the process model as
Scrum is scalable for larger development teams. It is called
Scrum-of-Scrums. It is important that the new sub-groups
have superior coordination. There is a so-called Scrum-of-
Scrums Meeting where all Scrum Masters of the single teams
come together and can take over coordination [14]. If teams
would grow linearly, communication would be very difficult
because the communication channels rise exponentially with
the number of people. The organizational overhead scales up
and effectiveness and efficiency degrades. Finally, the system
will run out of control and end in chaos. Therefore, linear
growth should always be avoided. It needs ”metamorphoses”
for the purpose of a division in sub-projects.

3rd rule: The system must operate in a function-
oriented, not product-oriented manner: The environment
is constantly changing and that is why product requirements
also vary. All products have a certain life cycle and will
sooner or later disappear. On the other hand, the basic
needs will not disappear and remain existent. The functional
requirements of a product usually remain for a long time
whereas products themselves change very often. For example,
horse-drawn carriages are substituted by cars, telephones by
modern smartphones, while mobility and communication as
basic human needs further exist. Hence, it is always important
to think function-oriented.

Scrum works without dedicated products. It works re-
gardless of whether a database application, a smartphone
application, a server application or a desktop application is
the product. Scrum is detached from products and represents
the ”function”.

4th rule: Exploiting existing forces (Jiu-Jitsu-Principle):
Normally, Jiu-Jitsu is a Japanese martial art, which is used for a
self-defence. The main principle in Jiu-Jitsu is that the force of
the opponent should be utilized instead of defending against it.
In systems this energy serves as control-energy. Applied here
it means that the existing force and energy should be used

instead of rejecting it.

This rule can be reflected in Scrum. Scrum uses the
customer and the market with its requirements and wishes
as external energy. They call the shots and decide what will
happen next, so they are the driving force for the project.
All changes that they bring along are very important for
the quality of the final product and their competitiveness, as
already the Agile Manifesto states [15]: ”Welcome changing
requirements”.

5th rule: Multiple use of products, functions, and
organizational structures: Viable systems put emphasis on
reusability. If every product would be designed, produced, sold
and used on its own, the costs and energy input would increase
considerably. The efforts of energy, matter and information can
be reduced substantially gaining a synergy effect.

In every project guided by Scrum, the organizational struc-
ture is intentionally left identical. Meetings are at the same
time, at the same place, and have the same structure. This
leads to more efficiency as stable conditions makes it a routine
work. Another aspect is the specific knowledge of the Scrum
Team. This knowledge and also existing software products,
like libraries or frameworks, can be used in other projects.
This makes multiple use of products and functions very easy
and comfortable in Scrum.

6th rule: Recycling: Nature never produces garbage. Due
to its cyclic and interconnected processes, waste does not exist
and is used elsewhere as important resource. Recycling is one
of the most important rules humans should revert to in order
to keep a system alive.

It is hard to incorporate this rule into the process model
Scrum because a Scrum Team will not produce waste in terms
of material waste. Maybe, functions which are implemented in
the actual Sprint and will not be used in the end can be seen
as trash. But they do not have to be recycled. They can, for
example, be provided for other teams or taken as features. The
development is usually consumer-market-controlled so there is
no real overproduction.

7th rule: Symbiosis: This usually means the cohabitation
of two or more species in a common environment, which
benefit from each other. In order to enable symbiosis, diversity
in a small space is required. That means that many different
elements within a system can share resources and functions
in order to help other elements accomplishing their work in a
more effective way.

The members of a Scrum Team should be located in close
proximity to each other. This enables better communication
and cohabitation through symbiosis. They benefit from each
other if there are any problems. Here, especially the Scrum
Master takes action and eliminates any obstacles or issues so
that the team can work efficiently. And arising requirements
not discussed so far can be cleared by the Product Owner,
which itself benefits from much higher product quality. They
complement each other.

8th rule: Biological Design: All systems, products, func-
tions or organizations should be developed in respect of the
nature. Building anything against nature is plain unnatural. So,
nature always matters as it defines what is right or wrong.

171Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Scrum has to correspond to the structure of a viable system
and may not be unnatural in its structure and process. This
sounds abstract but means nothing else than Scrum has to
follow natural processes if it wants to act viably. Scrum
fulfills this requirement of rule eight as it follows biological
design and not an artificial one. It brings along all these
preconditions of biological design with circularity, feedback,
autonomy, self-organization, recursive structure and all other
mentioned aspects satisfying this last rule of biocybernetics.

In summary, the fundamental eight biocybernetic rules are
met in different degrees. From the perspective of our research
activity, basically most of them can be seen as fulfilled.
Looking at the third rule where functions dominate products,
shows that the point of view is essential: as Scrum is not
focused on special products and therefore flexible for software
projects and applications of different kinds, it fulfills this
rule quite good. In contrast, if we look at Scrum itself, it
shows some shortcomings in continuous adaption to changing
conditions. The sixth rule, which means recycling to avoid
waste, is applicable only partly due to the immaterial nature
of computer science.

VI. CONCLUSION AND FUTURE WORK

Even if Scrum fulfills most of the requirements cybernetic
systems must have, we come to the conclusion that it is not a
true cybernetic process. Not only that Scrum does not claim
itself to be cybernetic. The history of Scrum begins in lean
management strategies of Japanese companies. It incorporates
a lot of best practices and has not been designed with cyber-
netics in mind.

Nevertheless, Scrum is of course very suitable for today’s
software development projects. As responding to change is an
important aspect in Scrum, it addresses a fundamental concept
of cybernetics to hold a system under control. And there
are quite more major principles in Scrum beside circularity
and feedback, namely autonomy, self-organization and self-
adjustment within the context of the overall process structure.

Scrum guides the project management process in the
right way and successful projects are no accident. Also the
biocybernetic requirements are largely fulfilled, which leads
to the same conclusion. Although, some of the rules are
not directly applicable due to the immaterial speciality of
Computer Science, we consider them as satisfied, as we have
not discovered major inconsistencies or conflicts.

If we do not look at today’s projects but on projects
in the distant, or maybe, not so distant future, the missing
evolutionary approach must be mentioned. Submitting change
proposals differs from a cybernetic way. But at this point,
Kanban can be deployed [16]. Kanban is a management
technique for software development incorporating continuous
improvement of the process itself in small steps. So with Scrum
and Kanban combined, this essential cybernetic aspect can also
be satisfied, which keeps the system long-term viable.

Beside the overall process, which has been analysed here,
shortcomings can be discovered in some other areas. For
example, Scrum defines ”roles” although cybernetics requires
”functions”. The process model uses this term in order to
determine key tasks and to define responsibilities. So, every

role has a certain focus as already mentioned, but Scrum
does not explicitly forbid additional tasks arising during the
development process. In practice, it is often seen that additional
tasks are carried out in order to get a product with the required
quality. Therefore, autonomy and self-organization are the key
aspects to get this done right, although this is not noted in
Scrum.

Another issue concerning autonomy and self-organization
is the Scrum Team. Scrum does not define any cybernetic
approach the team has to follow. Therefore, it can be com-
pletely ignored meaning that the recursive cybernetic structure
is broken. As before, it is the responsibility of the autonomous
team to do the things right. The prerequisites are met as
both, Scrum Master and Product Owner, can be present during
the Daily Scrum Meeting in order to support a cybernetic
approach.

After this analysis of the coherences between Scrum and
cybernetics it can be seen that many cybernetic aspects are
already covered in Scrum. So far, our recommendation is to
additionally apply Kanban and basic cybernetic principles in
order to overcome the mentioned shortcomings. In future work,
we will analyse this promising combination in more detail.

REFERENCES

[1] J. Sutherland and K. Schwaber. The Scrum Guide.
[Online]. Available: https://www.scrum.org/Portals/0/Documents/Scrum
Guides/2013/Scrum-Guide.pdf (2014.05.23)

[2] F. Malik, Komplexität - was ist das?(Complexity - What is this?).
Cwarel Isaf Institute, 1998.

[3] N. Wiener, Cybernetics: or Control and Communication in the Animal
and the Machine. New York: Wiley, 1961.

[4] F. Malik, Strategy: Navigating the Complexity of the New World.
Campus, 2013.

[5] ——, Strategie des Managements komplexer Systeme: Ein Beitrag zur
Management-Kybernetik evolutionärer Systeme (Management Strategy
of Complex Systems: A Contribution of Management Cybernetics of
evolutionary Systems). Haupt, 2008.

[6] ——, “The six cultural values for the reliable functioning of an
organization,” Malik on Management, Volume 22, 2014.

[7] F. Vester, The Art of interconnected thinking. Mcb, 2013.
[8] A. Cockburn, Agile Software Development. Addison Wesley, 2006.
[9] H. Wolf and A. Rock, Agile Softwareentwicklung: Ein Überblick (Agile

Software Development: An Overview). dpunkt.verlag, 2011.
[10] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,

2004.
[11] R. Ashby, An introduction to cybernetics. Chapman Hall, 1956.
[12] F. Vester, “The biocybernetic approach as a basis for planning our

environment,” System Practice, Volume 1, No. 4, 1988.
[13] G. R. M. Harrer, “The biocybernetic approach as a basis for planning

and governance,” Proceedings of the 54th Meeting of the International
Society for Systems Sciences (ISSS), Waterloo, Canada, 2010.

[14] U. Biberger, Gestaltungshinweise für agile Software-
Entwicklungsprojekte unter dem Blickwinkel der Kybernetik (Design
Guidelines for agile Software-Development Projects from the Viewpoint
of Cybernetics), 2009.

[15] Agile Alliance. Manifesto for agile software development. [Online].
Available: http://agilemanifesto.org/principles.html (2014.05.23)

[16] D. Anderson, Kanban. Blue Hole Press, 2010.

172Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

