
The Impact of User Interface Patterns on Software Architecture Quality

Stefan Wendler and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — Current research suggests user interface patterns
(UIPs) to lessen efforts for the development and adaptation of
graphical user interfaces (GUI). UIPs shall enable the reuse of
both layout and interaction definitions that can be instantiated
for any desired context. Most approaches are based on
generative development. However, no details about target
architectures or examples that prove the variability and proper
structuring of UIP artifacts have been published yet.
According to conventional GUI architecture development,
major design decisions have to be solved individually, since no
standard architectures are presently available. This applies to
UIP based solutions as well, so that the target architectures are
both hard to establish and maintain. On the basis of a general
GUI responsibilities model, prevailing GUI design issues will
be analyzed according to their impact on UIP based solutions.
Furthermore, UIP specific responsibilities are identified and
modeled as a software category graph. With this work, the
implementation options of UIP architectures are discussed.
Finally, we draft a possible solution architecture on the basis of
these generalized concerns.

Keywords — user interface patterns; model-based user
interface development; HCI patterns; user interface generation;
GUI software architecture; graphical user interface.

I. INTRODUCTION

A. Motivation
Domain. Nowadays, business processes build on the vast

support of business information systems. These systems have
to realize a large set of requirements that presume a
multitude of services that are requested to handle thousands
of data sets with a clearly defined stereotype structure.
Depending on the domain and specialization of business
processes, standard software for customizing to specific
requirements or software that has to be developed
individually remain as options for their IT-support.

Individual GUIs. Regardless of the chosen solution, the
demand for individually designed graphical user interfaces
(GUI) has to be considered as a great impact on software
architecture. Proven human computer interaction (HCI)
patterns [1] enable usability traits that can be essential for
both user acceptance and productivity. Therefore, those
patterns are to be applied to the context of dialogs, which
will be coupled to the application services and data structures
the users need to interact with according to business process
definitions. In this context, standard software quickly is
pushed to its limits concerning customization options for
individual dialogs. As far as individual software is
concerned, generative and model-based development has

greatly advanced with respect to the creation of stereotype
structures within a software architecture.

User interface patterns. However, the development and
maintenance of GUI dialogs still implies high efforts. To
achieve a higher efficiency on the basis of increased reuse,
HCI patterns are to be formalized in order to apply them for
effective generation of dialog views. On that basis, user
interface patterns [2][3] (UIPs) have emerged that shall
model essential HCI pattern structures. In addition, the new
kind of pattern offers parameterization options in order to
apply the corresponding HCI pattern to any suitable context.
In sum, the application of UIPs promises many feats for
future generative development

Limitations. Currently, two major issues obstruct the
vast deployment of UIPs.

Primarily, the UIP concept itself has not gained sufficient
maturity: the current state of formalization for UIPs is still
not adequate with respect to UIP variability requirements [3],
which are essential for a general application of UIPs as
versatile patterns. The design of a dedicated UIP language
could be initiated as an option and already was attempted [4]
or is work in progress [5]. Nevertheless, high efforts are to
be considered for that approach.

Besides, UIPs require a software architecture of high
quality due to their high reusability and variability traits. The
architecture has to be composed of a stable set of
components with standardized interface structures to allow
the reuse of UIPs within and among different software
projects. Thus, UIPs need to be integrated into an
encapsulated structure within the GUI sub-system, so that the
realization of workflows, functional requirements and related
application components is not affected. Ultimately, UIPs
have to be decoupled from their application context. The
current research into GUI architectures does not provide such
an architecture and approaches that are already based on
UIPs have not published details of target architectures yet.
We will briefly reason about that architecture concerns.

Architecture concerns. Available patterns [6] and
related sources [7][8] provide valuable aspects for design
decisions, but they are rather isolated and have to be
integrated into one comprehensive reference architecture that
allows the seamless integration of UIPs. In this respect,
common MVC variants and the Quasar client reference
architecture [9] are too general in concept [10], so that major
design decisions are still to be elaborated in order to allow
the effective deployment of UIPs.

Moreover, the technical GUI frameworks already define
some architecture constraints for action- and data-binding, as
well as control facilities. So, the architect has to find ways to
limit their influence on the variability of UIPs, otherwise

134Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

UIPs would only be applicable in a certain technical
environment.

Ultimately, the development of a high quality software
architecture on the basis of a clearly defined requirements
structure takes considerable time and has to mature by the
experience gained during several projects. Often budgets are
just as high to barely exceed break-even or reuse is not
envisioned or planned [11], and so, hardly any efforts remain
to build and refine reference architectures in the aftermath. In
the end, this tasks remains for academic research.

B. Objectives
With our previous work on UIPs [12][3][13] and general

GUI architecture responsibilities [10], we have a solid
foundation to approach the above introduced UIP- and GUI-
architecture limitations.

Firstly, we have to consider that UIP based solutions
heavily rely on a pre-defined architecture to accommodate
code structures build from both the pattern and instance or
configuration information. Consequently, we have to analyze
the major GUI design decisions and identify additional
responsibilities required for the implementation of UIPs.

Since model-based approaches are already work in
progress, we will have to critically discuss the principal UIP
implementation architectures. Accordingly, we will criticize
the general formalization approach and argue for an
alternative solution. As a consequence, we draft a suitable
GUI reference architecture based on the new UIP concerns.

C. Structure of the Paper
In the following section, related work that is relevant for

our objectives is presented. The third section presents our
analysis of the impacts UIP based solutions have on the
general GUI design issues. In addition, a software category
model is described that details the UIP specific
responsibilities of a GUI architecture. In Section IV, the
principal UIP implementation alternatives are discussed. A
UIP based architecture is drafted in Section V, before we
present our results in Section VI. Finally, we draw our
conclusions and state future work in Section VII.

II. RELATED WORK

A. Standard GUI Architecture for Business Information
Systems
Siedersleben and Denert [14] already tended to the

missing GUI architecture standardization issue outlined in
the introduction. To enable a more effective design with
respect to separation of concerns and increased adaptability
to changes, business information systems had to be designed
on the basis of a standard architecture, which would
incorporate a defined set of patterns and interfaces.

One of those patterns of the envisioned standard
architecture was the Virtual User Interface (VUI) that is
depicted in Figure 1. The VUI should allow a developer to
implement dialogs with a high independence from the
rendering GUI Framework. In detail, a Dialog and its events
should be implemented with the aid of the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of the imported GUI Framework directly. The primary goal

was to preserve the interchangeability of the GUI
Framework without affecting existing dialog
implementations. Solely the component Virtual User
Interface would interact directly with the GUI Framework,
and thus, would depend on technological aspects.

The basic concepts worked as follows. A Dialog would
create and even adapt its view at runtime with the operations
provided by WidgetBuilder. The VUI could be delegated by
the Dialog in order to construct and configure a new status
and button bar inside a specified frame. Moreover, the VUI
would notify the Dialog via the interface EventListener when
events would have been induced by UI-Controls. More
details are not known.

cmp VUI

GUI
Framework

Virtual User
Interface

DialogApplication
Kernel

EventListener

WidgetBuilder

«use»

«call»

«call»

«use»

Figure 1. Virtual user interface architecture as introduced in [14].

B. GUI Software Categories and Design Issues
No further ideas for the standardization of an architecture

for the domain have been published. A GUI reference
architecture [15][9] (Quasar client) and a concept for the
identification of components as well as their interface design
[15] were presented instead. The latter was based on
software categories that would mark the responsibilities and
dependencies of a given component. These categories could
be used to valuate the cohesion of a given modular structure
according to the separation of concerns principle of design.

In [10], we applied the software category concept for the
identification and delimitation of general GUI
responsibilities. In this regard, the common MVC variants
[16][17] and the Quasar client architecture [9][15] were
considered both for analysis, and besides other sources, the
derivation of software categories. The resulting software
category hierarchy and their dependencies are illustrated in
Figure 2. The related sources mostly separate the very basic
categories 0 (a programming languages’ reusable
foundations), A (application, domain) and T (technical
aspects, frameworks) without any refinement. Being based
on these general software categories, each refined software
category of Figure 2 represents the knowledge required for
implementing the operations, their proper sequence and
required data structures for the respective responsibility they
are entitled with.

As a result of our analysis, we derived three major GUI
design issues. Firstly, the architect has to decide on how
much application control flow is assigned to GUI dialogs and
how they coordinate the interaction with the application
kernel. This would also influence the application related
event processing, and in particular, the update of presentation
view states due to changed application data (another view for
a certain use case step). Secondly, for the navigation among
dialogs and flow of the sub-dialogs a dedicated controlling
component has to be allocated. Thirdly, the transformation of
application aspects like data models and the visual
representation of domain model entities have to be solved. In
this regard, a tight coupling to technical frameworks should
be limited. For details, [10] can be consulted.

135Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

cmp GUI Software Categories

TA

View
Definition

Presentation
Event Handling

Presentation
(FUI)

Arrangement of
UI-Controls

Layout
Definition

UI-Control
Configuration

View State
Changes

Construction of
UI-Controls

Re-Arrangement
of UI-Controls

Technical Data
Models

Model Data
Edit

Modification of
UI-Control Properties

Addition and Removal of
UI-Controls

Dialog Logic

Data
Validation

Application
Logic

Application
Server Calls

Dialog
Navigation

Dialog Data
ModelDialog Lifecycle

Actions

GUI
Framework

UI-Control
Library

Layout
Manager

Event
Forwarding

Action
Binding

Dialog Event
Handling

Domain Data
Model

Data Types and
Validation Rules

Data
Conversion

0

Construction and
Configuration

UI-Control
PropertiesPresentation

Data Handling

Model Data
Observer

Data
Queries

Application
Services

Event Listener
Definition

Dialog State
Changes

Presentation
State Update

Figure 2. General GUI responsibilities modeled via software categories.

C. User Interface Pattern Aspects
Past work in the field of HCI resulted in the combination

of the specification of reusable GUI visual design and
interaction solutions with a pattern-based description.
Several pattern languages emerged [18]. Current research is
trying to exploit these patterns for the automated generation
of GUIs. As a consequence, UIPs are based on the idea to
formalize HCI visual designs into software patterns that can
be reused in any desired application context.

In [12], we elaborated the theoretical and practical
implications of that kind of pattern applied within the general
transformations from domain requirements to a final user
interface specification. As result, UIPs are very promising
for bridging the gap between pure requirements and potential
GUI specifications, since they define many aspects like used
UI-Controls and their interaction designs. Particularly, the
latter can be reused to imagine and prototype GUIs of high
usability. Moreover, we presented and discussed general
architectures for the practical application of UIPs.

With our contributions [2][19], first criteria and aspects
for the UIPs to be deployed for variable GUI dialog
generation were introduced. Based thereupon, we formed a
drafted definition of that particular artifact. The UIP
requirements were considerably refined in [3] by the
description of an influence factor model. Particularly, the
abilities of UIPs were defined by the three aspects view
(visual elements, layout), interaction (view states, events and
data-binding) and control (composition and interaction of
UIPs, binding to application relevant events).

Lastly, the UIPs aspects were further detailed by an
analysis model [13], which was derived from the impacts of
the influence factor model and describes the resulting
structure of a UIP. The elaborated structure could be
positively evaluated with UIP examples illustrated by object
models. With that last step, basic foundations of UIPs and
many aspects that are essential for the formal expression of a
UIP are available now.

D. Model-based Frameworks on the Basis of UIPs
Past research has put considerable efforts into the

deployment of UIPs or closely related patterns within model-
based developments processes.

The University of Rostock [20] mainly worked on the
derivation of dialogs from task models and included UIP-like
artifacts called PICs (pattern instance components) for the
generation of final views. A dedicated UIP formalization
language on the basis of UsiXML [21] called UsiPXML [4]
was created in parallel. A continuation is not known.

The University of Augsburg presented research into UIPs
with the introduction of an own modeling framework called
PaMGIS [5]. To express UIPs, a dedicated DTD was partly
presented in [5]. The work is still in progress.

The University of Kaiserslautern focused on the
application of UIPs for the domain of production
environments [22] and sought a way of enabling GUI
devices to be able to adapt their view at runtime [23]. In their
approach, UIML [24] as a basic GUI specification language
is used and augmented with a pattern interface and
configuration facilities to be interpreted at runtime. There are
only few details of the modeling framework [25] published.

In sum, all approaches suggest individual modeling
frameworks that rely on specific formalization formats of
UIPs and produce different outputs. A detailed review of
these approaches compared to our UIP requirements model
is provided in [3].

III. USER INTERFACE PATTERN ARCHITECTURE IMPACTS
AND RESPONSIBILITIES

A. Approach and GUI Software Categories
Due to the prevailing issues in GUI architecture design,

the development of a new reference architecture for UIPs is
most likely to be approached. The interfaces between
components need to be harmonized to fit UIPs as reusable
entities that may be exchanged to allow the quick adaptation
of GUI dialogs. In addition, the event processing has to be
prepared to allow the exchange and re-configuration of UIP
instances. Finally, UIPs will require a new quality of the
software architecture with additional responsibilities.

Category refinement. For the design of such a reference
architecture, it is of the essence to consider the separation of
concerns. To prepare a proper component identification in
this context, the software categories presented in Section II.B
will be of great value. They already incorporate the basic

136Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

separation of application and technology as requested in
[9][11][14][15] as far as possible. In addition, they feature
fine-grained refinements of both areas of knowledge. This is
essential to avoid coarse grained software categories that
concentrate too many responsibilities and would not improve
traceability. With coarse grained software categories the
component identification would not guarantee separated
concerns, since components eventually would have to be
refined on the fly during implementation. So, the creation of
traceability-links would rely on the coarse grained
architecture models, and most likely, would not result in a
detailed impact analysis. In contrast, the categories of Figure
2 were separated to a more fine grained level that is able to
guide the decisions for GUI design issues. Especially the
event processing was differentiated concerning the context
(Presentation, DialogLogic), triggers (Dialog Event
Handling and children) and execution (Application Server
Calls, Dialog Navigation, View State Changes) of state
changes. Furthermore, our analysis of the Quasar client with
the aid of the software categories in [10] revealed several
open issues that were due to lacking details or cohesion.

B. The Impact of User Interface Patterns on GUI Design
Issues
We discuss how UIPs will impact the GUI design

decisions and ultimately affect the identified responsibilities.
A-T-separation. Foremost, UIPs will stress the

separation of A and T categories due to their variability: If
UIPs are bound to a certain GUI Framework, they will be
virtually rendered useless for architectures employing other
technical environments.

Besides this very basic separation, an additional
separation has to be considered between Dialog Logic and
Presentation design. To allow the quick adaptation of
dialogs, the logical part of a dialog (dialog kernel) has to be
able to interact with a presentation that may be altered in
design frequently. The former should not be affected when
the presentation design was changed to an alternative set of
UIP instances. For instance, two large panels for editing data
in a single dialog were re-structured into a dialog featuring
two tabs instead. Thus, both logic and visual dialog parts
have to be decoupled for the adaptation of UIPs.

Flow of application logic. Concerning the division of
labor between application and dialog kernel, UIPs need a
single basis for coupling of their generic events to context
specific behavior. The OutputActions of a UIP [13] should
be processed centralized by a single component like the
dialog kernel to preserve the exchangeability of UIPs
emitting those events from the variable presentation part. In
this regard, the category Presentation State Update gains
importance and shall enable a dialog kernel to govern visual
changes regardless of the concrete Presentation
implementation and its UIP instances. The further rationale
is to decouple application-independent UIP events from
application specific interpretation and processing. In
principle, a UIP may be configured to emit an event that may
be interpreted very differently in various dialog kernel

contexts. With respect to UIP combinations that form one
Presentation in interaction with the dialog kernel, the
individual UIPs have to be kept independent from each other
to allow for flexible combinations. One UIP shall not limit
the flexibility and change of states of another. In return, a
UIP needs a standardized interface to application related
artifacts for Event Forwarding.

Besides event handling, this also applies for the Data-
binding impact [3] UIPs require. Obviously, the dialog
kernel will become a direct interaction partner for both
events and data of a number of UIP instances that are to be
integrated together instead of a single view or Presentation
unit. Therefore, the context for UIPs has to be kept rather
isolated from application kernel components, what allows
versatile combinations between both. Finally, it has to be
considered to centralize the flow of interaction specified by
use case models [26] in order to keep an implicit but
recognizable connection between UIPs and those functional
requirements. In this regard, the dialog kernel may serve
once again as central unit that coordinates both Application
Server Calls and Presentation State Updates. The latter
establish the implicit connection between UIPs, their states
or instantiation and use case steps.

Navigation. The scope of UIPs can be limited to visual
elements within dialogs or can even span entire dialog types
and their navigation. The different UIP abstractions are
symbolized by the various pattern types defined in model-
based frameworks [5][23][27]. For the implementation of
UIPs that trigger and design dialog navigation like wizards
or tabs [28], a dedicated component will be needed that
translates the events emitted from these UIPs into the desired
change of views or dialogs. The rationale for the
centralization is that UIP instance combinations can be very
versatile, though UIPs only define the UI-Controls that can
be assigned to trigger navigation events. Finally, the
evaluation of these events has to be governed by the same
component that implements the navigation for non-UIP
dialogs in order to allow the seamless integration of UIPs
with ordinary dialogs. According to the software category
tree, the respective responsibility belongs to the task set of
Dialog Event Handling, since the navigation is restricted by
validation results. For instance, each wizard dialog needs
valid inputs to allow the navigation to the next step.

UI-Control set. A further aspect raised by UIPs is the
availability of certain UI-Control implementations. For every
domain or project, a range of certain UIPs is of relevance.
These are to be defined on the concrete user interface (CUI)
level of abstraction [12] with reference to [29]. Therefore,
the UIPs have to be transformed into UI-Control
compositions on the final user interface (FUI) level [29] of
abstraction. The CUI based implementation of UIPs ensures
their platform independent application and decouples them
from GUI Framework specific concepts. However, UIP basic
elements must be covered by the favored GUI frameworks.
For instance, one cannot expect to develop UIPs on the basis
of Java AWT due to the very limited set of UI-Controls.

137Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

cmp UIP Software Categories

TA

View
Definition

Presentation
Event Handling

Presentation
(FUI)

Layout
Definition UI-Control

Configuration
View State

Changes

Construction of
UI-Controls

Technical Data
Models

Model Data
Edit

Dialog Logic

Dialog Data
Model

GUI
Framework

UI-Control
LibraryLayout

Manager

Event
Forwarding

Action
Binding

Dialog Event
Handling

0

UI-Control
Properties

Presentation
Data Handling

Model Data
Observer

Event Listener
Definition

Presentation
(CUI)

UIP Configuration

UIP View
Definition

UIP States
Definition

UIP
Layout

UIP Elements
Definition

StyleView
Parameters

Dialog Action
Binding

Presentation
Action Binding

UIP Data
Binding

UIP
Rendering

View States
Definition

View Structure
Changes

UI-Control
Rendering

UIP
Definition

UI-Control
Definition

Re-Arrangement
of View Elements

Modification of View
Element Properties

Addition and Removal
of View Elements

Arrangement of
View Elements

Figure 3. GUI software categories enhanced with UIP based responsibilities.

C. User Interface Pattern Responsibilities Model
From the basic foundations of our previous work and the

above mentioned design aspects, the UIP related
responsibilities of a GUI architecture will be developed.

Factor model. The influence factor model for UIPs [3]
describes additional requirements besides the general GUI
architecture responsibilities. As a consequence, the software
categories have to be enhanced to reflect the configuration
and variability aspects of UIPs. The resulting software
category tree is essential for the identification of components
of the UIP implementation, the planning of their
dependencies and the consideration of UIP requirements.
Finally, the category model will translate the factor impacts
to comprehensive categories of software component design.

Analysis model. The UIP analysis model [13] represents
detailed structures that refine the impacts of the influence
factor model. In detail, the analysis model describes coupling
points between GUI architecture and UIP configuration
facilities, basic structures for UIP units and detailed
parameters for visual and behavior aspects. According to the
software category identification, the information is useful to
mark dependencies to existing basic GUI responsibilities.
Afterwards, the analysis model will drive the design of the
final UIP representations rather than the software categories.

A-T-separation. The enhanced software category tree is
depicted in Figure 3. It is apparent that the UIP software
category tree is largely influenced by the mandatory A-T-
separation impact. This results into a new hierarchy of 0
software categories. The Presentation (CUI) defines the
view elements to be reusable in any project. In detail, the UI-
Control Definition is essential to provide a generally
available set of UI-Controls as building blocks for the
definition of UIP units. Therefore, UIP Definition is
dependent on the former. The other categories that refine
UIP Definition are directly derived from the impacts of the
influence factor model. In general, the 0 based categories
only define the reusable elements, their properties and
abstract behavior, but no final user interface is implemented.

Furthermore, the new 0 category elements can be
declared to be used for the Presentation (FUI) via UIP
Configuration, but the rendering has to be implemented for
the chosen platform individually. Therefore, the T software
categories UI-Control and UIP Rendering were added. These
depend on GUI Framework sub-categories like this is the
case for the conventional Presentation (FUI) categories [10].

The ordinary Presentation (FUI) composition usually
consists of four basic operations: The construction of new
UI-Controls and the setting of their properties (UI-Control
Configuration), the addition of the new UI-Control to a
superior container like a panel or frame (Arrangement of
View Elements) and the optional definition of an event
listener (Action Binding). All these operations are bundled
into respective AT software categories, which directly
combine domain specific knowledge (content, properties and
placement) with technical operations (construction, auxiliary
objects like layout constraints or scroll panes) later in code.

When UIPs are instantiated, the above basic operations
are distributed among reusable pattern information (UIP
Definition, UI-Control Definition), context specific
configuration (UIP Configuration) and the technical
rendering (UIP and UI-Control Rendering). The Renderings
do not depend on the respective Definitions, since they are
solely in charge of either the construction of new UI-
Controls (UI-Control Rendering) or the arrangement of a
specific layout (UIP Rendering). For that purpose, the
Definitions define and use basic parameterized operations for
their content that are finally implemented by the respective
Renderings. The Definitions contain operations of higher
order and the Renderings consist of rather atomic ones,
hence a Definition command will be translated by the
Renderings into multiple GUI Framework calls. Thus, the
technical details that are usually present in the ordinary View
Definition sub-categories are encapsulated by the
Renderings. The UI-Control Rendering will be called with
complete information based on the UIP instance parameters,
so that only complete units can be created with the Definition
commands. In this context, the UIP Configuration gathers

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

parameter data with knowledge about the UIP Definition
(what parameters are exactly present). After the parameters
have been configured, they are passed to the UIP Definition,
which contains all necessary commands in proper order for
UIP instantiation and finally delegates the Renderings. The
latter will implement the abstract operations of the UIP or
UI-Control Definition. The UIP and UI-Control Rendering
are in analogy to View Definition sub-categories UI-Control
Configuration and Layout Definition: UI-Controls do not
define the gross layout. This instead is a task of the higher
situated category Layout Definition. Accordingly, there is the
distinction between both Renderings.

This order of operations is not obvious from the software
category graph, since this kind of modeling lacks a runtime
or sequence view. In this regard, the dependencies of Figure
3 do not describe calling sequences. The dynamic aspects of
calls and the purity of categories will be better visible with
component diagrams that describe interfaces and feature the
assignment of categories to components. Eventually, the
component and interface modeling will refine and verify the
software category model.

Changes were applied to sub-categories of View
Definition and View State Changes of Presentation (FUI) to
reflect the widened set of available view elements. The
responsibilities now apply both for UI-Controls and UIP
instances.

Flow of application logic. Concerning the flow of
application logic and the integration of UIPs, the Dialog
Action Binding is dependent on Event Forwarding, since the
ordinary facilities of the event processing chain [10] have to
be reused by UIPs and shall not be influenced by a
conflicting solution. With respect to the Quasar Client
reference architecture [15], the dialog kernel is likely to
receive UIP application events in parallel to events from
ordinary Presentations. In principle, for any UI-Controls of a
UIP PresentationEvents can be defined [13]. During
configuration of UIP instances, application relevant
OutputActions can be assigned to these events [13]. To
preserve this variable binding of UIPs and their events to
application behavior (Dialog Logic), UIPs have to be
decoupled from application logic. This is achieved by the
following concepts. Initially, PresentationEvents have to be
configured for UI-Control instances to be deployed within a
particular UIP instance. These can be used to model a trigger
for either ViewStateActions or ViewStructureActions that
may add or remove view elements during runtime [13]. In
addition, particular PresentationEvents can be linked to
OutputActions that are relevant for application logic (Dialog
Event Handling) outside the UIP instance. A further
decoupling is achieved by the separation of Event
Forwarding (notification of an event), the decision of a
proper reaction by Dialog Event Handling, and finally, the
implementation of resulting state changes, e.g., View State
Changes of the Presentation [10]. In other words, two states
of knowledge are separated: Firstly, what and when events
are to be reported. Here, the OutputActions mark those
events of relevance. Secondly, how will be the reaction
implemented that corresponds to reported events. Ultimately,
this separation of concerns will allow either the integration
of UIPs or ordinary Presentations as sender of events

relevant for application behavior. This design will allow the
versatile configuration of UIPs and their exchangeability.
However, a dedicated receiver is essential, which processes
events and interacts with application components.

Navigation. In analogy, the navigation design has to
follow the same concept: a UIP may emit events that are
translated into resulting navigation by a dedicated
component. Both concepts preserve the later exchangeability
of UIP instances, and thus, allow the decoupling of
Presentation (FUI) and Dialog Logic.

Summary. Finally, UIPs require a GUI architecture that
provides a working infrastructure for Application Server
Calls, Dialog Navigation, platform-specific implementations
of their UI-Controls and facilities for event as well as data
binding. In fact, UIPs can only be applied to describe certain
configurations. Thus, the situational meaning of this
information is out of the scope of reusable UIP Definitions
but is to be processed by existing GUI components based on
common responsibilities like those modeled in Figure 2.
Accordingly, UIP solutions will be based on many common
GUI software categories. Therefore, the basic GUI design
decisions presented in [10] and discussed here for UIPs in
the previous section have to be solved prior to any UIP
implementation. Ultimately, UIPs need an elaborate GUI
reference architecture with a clearly defined component
structure as suggested by the software category model of
Figure 2: the new responsibilities are merely enhancements
with many dependencies to the basic categories. Particularly,
the differentiated categories for event processing [10] will be
an essential basis for flexible UIP integration.

The categories partly may be too fine grained, but these
serve their purpose better than coarse grained ones that lead
to less cohesion and less effective tracing. In contrast, the
fine grained categories may later serve as units for lower
level design like classes or even operations.

Anyway, the control aspects of UIPs [3] are not modeled
here besides Dialog Action Binding. This is due to these
aspects are cross-cutting concerns that need further
elaboration on the basis of detailed examples.

D. Virtual User Interface reviewed
To solve the A-T-separation and maintain the purity of

software categories, the virtual user interface from Section
II.A is considered.

The main idea of Siedersleben and Denert [14] was to
abstract common operations needed for the communication
with technical GUI components into lean and easy to reuse
interfaces that would considerable simplify the usage of
complex APIs or associated frameworks. This concept could
yield several benefits when applied for UIP instantiation.

Firstly, the VUI allows the implementation of styleguide
rules [14] and other related layout specifics. Therefore, the
created layout corresponds to specified rules and could be
augmented by standard presentation elements like status or
button bars whenever UI-Controls or entire dialogs are
requested to be build. This scope of pre-defined GUI layout
and selection of UI-Controls can be extended to enable the
creation of UIPs. For given UIPs, common UI-Control
elements or even nested UIPs that occur regularly as children
can be realized as ready to reuse compositions as well.

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Secondly, the VUI is worth a consideration for UIPs,
since its suggested way of dialog implementation conforms
to the concrete user interface model level (CUI) of the
Cameleon reference model [29]. This level of GUI modeling
foresees certain types of UI-Controls, which may be a
common intersection of the ones that are offered by several
popular GUI frameworks. Besides, these UI-Controls remain
independent from a platform specific implementation as this
is the main emphasis of the VUI. Ideally, available UIP
implementations could be reused together with alternative
GUI-Frameworks.

Thirdly, when the main idea behind the VUI and its
interface operations are fully complied with, both basic UI-
Control creation and UIP instantiation will have to be
realized resulting in a hierarchy of GUI building operations.
Therefore, the basic VUI interfaces are relevant for the
bottom-up composition of UIPs. Additionally, non-UIP
based dialogs could be created at the same time.

However, no details and implementations have been
published for the VUI yet. It remains as a general pattern
only and solutions must be drafted individually. In particular,
the involved interfaces have to be standardized for a GUI
system and its dialog types. This step is of the essence, since
it permits the reuse of reoccurring functionality such as the
creation of views with common UI-Controls and their
binding to events. To conclude, the essential elements the
GUI system presentation component will constitute of have
to be abstracted very clearly and completely in order to
provide a CUI level model suitable for the domain.

IV. DISCUSSION OF USER INTERFACE PATTERN
IMPLEMENTATION OPTIONS

A. Criteria
The principal architecture concepts for UIP

implementation were briefly outlined in [12]. Accordingly,
we distinct the two concepts of model-based generation and
a solution being based on the virtual user interface
architecture described in Sections II.A and III.D. We will
discuss these alternatives in the light of the GUI design
issues and more recent state of the art. The criteria to be
considered are presented below.

The primary criterion is the UIP formalization and its
completeness. All structural properties and variability
aspects of these patterns [13] should be expressed by the
chosen notation. Finally, UIPs should be expressed by a CUI
model to preserve the platform independent specification.

The second criterion considers the target architecture and
respective assumptions. In detail, the integration of UIP
instances with other architecture artifacts, which affects the
major GUI design issues, is reflected. Since UIPs mostly
assume presentation responsibilities, their interface to
application logic has to be lean to ensure a variable
presentation without affecting application components. For
the sake of adaptability, the Dialog Logic and associated
navigation control should be decoupled from specific UIP
instances, too. To preserve the option to integrate non UIP-
based dialogs, the decoupling is essential.

A third criterion considers the required tools, and lastly,
the coupling to a certain platform and potential reuse of
concepts are considered.

B. Model-based Generation
Formalization of UIPs. The model-based frameworks

introduced in Section II.D employ their specific format for
expressing UIPs for the generation of GUIs. It is noteworthy
that the capabilities of the applied notations are not published
completely or mentioned at all. In addition, no detailed
examples that proof the variability, composition ability and
reuse of formalized UIPs have been published yet.
Therefore, the maturity of the generation based UIP
approaches surveyed in [3][13] was valuated as insufficient.
The model-based generative frameworks still seem to be
challenged by the full expression of all required UIP aspects
and are obliged to deliver a proof of concept by the
evaluation of a set of representative UIPs.

Target architecture. Currently, there are no details
available of the assumed architecture and integration of UIPs
therein for the model-based generation. The task modeling
and derivation of dialog structures often is focused by
examples. In this regard, we wonder how complex Dialog
Logic can be implemented, which demands for a number of
branches due to user choices and results in different
navigation options among UIP instances. Thus, it is not
certain how closely task models and chosen UIPs for
presentation of dialogs are coupled. In general, the complete
configuration process of all related artifacts (tasks, dialogs,
UIPs, application data and services) for the realization of a
use case remains unknown. Lastly, it is uncertain whether
manually implemented dialogs can be integrated among
generated code or if every dialog specification results in the
mandatory formalization of UIPs that may be used only
once.

Tools. The generator based solutions require vast tool
support for formalization, configuration or instantiation and
finally transformations of UIPs. For the latter, two steps are
necessary as UIPs and their parameters have to be
transformed to a CUI model first, which is later used for final
code generation or interpretation. There will be high efforts
for maintaining the tool chain as well as related overhead for
the definition of metamodels, rules and syntax validation. To
integrate non UIP-based dialogs the developers will have to
provide additional CUI specification facilities.

Platform. By using platform-independent models, the
coupling of generation based solutions to certain
infrastructures is generally low. Mostly, the paradigm of the
GUI may be fixed to WIMP [2]. Thus, the UIP formalization
is highly reusable. However, for each target platform suitable
architectures and code templates have to be developed. Most
parts of the generator code will be platform-specific
transformations that are unlikely to be reused.

C. Virtual User Interface
Formalization of UIPs. In contrast to the generative

approach, the VUI based solution does not necessarily
depend on a separate notation for formalization. The
formalization is realized by object-oriented CUI level code
of the target platform programming language instead. We are
inclined that an object-oriented language offers strong
concepts that permit the vast flexibility of UIP expression.
For instance, abstract classes with partly implemented
operations may serve as ideal templates for UIP definitions.

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The parameters for context adaptation can be set by
operation parameters or separate setter operations.
Furthermore, both structural and behavioral aspects can be
combined in one specification unit. These basic facilities
would have to be re-created by an external notation for a
generation based solution. In this regard, even the template
offering UIML 4.0 [24] GUI specification language lacks
sufficient parameterization for UIPs [12] and would have to
be extended.

In contrast, an OO programming language offers
elementary functions to express any purpose or structure that
may be improved by architectural or design patterns.
Furthermore, the usage of an OO language for UIP
expression is comparable to directly programming with a
certain GUI framework to fulfill a certain domain’s GUI
requirements. Similar elementary facilities can be
incorporated with the identified software categories for UIP
expression, so that a high flexibility is achieved. The basic
operations for presentation definition are based on the CUI
level [29] and represent abstractions of common GUI
framework facilities. They will both enable an accurate and
abstract UIP formalization with a high flexibility due to the
full range of OO language capabilities.

Initially, the UIP expression can be probed on the basis
of the UIP analysis model [13]. The conceptual UIP
modeling can be improved gradually without the need to
adapt a specific notation and associated tools. With the basic
foundations of factor [3] and analysis model [13], a rich
information basis for UIPs is available that can be
successively translated to code with the aid of the software
category tree of Figure 3.

Target architecture. The VUI architecture is limited to
presentation related tasks and does not include any
assumptions concerning application integration. That means,
each GUI design issue has to be solved from scratch or by
the adaptation of available reference architectures. A solution
tailored for UIP integration induces additional efforts but
may result in an appropriate and reusable architecture.

Tools. The VUI needs no tools at all besides a compiler
and an IDE that partly does the checking of programming
language syntax. For visual impressions of defined UIPs,
default configurations can be implemented, which may be
used as test cases, too. The testing of UIP instances does not
require additional inputs from external tools. The
combination of UIPs and ordinary dialogs is possible without
further adaptations.

Platform. For the VUI solution, the target platform
language is fixed. There may be additional frameworks
required, which permit the integration with different
languages or even paradigms. But with each change of target
language or GUI frameworks, the specific code for rendering
has to be re-implemented. Therefore, the UIP formalization
appears to be less reusable like the format used for the
generation-based approach. But it may be ported to OO
languages with comparable facilities, since the architecture is
the key reusable artifact. In this regard, the architecture is
based on interfaces and object-orientation, so that the VUI
CUI components may partly be ported among different OO
languages. Moreover, the formalization of UIPs is solely
based on architecture components, interfaces and their

interaction, so that no notation has to be adapted. In the end,
the VUI solution may promise more reusable concepts, since
they are not platform-specific like the transformations of a
generator basis.

D. Outlook
The model-based generation approach raises many open

issues concerning the UIP formalization and target
architecture details. It is not certain when and what solutions
are to appear. So, we opt for an alternative solution that is
based on the VUI architecture.

V. VIRTUAL USER INTERFACE ARCHITECTURE DRAFT
As a result of the positive appraisal of the virtual user

interface architecture, we will elaborate an architecture draft
in the following paragraphs. The primary basis for the
identification of components and their dependencies are
provided by the software category models of Figure 2 and
Figure 3. These categories need to be assigned to new
components and their interfaces. The latter will clarify the
dynamic behavior, which was not obviously described by the
category trees. For the sake of keeping reference to the
category trees, a similar naming of components was applied.
In Figure 4, the structural architecture model is presented.
Please note that not every software category will be
represented as a component. The granularity of categories
differs, so that some are assigned to components, classes (not
visible here) or a set of operations modeled by interfaces.

A main component is modeled by the Dialog, which
initiates application related behavior (Dialog Logic) and
handles domain data (Dialog Data Model). Concerning the
configuration of instances and initialization of visual
components, the Dialog Lifecycle Actions are in charge.

Another main component is embodied by the
Presentation (FUI) that serves as the final user interface with
visual appearance and respective event handling. There exist
two options for the instantiation of visual elements: Either
simple UI-Controls can be initialized by the UI-Control
Configuration or UIPs can be configured by UIP
Configuration. Both components are associated to
Presentation Event Handling to be able to have their
elements linked to event processing. Triggers and state
changes are decoupled by the separation of Presentation
Event Handling and View Definition. The interfaces called
by View State Changes represent operations that implement
the results of visual state changes. When the received event
is out of scope of the Presentation (FUI), the Event
Forwarding will call Dialog Event Handling. Moreover, the
Presentation Data Handling is realized by the observer [31].

The Virtual User Interface component consists of one
reusable (Presentation (CUI)) and one technical dependent
(Rendering) component. As a consequence, there are always
two representations of one UIP or UI-Control. The CUI level
components of the Presentation (CUI) define the logical part
of instances. In contrast, the Rendering creates
corresponding technical instances that depend on the current
GUI Framework. To decouple the CUI components from
technical aspects, the UIP Elements Definition and UIP
Rendering interfaces define the atomic operations required
for both UI-Control Definition and UIP Definition.

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

cmp VUI

Virtual User Interface

Presentation (CUI)

UIP Definition

Rendering

Presentation (FUI)
Dialog View Definition

Presentation Event Handling

Layout Definition

UI-Control Configuration

View State Changes

Construction of UI-Controls

Technical Data Models

Model Data Edit

Dialog Logic

GUI Framework

UI-Control
Library

Layout
Manager

Event Forwarding

Action Binding

Dialog Event Handling

UI-Control Properties

Presentation Data
Handling

Model Data Observer

Event Listener Definition
UIP Configuration

UIP View
Definition

UIP States
Definition

UIP Layout

UIP Elements Definition

Dialog Action Binding

UIP Data Binding UIP Rendering

View States Definition

View Structure Changes

UI-Control Rendering

UI-Control Definition

Re-Arrangement of View Elements

Modification of View Element Properties

Addition and Removal of View Elements

Arrangement of View Elements

ATAT0

Software categories

Dialog Data Model

Dialog Lifecycle Actions

UIP Rendering

Presentation State
Update

View State Execution

Figure 4. Virtual user interface architecture based on the UIP software categories.

These may be implemented by different Rendering
components, which are specific for a certain GUI
Framework. The versatile UIP formalization options are
mostly assigned to UIP Layout and UIP View Definition.
Depending on the current UIP instance configuration UIP
States Definition may call the former components to trigger
changes in visual or structural state.

VI. RESULTS AND DISCUSSION
The vision to employ UIPs as reusable assets for a

reduction of GUI implementation efforts cannot be realized
by recent approaches because of the limited formalization of
UIP aspects and variability. Besides, the general GUI design
issues presented in Section II.B still persist due to the lack of
detailed reference architectures and standardization. In
Section III.B, we clearly pointed out how these issues impact
the architecture for seamless UIP integration. A tight
coupling to GUI frameworks can limit the UIP applicability.
Also, important architecture concerns UIPs are connected
with are without standardized solutions: navigation and
application logic flow. Eventually, the integration of UIPs
into GUI architectures has to overcome these issues.

Since UIP based solutions largely depend on reuse of
basic GUI architecture concepts, UIP specific concerns have
to be integrated and separated to reduce dependencies. In this
context, we presented an enhanced software category model
that addresses the prevailing GUI design issues and models
typical UIP responsibilities. These categories can be used to
identify a component based architecture for UIP
implementation with separated concerns and limited
dependencies. The identified 0 categories can be either
generative sources or CUI level code of a VUI. In the end,
the UIP category tree can also be helpful for generative
development as it may identify aspects or components and
separate them in order to enable a better maintenance of
generator architectures.

As result of our comparison of general UIP
implementation approaches, we opted for the unique VUI
solution. The VUI solution promises a high flexibility of UIP
formalization, platform independence and no additional tools
or notation development efforts. On that basis, simple and
complex UIPs can be relatively quickly probed for
implementation. Please note that our analysis of mature

XML GUI specification languages [12] revealed major
limitations concerning UIP formalization that are hard to
solve. UIP definitions may be better approached with OO
language code.

Our VUI draft left the impression that much CUI based
abstraction of common GUI framework concerns is required
and that a complex architecture is anticipated. Representative
UIPs have to be implemented to prove the VUI concept and
refine its foundations. Due to UIP rendering needs of the
VUI, the non UIP-based UI-Control compositions can
benefit from the platform-independent rendering, too. In the
end, the AT software character of View Definition
components may be completely avoided.

The primary limitation of a VUI based solution will be its
dependence on a strong OO language. One can argue that a
VUI architecture is hard to establish for web-clients relying
on browser based languages, such as JavaScript and popular
frameworks like JQuery, due to lacking object-orientation.
Frameworks like GWT [30] that are able to accept OO code
and compile it to JavaScript may be a promising option for a
VUI but can be limited due to the available set of UI-
Controls. In the end, the CUI based code would need further
enhancements to represent alternative definitions of UIPs
currently not covered by present UI-Controls.

Finally, a VUI based approach will not be achieved
without obstacles. The abstraction of common GUI
framework operations to CUI level code for reuse by UIP
definitions is not an easy task. Moreover, the design of
interfaces and their operations has to suit current and future
UIP definitions. The software category tree will help us to
limit framework dependencies and plan the distribution of
responsibilities among components.

VII. CONCLUSION AND FUTURE WORK
In the future, UIPs are likely to become complementary

assets for reuse in comparison to design patterns [31]. With
the incorporation of UIPs as valuable assets for the reuse of
parts of the implementation code, the complexity of GUI
artifacts to be designed and developed manually would be
reduced. Much of the former GUI programming would be
replaced by configuration of chosen UIP instances. As a
consequence, the developers could focus more on application
relevant design. However, current approaches that employ

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

UIPs on the basis of model-based generation are still
challenged by formalization issues and have not proven their
UIP variability concepts yet.

Future work. The alternative VUI based approach will
be further elaborated in our future work. At first, the
common GUI design issues have to be solved by a detailed
GUI reference architecture. On the basis of the presented
software category models and our VUI draft, we will be able
to identify a suitable component based architecture. The
requirements for a VUI based solution will be complemented
by example UIPs and implementations. During that process,
both category and UIP requirements models will be updated.
Finally, we will investigate on the impacts of UIPs on other
architecture artifacts and their traceability connections.

REFERENCES
[1] J. Tidwell, Designing Interfaces. Patterns for Effective

Interaction Design. Beijing: O’Reilly, 2006.
[2] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,

“Specification of formalized software patterns for the
development of user interfaces,” The Seventh International
Conference on Software Engineering Advances (ICSEA 12)
IARIA, Nov. 2012, pp. 296-303, ISBN: 978-1-61208-230-1.

[3] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
factor model capturing requirements for generative user
interface patterns,” The Fifth International Conferences on
Pervasive Patterns and Applications (PATTERNS 13),
IARIA, May 27 - June 1 2013, pp. 34-43, ISSN: 2308-3557.

[4] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Springer LNCS 4849, Nov. 2007, pp. 184-197.

[5] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, Springer LNCS 5610, July 2009,
pp. 826-835.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. New York: John Wiley & Sons, 1996.

[7] M. Fowler, Patterns of Enterprise Application Architecture.
New Jersey: Addison-Wesley Professional, 2003.

[8] M. Fowler, “Development of Further Patterns of Enterprise
Application Architecture,” http://martinfowler.com/eaaDev/
index.html, 2014.08.14.

[9] M. Haft, B. Humm, and J. Siedersleben, “The architect’s
dilemma – will reference architectures help?,” First
International Conference on the Quality of Software
Architectures (QoSA 2005), Springer LNCS 3712, Sept.
2005, pp. 106-122.

[10] S. Wendler, “A software category model for graphical user
interfaces,” The Ninth International Conference on Software
Engineering Advances (ICSEA 2014), IARIA, in press.

[11] S. Siedersleben, Ed., Softwaretechnik: Praxiswissen für
Software-Ingenieure [Software engineering: practical
knowledge for software engineers], 2nd ed. München: Hanser,
2003.

[12] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[13] S. Wendler and D. Streitferdt, “An analysis of the generative
user interface pattern structure,” International Journal On
Advances in Intelligent Systems, vol. 7, nr. 1 & 2, pp. 113-

134, 2014, IARIA, ISSN: 1942-2679,
http://www.iariajournals.org/intelligent_systems/index.html.

[14] J. Siedersleben and E. Denert, “Wie baut man
Informationssysteme? Überlegungen zur Standardarchitektur
[How to build information systems? Thoughts on a standard
architecture],” Informatik Spektrum, vol. 23, issue 4, Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[15] J. Siedersleben, Moderne Softwarearchitektur [Modern
software architecture], 1st ed. 2004, corrected reprint.
Heidelberg: dpunkt, 2006.

[16] S. Alpaev, “Applied MVC patterns. A pattern language,”
The Computing Research Repository (CoRR), May 2006,
http://arxiv.org/abs/cs/0605020, 2014.08.14.

[17] A. Karagkasidis, “Developing GUI applications: architectural
patterns revisited,” The Thirteenth Annual European
Conference on Pattern Languages of Programming
(EuroPLoP 2008), CEUR-WS.org, July 2008.

[18] A. Dearden and J. Finlay, “Pattern languages in HCI; A
critical review,” Human-Computer Interaction, vol. 21, issue
1, 2006, pp. 49-102.

[19] S. Wendler and I. Philippow, “Requirements for a definition
of generative user interface patterns,” The Fifteenth
International Conference on Human-Computer Interaction
(HCII 13), Part I, Springer LNCS 8004, July 2013, pp. 510-
520.

[20] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[21] UsiXML website, http://www.usixml.org/, 2014.08.14.
[22] K. Breiner, K. Bizik, T. Rauch, M. Seissler, G. Meixner, and

P. Diebold, “Automatic adaptation of user workflows within
model-based user interface generation during runtime on the
example of the smartmote,” The Fourteenth International
Conference on Human-Computer Interaction. Design and
Development Approaches. (HCII 2011), Part I, Springer
LNCS 6761, July 2011, pp. 165-174.

[23] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user
interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Springer LNCS 6884, Sept.
2011, pp. 136-145.

[24] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml, 2014.08.14.

[25] G. Meixner, M. Seissler, and K. Breiner, “Model-Driven
useware engineering,” Model-Driven Development of
Advanced User Interfaces, Studies in Computational
Intelligence, vol. 340, H. Hussmann, G. Meixner, and D.
Zuehlke, Eds., Berlin, Heidelberg: Springer, pp. 1-26.

[26] K. Bittner and I. Spence, Use case modeling, 8th print. Boston
(Mass.): Addison-Wesley, 2006.

[27] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces
for Smart Production Environments,” The Fourteenth
International Conference on Human-Computer Interaction
(HCII 11), Springer LNCS 6761, July 2011, pp. 299-308.

[28] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com, 2014.08.14.

[29] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), Springer
LNCS 3520, June 2005, pp. 16-31.

[30] Google Web Toolkit, http://www.gwtproject.org/, 2014.08.14.
[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

