
A Software Category Model for Graphical User Interface Architectures

Stefan Wendler and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — The development and maintenance of graphical
user interfaces (GUI) for business information systems is still
affected by software architectures lacking quality. Only basic
patterns and few reference architectures are available for GUI
development. There exist no standard architectures for reuse.
High efforts accumulate for the adaptation of patterns but the
resulting architecture quality often does not represent the
desired separation of concerns and is hard to maintain. In this
work, general GUI architecture design issues are analyzed. The
foundation of the analysis is elaborated as a software category
tree that represents the common responsibilities within GUI
architectures. As result, the major design issues of GUI
systems are summarized. To assess other GUI reference
architectures, the software category tree may be of value.

Keywords — GUI software architecture; software
architecture; user interface patterns; graphical user interface.

I. INTRODUCTION

A. Motivation
Domain. Business information systems represent a

domain that is largely influenced by software architecture
considerations. Especially the graphical user interface (GUI)
sub-system is likely to induce high efforts [1] for both
development and later maintenance. This applies for both
standard and individual software systems as a high demand
for individually designed GUI systems is actually present.

Problem. However, GUI architectures are not
standardized to the required detail, since historically applied
patterns have not converged towards a detailed standard
architecture governing every responsibility for change. In
addition, the higher degree of system integration into
business processes demands for explicit implementations of
comprehensive requirement artifact types like use cases,
tasks and business processes. Those have to be integrated
with rather old patterns like MVC [2] and its variants [3],
which did not consider such deep and vast requirements
basis. Reference architectures [1][4] and several patterns
(design and architectural) [5][6] have been suggested, but
have not been properly integrated with traceability [7][8]
concepts to keep track of requirements. Moreover, GUI
frameworks have a large impact on the structure and often
cannot be isolated properly to separate technical
implementations from domain or project specific
requirements.

Consequences. When systems have grown after several
maintenance steps, different concerns tend to be mixed up
within the GUI architecture the larger the requirements basis
is and the more complicated the integrated frameworks are.
For instance, application server calls, data handling, task and

dialog control flow can no longer clearly separated in the
software architecture. Finally, the GUI and application sub-
systems cannot be separated easily and the evolution of both
depends on each other. Business logic tends to be scattered
in the GUI dialogs [9] and the “smart UI antipattern” [10]
may become a regular problem. The architecture was layered
during design phase, but the encapsulation of components
and separation of concerns did not prove in practice [9]. This
is maybe due to used frameworks that expect a certain
architecture, which alters original design. More likely is the
phenomenon that the architecture was based on common
patterns and reference architectures that could not be refined
in time with respect to desired quality and extensibility.
Lastly, the two concluding points from Siedersleben [9] are
still of relevance: standardized interfaces between layers are
still missing and technical frameworks still dominate the
architecture and evolution. Currently, there are even more
than three layers in business information systems and the
segregation got even more complex.

User interface patterns. Current research is occupied
with the integration of a new artifact type in the development
of GUI systems. Being based on pattern concepts, user
interface patterns (UIPs) have been approached [11][12][13]
to facilitate the generative development of GUIs and highly
increase the reuse of proven visual and interaction design
solutions that originate from descriptive human computer
interaction patterns [14][15]. According to the generative
nature of these attempts, the development of GUIs shall be
shortened by model-based sources that specify both the GUI
system’s view instances and the coupling between functional
related and GUI-system-architecture components.

Current limitations. Currently, there are still design
issues within GUI patterns or reference architectures that
hinder the evolution and maintenance of existing systems. To
establish a target software architecture of high quality for the
implementation of UIPs, these issues have to be addressed in
the first place. In fact, UIPs need a clear basis of reuse: an
architecture with well separated concerns that permits the
flexible allocation and exchange of these greater units of
design. Whether UIPs will be generated, interpreted or
provided by a virtual user interface [16][17] the resulting
architecture will be at least as complex as for standard GUIs.
So, the common issues in design will prevail and affect UIP
based solutions.

B. Objectives
To prepare the integration of UIPs into GUI architecture

and at the same time preserve their reusability and variability
in different contexts, open issues in GUI architecture
development have to be identified and solved. Therefore, our

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

goal is to provide a detailed analysis of these open design
problems. Hence, we will have to identify the re-occurring
responsibilities of GUI architectures and their relationships.
On that basis, the frequent applied MVC pattern is reviewed.
In addition, we will analyze the Quasar client reference
architecture [1] that provides more detail than regular
patterns and was created especially for the domain.

C. Structure of the Paper
The following section provides descriptions of common

patterns and reference architecture considerations for GUIs.
In the third section, we will elaborate a general
responsibilities model for GUI architectures. In Section IV,
the GUI architecture patterns are reviewed. The results are
summarized in Section V, before we conclude in Section VI.

II. RELATED WORK

A. Architecture Patterns for Graphical User Interfaces
With the invention of object oriented programming

languages, a clear assignment of the cross-cutting concerns,
which are common for a GUI dialog, had to be enforced.
Eventually, the model view controller pattern was introduced
[2] that distinguishes three object types as abstractions to
accept defined responsibilities.

In Figure 1, we present a possible architecture application
diagram of the MVC pattern. Generally, the MVC pattern
promised a separation of concerns, flexibility and even reuse
of selected abstractions. From a practical point of view, the
classic MVC pattern misses many details that are essential to
fulfill these claims. In this regard, the pattern leaves the task
to decouple the three abstractions to be solved by the
developer. It is noteworthy that the Controller is in charge of
many responsibilities at once. Both the handling of technical
events (PresentationEvent) and the initiation of the final
processing of data by the application kernel
(ApplicationKernelService) are governed by the Controller.
Therefore, this design unit is closely coupled to the View, as
well as to the Model. As far as the View is concerned, the
structure of the Model has to be known to enable the update
of defined UI-Controls via DataRead.

There exist many sources of the MVC pattern [18][19]. A
widely accepted description can be found in [6].

cmp Classic MVC

Dialog

Model

InputDataQuery

GUI Framework

PresentationEvent

Notification

ApplicationKernelService

DataRead

ViewDefinition

Observer

DomainObject

View

Controller
DataEdit

«call»

«use»

«call»

«call»

«call»

«call»
«call»

«call»

«create»

Figure 1. A common MVC architecture pattern variant.

To cope with the close coupling and missing details,
several variations of the MVC have been discussed [3][20].
In general, the variations in design differ concerning the
distribution of responsibilities among the three abstractions.
Several more patterns [5][6][19] occurred that mainly altered
the control or introduced new concerns and abstractions.
Nevertheless, they fulfill the same purpose of guiding the
identification and modularization of classes in object-
oriented GUI architectures.

B. Graphical User Interface Event Processing Chain
To be able to discuss the GUI responsibilities with

increasing detail, we would like to refer to the conceptual
model of event processing within GUI architectures as
described by Siedersleben [21]. In Figure 2, a variation of
this model is displayed. Thereby, technical events will be
emitted from the operation system or later the GUI
Framework when the user has interacted with a certain GUI
element. Within the architecture, the event is either
processed or forwarded by the individual components
depicted in Figure 2.

It is notable that there is a distinction of events inside the
Dialog component. For reasons of separation of concerns,
and ultimately, better maintenance of systems, the
Presentation was assigned responsibilities with a closer
connection to the technical aspects of the GUI Framework.
Accordingly, the Presentation is in charge of governing the
layout of the current View and applies changes in layout, e.g.,
mark the UI-Controls where entered data failed the
validation or activate panels when current data state requires
for additional inputs. In contrast, the DialogKernel is to be
kept independent from any technical issues as far as this is
possible. So, the latter is assigned to communicate with the
ApplicationKernel and its components instead.

By flowing all the way from the Operating System
towards the Application Component, a tiny technical event
may result in the initiation of greater operations inside the
DialogKernel or even ApplicationComponent. That is why
Siedersleben speaks of a “value creation chain” [4][21].

sd Event Processing Chain

Operating
System

GUI Framework

Dialog
Presentation DialogKernel

ApplicationKernel

ApplicationComponent

Application
eventsDialog events

Presentation
eventsTechnical

events

Figure 2. Value creation chain of graphical user interfaces derived from

[21].

C. Standard Architecture for Business Information
Systems
Siedersleben and Denert tended to the issues of close

coupling and a better separation of concerns for GUI
architectures in [16]. The main goal of their attempts was to
improve the general quality of the software architecture of
business information systems. With respect to the GUI, they
made suggestions [16] that would prepare the standardization
of the architecture of the particular domain.

124Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Quasar. Siedersleben pushed towards further
standardization attempts concerning the GUI architecture of
business information systems. His efforts culminated in the
creation of the quality software architecture (Quasar) [4].
Acclaimed design principles and architectural patterns, as
well as the vast usage of interfaces for decoupling in
combination with a new instrument for component
identification were incorporated into a single software
architecture manifest, which was intended to become the
domain’s standard.

Parts of a reference architecture [1] and the object-
relational mapper Quasar Persistence have been published.
Conversely, the main ideas of standardization were neglected
in [1] and reference architecture elements should fill the gap.

Software categories. As far as the component
identification is concerned, so called software categories
were introduced. They consist of the five categories 0, A, T,
R and AT. 0 designates elements that are reusable in any
domain like this is applicable for very basic data types a
programming language would offer. A software is dedicated
to implement a certain domain’s requirements, meaning
particular functions like the calculation of target costing or
the scheduling of production plans for a certain machinery.
In contrast, T software is responsible for the integration of
technical aspects like data bases and GUI frameworks. R
software is needed whenever a technical data representation
has to be converted for processing with A software types,
e.g., a GUI string type describing a book attribute is
converted to a ISSN or ISBN. In fact, R software also is AT
software per definition as both domain specific and technical
knowledge or types are mixed up. Thus, AT software should
be avoided and would be an indicator for the quality of the
implementation or architecture. Only the R software used for
type conversions would be permitted.

GUI reference architecture. Concerning the reference
architecture portions of Quasar, the GUI client architecture
[1][4] has to be mentioned for the scope of our work. The
main parts of that architecture are illustrated by Figure 3 that
is derived from [4], since this is the most detailed source
available. The interface names in brackets resemble the
original but not very descriptive designations. The unique
elements of the Quasar client architecture are the following
three aspects.

cmp Quasar client

Dialog
DialogManager

DialogEvent (DE)

InputDataQuery (A)

GUI Framework

PresentationEvent (PE)

DataUpdate (SY)

ApplicationKernelService (AF)

DialogActivity (U)

DialogCompletion (V)

ApplicationEventsRegistration (DA)

ViewDefinition (DP)

ApplicationEvents (AE)

Presentation

DialogKernel

DataRead (R)

ApplicationKernel

SessionControl

A
T
AT
0

Software categories

«call»

«use» «use»

«call»«call»

«call»

«call»

«call»

«call»

«create»

«create»

«call»

«call»

Figure 3. The Quasar client architecture based on [4].

Firstly, there was made a distinction of presentation and
application related handling of events; the basic concept of
the “value creation chain” introduced in Section II.B was
developed further. Thus, there are the two design units
Presentation and DialogKernel that resume original MVC
Controller tasks besides other ones. The software categories
mark both units according to their general responsibilities.
The Presentation possesses the knowledge how certain data
is to be displayed and how the user may trigger events. In
contrast, the DialogKernel determines what data needs to be
displayed and how the application logic should react to the
triggered events. The communication between them is
exclusively conducted via three A type interfaces.

Secondly, the Quasar client introduces relatively detailed
interfaces and communication facilities between components
compared to other GUI patterns. To be able to fulfill its
objectives, the Presentation relies on the ViewDefinition
interface to construct the visual part of the dialog. Via
InputDataQuery, the current data stored in the technical data
model of respective UI-Control instances can be altered or
read by the Presentation. Events emitted from UI-Control
instances are forwarded to the Presentation with the
operations of PresentationEvent.

The interfaces between Presentation and DialogKernel
are mainly concerned with event forwarding and the
synchronization of data between both components. In detail,
DialogEvent is called by the Presentation whenever the
DialogKernel has to be notified of an event relevant for
application logic processing, e.g., a command button like OK
or a search for available data was initiated. The Quasar client
foresees two options for data synchronization. This
communication step is essential, since both components
possess different knowledge, and thus, work with different
data structures, what is marked by the different software
categories. Either the Presentation could read current data
via DataRead or the DialogKernel would update the
Presentation by the means of DataUpdate. This design shall
decouple the application logic from technical aspects found
inside Presentation and its interfaces for interaction with the
current GUI Framework.

Thirdly, aspects that are concerned with surrounding
components are also described with the Quasar client. These
are interfaces dealing with the construction, deletion of
dialog instances (DialogActivity) and reporting of results
(DialogCompletion). Furthermore, a DialogKernel can
register for notification (ApplicationEventsRegistration)
about events (ApplicationEvents) originated from
ApplicationKernel. For creation of value relevant for
business logic, the interface ApplicationKernelService is
called by the DialogKernel. There are more interfaces
available for the coordination of transactions and the
checking of permissions via an authorization component. For
more details, interface specifications and a dynamic view on
the architecture, please consult [1].

III. GENERAL GUI RESPONSIBILITIES MODEL

A. Approach
As the basic GUI patterns and the Quasar client reference

architecture are too abstract and general to describe detailed
responsibilities required for implementation purposes, we

125Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

will establish a fine-grained responsibilities model based on
the software category instrument suggested by Quasar. The
software categories are intended to refine tasks and fill gaps
left open by the available patterns. Thereby, the categories
will represent an ideal model with least coupling that allows
for planning dependencies among potential units of design.

Consequently, we need to establish a basis for the
responsibilities that are regularly discovered in a GUI
architecture. Eventually, we follow the approach to
investigate on relevant responsibilities mainly from related
work, other known sources [2][3][4][6][16][18][19][20][21]
[22] and own experiences. In fact, we do a decomposition of
GUI architectures to rather atomic functions. These functions
will be separated and delimited in order to establish a unique
software category tree. We examine, what can be solved with
0 or A software and what concerns are definitely dependent
on GUI framework code.

When common GUI architecture responsibilities have
been identified and systematically analyzed concerning their
dependencies, the potential interfaces for communication
between components or classes can be derived. According to
Quasar [4], an interface ideally should be defined on the
basis of a software category that serves as a parent for both
categories to be linked. Thus, the identification of design
units and their interface structure requires some planning.

B. Quasar Software Categories Reviewed
The concept of the Quasar software categories is

ambiguous. They promise to be an instrument for component
identification and quick software quality assessments.
Nevertheless, they were not provided along with a clearly
defined method for their proper definition or application.

The software category types defined by Quasar can be
applied for the very basic valuation of architectures, since
they symbolize a very rudimentary separation of concerns
between neutral, domain and technical related concepts. The
further and project relevant refinement of the basic
categories will eventually lead to a much more powerful
representation of design criteria like cohesion and coupling
or design principles like modularization as well as hierarchy.
In this regard, “concerns” represent heavily abstracted
requirements and related functions. Siedersleben [4] states
that each software category ideally acts as a representative
for a certain delimited topic. Consequently, the preparation
of components with the aid of software category trees shall
help to create high cohesive and encapsulated design units.

Traceability. On that basis, software categories will be
used to judge the purity of traceability-link [7][8] targets,
meaning that the artifacts will be examined with respect to
their responsibilities. When a target is made up of a mixed
category, in the worst case AT, then it will be considered
either as a model lacking detail or a design that is harder to
maintain, since the developers will eventually separate the
concerns during implementation by themselves. The latter is
a major aspect besides the identification of potential
components; that is why we consider software categories as a
relevant marker. In sum, software categories can be useful to
reduce the complexity while tracing requirements to design:
the categories could be kept in order to mark certain design
elements inside traceability-metamodels, which are outlined

in [8]. Thus, the general or refined responsibilities of design
elements will be visible, so traceability-link targets can be
more detailed.
A major problem lies in the definition and segregation of
software categories. It was not clearly defined what elements
drive the creation and delimitation of a software category.
According to known sources [4][9], this might either be
specialized knowledge how to handle certain algorithms and
data structures or dependencies of an entity.

C. Rationale on Software Category Practical Application
Basic software categories. As the software categories

are not clearly defined in original sources, we will have to
point out how to create new and delimit existing software
categories. On the root level, we will comply with Quasar
and use the basic categories 0 (white), A (light grey), T
(medium grey with white caption) and AT (dark grey with
white caption). The basic category Construction and
Configuration was added to represent the creation of new
objects as well as the configuration of interfaces with
implementing objects. On the next level, layers and
technological boundaries of the application architecture are
represented. Presentation and Dialog Logic were separated
as categories according to the event processing of Figure 2.
Our aim was to provide a software category tree with
separated concerns to describe a complete decomposition of
GUI architecture aspects.

As the tree gets more detailed, categories will become
very fine grained and embody components, classes or even
operations. Since the categories can distinguish components
and their dependencies, they could be applicable for the
delimitation of the smaller units of design, too.

Category identification. To identify each of the
following categories, we applied several rules of thumb.
During the analysis of GUI architectures, we derived
categories from the different families of operations that
regularly occur. In general, these were the definition or
modification of new entities or their properties, event
triggering or processing, as well as forwarding of both data
and events. These kinds of operations occur for different
contexts like technical or application related objects of
general GUI pattern components that are common for MVC
or the Quasar client. The different contexts symbolize certain
levels in the software category tree and were derived from
reasonable abstractions like application logic, abstract
presentation and presentation technology. We distinguished
the belonging operations and data structures according to the
knowledge and types required for their processing. When
operations demanded for the usage of certain types in a
context that was not in scope of the originator, then
categories were definitely of a mixed kind. In contrast,
categories were left pure when interfaces using neutral 0
types could be used for delegations. A hint close to
implementation considers what would be the import
declarations in a unit of design with respect to Java language.
If the import was based on interface types using neutral 0
types, the category would remain pure. The category would
be mixed, if the imports will demand for the addition of
types defined exclusively in the imported unit of design.

126Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

D. Graphical User Interface Software Category Model
The resulting software category tree is depicted in Figure

4 and will be developed in the following paragraphs. It has to
be considered that the categories do model dependencies
between units of design and no flow of events or algorithms.
Although there will be interfaces between categories for later
implementation, these cannot be illustrated by the category
tree but will be determined concerning the possible type.
According to Quasar [4], two different categories may
communicate via types that originate from a shared parent
category.

The main categories Application Kernel, Dialog Logic,
Presentation are A category children, since they depend on
the individual requirements of a software system.

Presentation. The categories derived from Presentation
are closely related to the view and controller of the MVC
pattern [6] and detail both their responsibilities.

Presentation is marked with FUI (final user interface)
[23] given that this category symbolizes the certain
knowledge required for creating the specific view part of a
given GUI system. This category is further branched into
View Definition and Presentation Event Handling. The
involved categories have to comply with project specific
dialog specifications and at the same time need to possess
knowledge about the types and operations the involved GUI
Framework offers. Hence, all sub-categories heavily depend
on technical aspects. They each constitute a mixed category.

The View Definition category is detailed with the
responsibilities required for the initial creation of the visual
parts of a dialog and the declaration of layout specific
elements. We separated the Layout Definition and UI-
Control Configuration as the layout aspects often involve the
usage of dedicated objects and operations that considerable
differ from the instantiation and configuration of UI-
Controls. For the reasons that events require dedicated
operations and not all created UI-Controls have to be bound
to certain events, the category Action Binding was separated
as a specialization of the UI-Control Configuration.

The Presentation Event Handling category serves the
task to deal with Presentation events according to Figure 2
and is branched into Presentation Data Handling, View State
Changes and Event Forwarding. The first child handles both
the reading (Model Data Observer) and editing (Model Data
Edit) of dialog data from the Presentation perspective. The
changes in layout, properties and arrangement of active UI-
Control instances during runtime are optional tasks that are
embodied by the category View State Changes and its
children. Certain events cannot be further processed by the
visual dialog units, so that they need to notify the next unit in
the chain of responsibility. This rationale is based on Figure
2. The required knowledge about the respective events and
forwarding commands is encapsulated by Event Forwarding.

GUI Framework. As far as the GUI Framework is
concerned, we decided for the distinction of layout and UI-
Control specific knowledge or types. The UI-Control
Library implements all operations and types that are required
for the instantiation of any available UI-Control, the
modification of its properties (UI-Control Properties) and
the definition of its data content (Technical Data Models).
Often there are various data types with different complexity

associated to the available UI-Controls of a framework. They
need to be handled by the Presentation Data Handling
category in order to store and retrieve data in the specific
formats like lists, trees, text areas or table grids.

Dialog Logic. The last main category that is to be placed
in the vicinity of a dialog is the Dialog Logic. Categories that
are involved in the data structure definition and its logical
processing refine the Dialog Logic. The basis of these
categories is provided by the Quasar client [1][4] and the
model part of the MVC pattern [6]. In analogy to the
Presentation category, we distinguish the definition of data
objects (Dialog Data Model) with associated operations and
the event handling (Dialog Event Handling).

The category Dialog Data Model depends on knowledge
about the Domain Data Model defined by the Application
Kernel as well as Data Queries that may deliver the
composition of selected attributes from different entities in
order to create new aggregates relevant for display. The Data
Queries category belongs to the Application Server Calls
category, which encapsulates knowledge about the available
application services, their pre-conditions, invariants and
possible results with respect to the dialog logic.

The Dialog Logic category graph mostly constitutes pure
A category refinements. However, the Data Conversion
category is of mixed character. To define data structures that
can be used in close cooperation with the Application
Services, it needs to know about Dialog Data Model, and
thus, incorporates its dependencies to the Data Queries and
Domain Data Model. Besides, the Data Conversion category
has to be aware of the current Technical Data Models in
order to provide access for Presentation Data Handling. The
latter has to know about the structure of defined data models
(Dialog Data Model and Technical Data Models) to be able
to delegate proper updates in both directions.

Event processing. The entire event processing chain and
its association to software categories was challenging; our
rationale will be explained as follows. Foremost, logical and
presentation states were separated: Application logic tends to
be stable (enter data, evaluate, present suggestions, make a
choice and confirm), is traced to functional requirements,
and thus, should be decoupled from GUI specifications.
Although the flow of application logic is unaffected, the GUI
and its technology supporting the user in his tasks may be
altered several times starting with updated specifications and
ending with the deployment of different GUI Frameworks.
Additionally, the Presentation can be further differentiated
into abstract visual states that have a close connection to the
current application state and technological or concrete
presentation states, which implement the former. The latter is
translated to GUI UI-Controls via GUI Framework and its
sub-categories. As result, we identified three major
categories for state control to be considered below.

The Dialog Event Handling tree governs the application
logic part of a dialog and has no concrete visual
representations or related tasks. In contrast, it assumes the
Presentation to maintain appropriate visual representations,
but these remain abstract for the Dialog Event Handling,
e.g., a view for data input is activated, data input was
completed or current data leads to another view state for data
input.

127Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

cmp GUI Software Categories

TA

View
Definition

Presentation
Event Handling

Presentation
(FUI)

Arrangement of
UI-Controls

Layout
Definition

UI-Control
Configuration

View State
Changes

Construction of
UI-Controls

Re-Arrangement
of UI-Controls

Technical Data
Models

Model Data
Edit

Modification of
UI-Control Properties

Addition and Removal of
UI-Controls

Dialog Logic

Data
Validation

Application
Logic

Application
Server Calls

Dialog
Navigation

Dialog Data
ModelDialog Lifecycle

Actions

GUI
Framework

UI-Control
Library

Layout
Manager

Event
Forwarding

Action
Binding

Dialog Event
Handling

Domain Data
Model

Data Types and
Validation Rules

Data
Conversion

0

Construction and
Configuration

UI-Control
PropertiesPresentation

Data Handling

Model Data
Observer

Data
Queries

Application
Services

Event Listener
Definition

Dialog State
Changes

Presentation
State Update

Figure 4. GUI responsibilities arranged as a software category tree.

From the application’s perspective, a dialog may adopt
different states during runtime. The required knowledge to
control these states is represented by the category Dialog
State Changes. Furthermore, this category is separated into
categories, which either interact with the ApplicationKernel
or the Presentation. Both its categories reflect the two
general situations that may occur in any dialog: Application
Server Calls may be initiated or a Presentation State Update
can be triggered. The parent category Dialog State Changes
possesses the knowledge how to react in a given situation. Its
children are dedicated to solely trigger the required change
of state that either addresses the Application Server or
Presentation, which provide the state change execution.

Figure 5 provides an overview of possible interface
connections between software categories involved in event
processing. Please note that the interfaces need to be of the
basic A category type as this is the common parent category
of the displayed interacting categories.

The general flow of events is the following: initially, the
user triggers some events that may be forwarded to Dialog
Event Handling for further evaluation. Depending on the
current state of the dialog, Dialog Lifecycle Actions (creation
and deletion of dialogs and their objects), Application Server
Calls (commit a sequence of service calls), a Dialog
Navigation (change of current view or the instantiation of
sub-dialogs) or a Presentation State Update (change of the
visual representation) may be delegated. In this regard, the
key design issue is that the Presentation has no knowledge in
its sub-categories how to decide on a proper reaction for
events relevant for dialog logic. Therefore, the event firstly is
forwarded via the topmost interface in Figure 5. Then, the
Dialog Event Handling evaluates the event and delegates to
one of its children, which further delegates to the displayed
interfaces in Figure 5 and initiates the final change of state.
Concerning the Presentation State Update in Figure 5, either
a Dialog Navigation (separate dialogs or an auxiliary search
dialog are instantiated) or View State Changes (panels,
wizard steps or tabs are switched) are committed via
interfaces. In this context, the knowledge when to trigger any
of the interface operations is kept in the children of Dialog
Event Handling with a white border in Figure 5. In contrast,

the execution of the respective state change is encapsulated
in the categories that implement the interfaces. At last, the
state changes are completely decoupled from the point in
time when they are requested. Finally, the Presentation
Event Handling is separated into event processing that is
either concerned with data or the visual structure. Mostly the
data relevant events can be processed locally by the
Presentation if no forwarding is registered. However, the
View State Changes do require the forwarding of events to
the Dialog Event Handling first, before they can be
committed. This is due to the decoupling of view states and
their better exchangeability. Moreover, the differentiation of
event evaluation, triggering and state change execution
supports the reuse and change of views as they are better
decoupled from dialog logic components. In this regard,
view states are relevant for the Dialog Logic but not their
concrete appearance, which can be adapted frequently.

cmp Event handling categories and interfaces

View State
Changes

Application
Server Calls

Dialog
Navigation

Event
Forwarding

Application
Services

Presentation
State Update ViewStateOperations

View
DefinitionViewConstructionOperationsNavigationOperations

Dialog Event
Handling DialogEventHandlingOperations

Dialog State
Changes

Presentation
(FUI)

Dialog Logic

ServerOperations

Dialog Lifecycle
Actions

Figure 5. Software categories relevant for event processing and possible

interfaces.

IV. REVIEW OF GUI ARCHITECTURE PATTERNS
In this section, we review the presented GUI patterns of

Section II in the light of the elaborated software categories.

A. MVC Variants
For the review of classic GUI architecture patterns, we

would like to refer to exemplary and valuable work
published in [3] and [20], which is valuable for filling gaps
and giving directions for related design decisions. Therein,

128Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

options for refinement and customizing MVC based
architectures are proposed and discussed. It is still up to the
developer to decide on the several choices. In contrast, the
Quasar client architecture presents a reference for our
domain that already has some refinements incorporated.

Positive aspects. Both patterns and Quasar client share
two positive aspects that motivate their application. Firstly,
the data storing component does not depend on any other of
the components, and so, can independently evolve. Secondly,
only one of the components resumes the task to call
ApplicationKernel services. This aspect eases the design
efforts for interfaces and data exchange formats between
dialogs and ApplicationKernel.

Issues. According to the MVC variants, we see two
major issues that will be described as follows.

Separation of concerns. Firstly, the degree of
encapsulation and separation of concerns of MVC variants is
very limited. There is no variant that is able to reduce the
dependencies of all three abstractions altogether. Solely, the
distribution of tasks is altered, and so, the visibility among
components changes accordingly. In the end, one component
will be assigned responsibilities that originate from the two
other components as they are defined by classic MVC.
Therefore, the component with concentrated tasks tends to be
overburdened, and finally, can end up as the bottleneck from
a maintenance perspective. Additionally, in certain variants
the altering the tasks of the three components may result in a
simplification of one component that can only be employed
for stereotype tasks. There seems to be no ideal separation of
concerns among three components.

In general, there are no hints given how the business
logic and its related display can be decoupled. More
precisely, the View part is directly coupled to the GUI
Framework. In addition, the knowledge of the View has to
constitute of how to operate the GUI Framework facilities
(to construct the visual dialog parts) and what layout as well
as what selection, order and arrangement of UI-Controls are
needed to embody the domain and the current service in use.

Event differentiation. With regard to the event
processing chain of Section II.B, the patterns do not
distinguish clearly between events related to technical or
application related concerns. In general, a guideline is
missing for the decision when to shift between presentation
or application related processing of events. So, the developer
has to refine the architecture by himself. The reuse may be
affected, since the Controllers end up processing both types
of events for the sake of quick release cycles.

Cohesion. Concerning the identification of possible
instances and their proper size, there are hardly any hints
when to create new dialog instances or MVC-triads. Thus,
the modularization of dialog components is to be done on
behalf of the developer. Only the HMVC [24] gives some
rudimentary hints. The general size and scope of MVC units
is not clear. According to Karagkasidis [20], a View may
constitute of single UI-Controls (widgets), containers like
panels with a certain set of UI-Controls or whole dialogs.

Coupling. With respect to the limited separation of
concerns more issues arise. The control of Presentation
states and the handling of application related events to
initiate ApplicationKernel service calls are closely coupled to

View elements. Usually, in many MVC variants Controller
and View maintain a strong dependency where the Controller
is fully aware of the UI-Controls of the View. In fact, both
components build an aggregated unit of design that cannot be
reused and is harder to maintain. Eventually, a Controller
can only interact with Views that comply with a certain set of
states. Whenever the set of UI-Controls changes the possible
states of the dialog alter as well, so that the Controller
implementation may have to be revised each time.

To partly resolve this issue and decouple the Controller
from application aspects, a developer could revert to the
“Model as a Services Façade” [3] MVC variant. The Model
would be assigned both data structures and related service
calls for interaction with the ApplicationKernel. This step
would raise a comparative discussion as whether it is
favorable to build a separate service layer [25] or use the
domain model pattern [19] exclusively for the structuring of
the ApplicationKernel. In our opinion, the Model should not
act as a service façade, since it would make parts of an
ApplicationKernel service layer obsolete. According to the
resulting dependencies to functional requirements, the
traceability-links of use cases or tasks would be scattered
among different Models and parts of the ApplicationKernel.
Furthermore, the operations of the Model would be closely
coupled to a certain data structure so that a Model cannot be
easily combined with other application services in the future.
Lastly, services should prevail, since there might be other
clients besides a particular GUI to rely on services. There are
more disadvantages with that solution like the stereotype
character of the Controller [3], which will only serve a
certain pattern of interaction. Thus, the Model should only
contain data-relevant operations (getter, setter, aggregation
and conversion, a state of current selection state, validation)
and be reusable with other services. In this regard, the Model
should act as a mere preparation of a data structure that is
useful in the context of View.

Summary. The MVC and its derivates require much
adaptation in order to be prepared for implementation [22].
The above mentioned issues considerably may have a
negative impact the resulting architecture quality. The
available patterns are definitely not easy to interpret with
respect to the much more responsibilities illustrated by the
software category tree in Figure 4.

The tracing of functional requirements to the parts of the
GUI which coordinates ApplicationKernel will largely
depend on the refinements the developers have incorporated.
The resulting architectures will be heterogeneous and may
add complexity to quickly provide an adapted solution for
the particular domain. As long as there are no standard
architectures or standardized responsibilities available, the
developer is left with many choices that potentially will lead
to vast differences in software architecture quality. The
improved segregation of software categories in component
architectures is goal hard to achieve with available patterns.

B. Quasar Client Reference Architecture
1) General Valuation

The Quasar client architecture provides the most detailed
architecture view on GUI systems published so far and can
be regarded as a refinement of the common GUI patterns.

129Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Positive aspects. In contrast to the MVC variants, the
Quasar client separates Presentation and DialogKernel as
principal dialog components. This separation is the main
source for its virtues, since more clearly distinguished
Controller tasks are achieved. In this regard, the
Presentation is required to handle technical events and the
DialogKernel will process application related events in close
cooperation with the ApplicationKernel services.

States and control. According to Siedersleben [4], the
Presentation and DialogKernel components share a common
structure: both possess memory for storing data, states and a
control. Thus, both components are able to manage their
states independently. A change of layout aspects in the
Presentation would not affect the DialogKernel accordingly.

In theory, the changes of states are implemented in each
component individually and can be triggered by A typed
interfaces that may be designed on the basis of a command
[5] pattern [22]. Consequently, the DialogKernel does not
require knowledge about the inner structure of the
Presentation and vice versa. Thereby, the Presentation may
provide a set of operations that alter the layout of a dialog
depending on the current content of data collected via
DataUpdate interface. The triggering of visual state changes
on behalf of the DialogKernel (Presentation State Update)
may be possible but is not considered. For instance, a
DialogKernel was notified via DialogEvent that the user has
selected an item in a table listing available products. But the
product is on back-order, so the Presentation should receive
the command to display a certain state of the button bar, e.g.,
deactivate the “add to cart” button. Besides, a DialogKernel
could be able to coordinate the inputs of a user working with
two Presentations simultaneously.

2) Traceability-Links to GUI Software Categories
To be able to better valuate the Quasar client architecture,

we traced the identified software categories of Section III.D
to its structural elements. Figure 6 displays the resulting
traceability matrix. The sources for traceability-links
constitute software categories of varying detail arranged on
the left hand side. Please note that the general parent
software categories were excluded, since all child categories
are presented in the matrix. On top of the matrix, the
traceability-link targets are represented either by the
components or interfaces of the Quasar client. Components
not relevant as traceability-link targets were excluded.

Interpretation. We need to provide directions about the
treatment of interfaces and connected dependencies, which
are depicted in Figure 3. A client that imports and calls a
foreign interface must have knowledge about the proper
usage and sequences of operations. In fact, the deeper and
more chained the commands are the more likely is the
mixture of categories. Finally, the client will be dependent
on the same software category the interface is composed of.
This particularly applies to the Presentation (obviously an
AT component) that extensively uses the GUI Framework
interfaces, which are to be included in the traceability matrix.
In contrast, single commands of abstract or stereotype nature
like notify calls can be realized with a 0 type interface. Yet,
the interfaces pose hard to valuate concepts as they inspire a
dynamic view on the architecture like the sequences of
commands or flow of algorithms. Ultimately, the interface

operations would need further refinement for a final
valuation. Partly, the Quasar reference architecture provides
basic sequences for interfaces in [1].

Figure 6. The GUI software categories traced to Quasar client

components and interfaces.

Separation of concerns. For the valuation of both
cohesion and separation of concerns two directions inside the
traceability matrix of Figure 6 have to be considered.

Horizontal. The horizontal direction displays a number
of marks for the realization of software categories though
components or interfaces. For a high cohesion and well
separated concerns, there should be categories realized only
by components or interfaces that belong to one unit of
design. In sum, Application Server Calls, Data Queries,
Data Validation, Dialog Lifecycle Actions, Dialog
Navigation and Model Data Observer are realized by several
Quasar elements, and thus, different units of design. The first
three categories are shared among the ApplicationKernel and
DialogKernel. Thus, the resulting coupling between these
design units will largely depend on the refinement of
interfaces between both components.

Eventually, a mixture of A software categories can be a
probable result when no 0 interfaces can be invented. The
details of this client and server communication remain an
open issue as well as the construction of data queries.

Besides, Model Data Observer is presented with two
options that are either implemented by the DialogKernel
(DataRead) or Presentation (DataUpdate). However, the
complementary task of Model Data Edit is only briefly
mentioned. Siedersleben states that the Presentation knew
about the DialogKernel but not vice versa [4]. How the
important task of changing dialog data is performed by the
Presentation and what interfaces are required is left open.

130Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Moreover, Dialog Lifecycle Actions are of less
importance. They are rather stereotype operations that could
be detailed by 0 type software. For the Dialog Navigation,
there may be missing directions in the Quasar client
reference architecture, so that responsibilities have to be
refined on behalf of the developer. We wonder how dialog
sequences resulting from task model specifications would
affect the software category assignments. Maybe the Session
cannot be marked as 0 software anymore, since it needs
knowledge of the proper sequence of dialogs, which may
finally be reused for different task model instances.

Vertical. A further assessment considers the vertical
direction that reveals targets with many traceability-links.
This can be a marker for lacking detail or even low cohesion.
Those targets would take on too many responsibilities at
once. There are multiple candidates that awake our attention.

As already stated above, the ApplicationKernelService
needs further refinement, so that the way how calls and
queries are performed by the DialogKernel are both detailed
and differentiated concerning allowed data types and
resulting coupling. Consequently, another major issue is the
DialogKernel itself. This component is relatively vague in
definition, so that tasks like calls to the ApplicationKernel,
queries, the dialog data definition, data validation and the
control of states need to be elaborated from scratch.
Concerning functional requirements tracing, the
DialogKernel’s internal structure and state control are
important issues that affect the resulting dependencies to
requirements. For instance, it has to be decided what portions
of a use case will be exclusively realized by the Application
Services and what parts the DialogKernel is in charge of.
Above all, the DialogKernel is likely to depend to some
considerable extent on the ApplicationKernel and its Domain
Data Model. In this regard, it has to be cleared how queries
are to be handled from the Dialog Data Model’s point of
view. The Dialog Data Model can either be composed of
pure entities, which may be embedded as interfaces or data
transfer objects, or aggregations that are sourced from
selected attributes of several entities retrieved by a query.

Furthermore, the Presentation also requires further
elaboration in design. Being the complementary part of the
DialogKernel in a dialog, the Presentation is declared as
having its own data model in parallel to the DialogKernel in
order to perform conversions to the Technical Data Models.
The main data definition is assigned to the DialogKernel,
since this component is in charge of any data retrieval from
the ApplicationKernel. How the data related communication
(read and edit) besides the notification of updates between
Presentation and DialogKernel is originally intended
remains another open issue. In this regard, design decisions
on both interfaces and data types as well as their connection
to the Domain Data Model have to be considered. Moreover,
details about the triggering (Presentation State Update) and
execution of View State Changes are missing. This is due to
the unclear connection between Presentation and
DialogKernel. When decisions about reactions on events are
bound to Presentation, logical behavior will be closely
coupled to views, so that they are less flexible for change and
reuse. In addition, events can only be emitted by view
elements and can not be triggered by the evaluation of

gathered dialog data alone, since there is no link for the
DialogKernel to initiate a View State Change via
Presentation State Update when an event was forwarded.

Lastly, the ViewDefinition interface and related
implementations inside the Presentation need more
refinement. The coarse grained interface is employed for
both handling view states and their initial construction. In
this context, a developer would have to decide on how the
DialogKernel may trigger the visual state changes as a result
of its own states defined by Dialog State Changes.

3) Summary
Our review of the Quasar client revealed that this

reference architecture is more advanced than common GUI
patterns. Its main advantage lies in the division of Controller
tasks among the Presentation and DialogController, so a
better separation of concerns can be achieved. However, this
results in increased complexity concerning the number and
type of interfaces to be implemented.

In comparison to other architectural patterns, the Quasar
client provides more detail and descriptions that give hints to
many design decisions, but these are scattered among several
sources [4][16][21][22] only available in German language.
There was no comprehensive description published, which
would provide every needed implementation detail. In the
end the Quasar client remains vague with many important
issues to solve by individual design decisions. Nevertheless,
we learn from the traceability matrix in Figure 6 that there
are already hints, which component is to take on what
responsibility. In practice, this would yield only a partial
improvement with respect to the common GUI patterns. In
[1], Haft et al. state that the Quasar client could not be
standardized, since most software projects required specific
adaptations. The many individual refinements would affect
the marking of software categories, so that the purity of them
and the separation of concerns may not be maintained as
intended. Even the Quasar client assumes that some portions
of AT software cannot be avoided with conventional
architectures relying on invasive frameworks.

 To conclude, the Quasar architecture is not suitable for a
straight forward implementation. As we see, there are still
gaps in the reference architecture and the developer has to
incorporate own thoughts in order reach the desired quality
architecture. The separation of concerns can be improved
with a customized Quasar client architecture, but this largely
depends on the skills of the architect. In the end, the Quasar
client may be a better, and foremost higher detailed, basis for
reuse of architectural knowledge than the MVC variants.

V. RESULTS AND DISCUSSION
1) General Considerations

We derived a software category model that structures the
dependencies among common responsibilities of GUI
architecture design units. This set of categories can be of aid
for the valuation of both the detail and separation of concerns
of reference architectures or patterns. In the context of GUI
design, the categories resemble different and delimited
packages of knowledge, which are used to identify and map
components. Later on, the dependencies among the
categories will lead the design of interfaces between
components [4] to achieve a minimum of coupling. Thus, the

131Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

proper distribution of identified categories among design
units has an enormous impact on software quality.

Concerning the actual shape of the software categories
tree, there might be different structures or aggregations
possible (intermediate categories) but the final child
elements clearly mark the occurring responsibilities.
Currently, concerns like user profiles, additional assistance
and authorization are not included. In general, terms in the
field of GUI architecture are not used uniformly, so we rely
on our category model that provides a clear description of
tasks. Furthermore, the software categories may be adapted
to fit other domains, since the separation of concerns is
essential in most software architectures.

2) Major Issues in GUI Architecture Design
The available architectural patterns differ in structure as

well as the encapsulation of concerns. Finally, there is no
standardized GUI architecture ready for implementation.
This is an issue here but also for mobile devices [26]. We
analyzed the differences or missing details of presented
architectural patterns and identified three major design issues
that may have a considerable impact on GUI maintenance.

Firstly, a design decision has to treat the question what
and how much application logic is being processed by a
single dialog, or particularly its DialogKernel. Thus, the
coordination and division of labor between dialog and
application related components should clearly define what
portions of the event processing chain will just be handled by
the DialogKernel. As the primary controlling entity of a
dialog, the DialogKernel acts as a client of the
ApplicationKernel and its services [4][22]. The architect has
to decide how much control flow will be implemented by the
client and what operations or services are to be integrated in
the controlling object’s flow definition. For instance, the
business logic can be separated by different layers like
services, auxiliary services, domain model entities and data
types [27]. The coordination of the various algorithms,
which is essential to achieve the goals defined by use cases,
can either be performed by the ApplicationKernel or the
DialogKernel may govern the sequence of service calls and
their combination. The so called orchestration of services to
realize a certain use case is an option for the DialogKernel,
since this design unit determines the data structure for user
interaction. In this context, the DialogKernel directly can
react to valid user inputs and may decide on the further
processing via services or may even trigger corresponding
state changes for the Presentation. How the latter is to be
designed remains an open issue. Siedersleben states that the
ApplicationKernel components constitute of use case
realizations [4]. However, these components would
definitely be incomplete use cases realizations, since the
latter regularly require much user interaction. To conclude,
the question arises how use case realizations are sub-divided
among ApplicationKernel services (management of data
structures and relationships), DialogKernels (logic for dialog
flow and control of user interaction) and finally
Presentations (visual part, in- and output UI-Controls).
Ultimately, this design decision depends on the navigation
structure and whether one DialogKernel may control a
composition of Presentation units or sub-dialogs that form a
complete dialog unit for the sake of one use case realization.

This leads us to the second issue that is concerned with
the flow of dialog units or navigation among them. Recent
research [28][29] investigated on the role of task models for
structuring the flow of dialogs. In analogy to the above
described issue of division of labor for use case realizations
between ApplicationKernel and DialogKernel, the architect
has to decide on the responsibilities of a single DialogKernel
concerning the flow of dialogs. The question arises what part
of the navigation is governed by higher situated components,
e.g., a dedicated task controller, and what view changes are
in the responsibility of the DialogKernel.

Thirdly, the Quasar software categories serve a main
purpose to separate application from technical aspects, and
thus, avoid AT software. As far as the GUI architecture is
concerned, we identified two aspects where AT software
does occur. The Presentation communicates with both the
GUI Framework and DialogKernel in order to retrieve data
inputs from the user. Eventually, the Technical Data Models
of the GUI Framework and the Dialog Data Model have to
be converted in the respective formats to enable information
exchange. There may be a second conversion necessary
between Dialog Data Model and Domain Data Model when
the DialogKernel has to use a different data format. Another
aspect of AT software is the transformation of the Dialog
Data Model to visual representations, which are constructed
by the Presentation. Accordingly, the Presentation needs to
possess knowledge of both the proper selection, arrangement
of UI-Controls and the usage, creation of the latter via the
specific GUI Framework facilities. Besides the first two
issues, these two AT software aspects can additionally
increase maintenance efforts. To solve the third issue,
conventional architectures will not suffice and specific
designs for additional decoupling have to invented. An initial
approach was formulated by Siedersleben and Denert in [16].

3) User Interface Patterns
Before we draw our conclusions, we briefly note how the

incorporation of UIPs for the Presentation component may
resolve the mixture of application and technical aspects.
UIPs promise the reuse of visual layout and related
interaction. The Presentation could be composed of these
pattern units and would specify their contents via parameters.
The UIP implementations would directly depend on the GUI
Framework and no longer each Presentation unit. Therefore,
fewer efforts would have to be spent on programming with
GUI Framework facilities in the long run when UIPs could
be reused extensively. The development could be focused on
the DialogKernel design issues instead.

To integrate UIPs in the Presentation, the differentiated
software categories for event processing will be of great
value as they prepare the better adaptability and even
exchange of Presentation units. Responsibilities would be
centered in the DialogKernel to raise the flexibility of UIPs.

VI. CONCLUSION AND FUTURE WORK
The scope of this work is a study of the prevailing issues

of GUI architecture design. A software category tree on the
basis of Quasar was elaborated, which displays common
responsibilities for GUI architectures and their dependencies.
With the aid of the software categories, we have analyzed the
common GUI MVC pattern and the Quasar client reference

132Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

architecture. As result, we identified pattern specific and
general issues of relevance for design decisions within GUI
architecture development. The herein applied method with a
decomposition of software categories and the tracing to an
architecture model can be applied for other domains to assess
the separation of concerns, cohesion and coupling.

Future work. The findings of this work will influence
our further research into the implementation options for
UIPs. The Quasar client proved to be the most advanced
architecture publicly available. On the basis of the identified
issues of that architecture, we will have to develop dedicated
solutions to prepare a suitable target architecture for UIPs.
We need to further assess the architecture variants outlined
in our previous work [17]. The software categories will help
us to plan and evaluate possible solutions. Whatever
architecture variant will be favored, it definitely needs a
software architecture of high quality with well separated
concerns to accept UIPs as additional artifacts. The solution
must resolve the identified GUI design issues to integrate
UIPs in order to reduce the efforts for adaptation of GUIs.

REFERENCES
[1] M. Haft, B. Humm, and J. Siedersleben, “The architect’s

dilemma – will reference architectures help?,” First
International Conference on the Quality of Software
Architectures (QoSA 2005), Springer LNCS 3712, Sept.
2005, pp. 106-122.

[2] T. Reenskaug, “Thing-Model-View-Editor. An example from
a planningsystem,” Xerox PARC technical note, 1979.05.12.

[3] S. Alpaev, “Applied MVC patterns. A pattern language,”
The Computing Research Repository (CoRR), May 2006,
http://arxiv.org/abs/cs/0605020, 2014.08.14.

[4] J. Siedersleben, Moderne Softwarearchitektur [Modern
software architecture], 1st ed. 2004, corrected reprint.
Heidelberg: dpunkt, 2006.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. New York: John Wiley & Sons, 1996.

[7] M. Lindvall and K. Sandahl, “Practical implications of
traceability,” Software - Practice and Experience (SPE), vol.
26, issue 10, Oct. 1996, pp. 1161-1180.

[8] P. Mäder, O. Gotel, and I. Philippow, “Getting back to basics:
promoting the use of a traceability information model in
practice,” The Fifth Workshop on Traceability in Emerging
Forms of Software Engineering, IEEE, May 2009, pp. 21-25.

[9] J. Siedersleben, “An interfaced based architecture for business
information systems,” The Third International Workshop on
Software Architecture (ISAW '98), ACM, Nov. 1998, pp.
125-128.

[10] E. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Boston, MA: Addison-Wesley, 2004.

[11] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[12] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, Springer LNCS 5610, July 2009,
pp. 826-835.

[13] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user

interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Springer LNCS 6884, Sept.
2011, pp. 136-145.

[14] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” The
Third Asian Pacific Computer and Human Interaction
Conference (APCHI 98), IEEE Computer Society, July 1998,
pp. 25-31.

[15] J. Borchers, “A pattern approach to interaction design,”
Conference on Designing Interactive Systems (DIS 00),
ACM, August 2000, pp. 369-378.

[16] J. Siedersleben and E. Denert, “Wie baut man
Informationssysteme? Überlegungen zur Standardarchitektur
[How to build information systems? Thoughts on a standard
architecture],” Informatik Spektrum, vol. 23, issue 4, Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[17] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[18] J. Dunkel and A. Holitschke, Softwarearchitektur für die
Praxis [Software architecture for practice]. Berlin: Springer,
2003.

[19] M. Fowler, Patterns of Enterprise Application Architecture.
New Jersey: Addison-Wesley Professional, 2003.

[20] A. Karagkasidis, “Developing GUI applications: architectural
patterns revisited,” The Thirteenth Annual European
Conference on Pattern Languages of Programming
(EuroPLoP 2008), CEUR-WS.org, July 2008.

[21] J. Siedersleben (ed.), “Quasar: Die sd&m Standardarchitektur
[Quasar: The standard architecture of sd&m]. Part 2, 2. edn.
sd&m Research: 2003.

[22] M. Haft and B. Olleck, “Komponentenbasierte Client-
Architektur [Component-based client architecture],”
Informatik Spektrum, vol. 30, issue 3, June 2007, pp. 143-
158, doi: 10.1007/s00287-007-0153-9.

[23] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), Springer
LNCS 3520, June 2005, pp. 16-31.

[24] J. Cai, R. Kapila, and G. Pal, “HMVC: The layered pattern for
developing strong client tiers,” JavaWorld Magazine,
http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-
hmvc.html (2000), 2014.08.14.

[25] R. Stafford, “Service Layer,” in [19].
[26] K. Sokolova, M. Lemercier, and L. Garcia, “Android passive

MVC: a novel architecture model for the android application
development,” The Fifth International Conference on
Pervasive Patterns and Applications (PATTERNS 2013),
IARIA, May 27 - June 1 2013, pp 7-12.

[27] S. Wendler and D. Streitferdt, “An analysis of the generative
user interface pattern structure,” International Journal On
Advances in Intelligent Systems, vol. 7, nr. 1 & 2, pp. 113-
134, 2014, IARIA, ISSN: 1942-2679,
http://www.iariajournals.org/intelligent_systems/index.html.

[28] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Springer LNCS 4849, Nov. 2007, pp. 184-197.

[29] V. Tran, M. Kolp, J. Vanderdonckt, and Y. Wautelet, “Using
task and data models for user interface declarative
generation,” The Twelfth International Conference on
Enterprise Information Systems (ICEIS 2010), vol. 5, HCI,
SciTePress, June 2010, pp. 155-160.

133Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

