
Towards Duplication-Free Feature Models when Evolving Software Product Lines

Amal Khtira, Anissa Benlarabi, Bouchra El Asri
IMS Team, SIME Laboratory, ENSIAS, Mohammed V Souissi University

Rabat, Morocco
amalkhtira@gmail.com, a.benlarabi@gmail.com, elasri@ensias.ma

Abstract—Since the emergence of Software Product Line
Engineering, the requirements evolution issue has been addressed
by many researchers and many approaches have been proposed.
However, most studies focused on evolution in domain engineering
while application engineering has not received the same attention.
During the evolution of a derived product, new features are added
or modified in the application model, which may cause many
model defects, such as inconsistency and duplication, both in
application model and between the latter and the domain model.
The aim of this paper is to propose a framework that enables to
avoid duplication when evolving software product lines.

Keywords—Software Product Line; Requirements Evolution;
Domain Engineering; Application Engineering; Duplication.

I. INTRODUCTION

The Software Product Line Engineering (SPLE) has
emerged as a paradigm whose main objective is to develop
software applications based on a core platform. The adoption
of this approach by companies enables them to reduce time to
market, to reduce cost and to produce high quality applications.
Another major advantage of the PLE is the reuse of core
assets to generate specific applications according to the need
of customers.

The SPLE approach consists of two processes, namely,
domain engineering and application engineering [1]. During
these processes, a number of artefacts are produced which
encompass requirements, architecture, components and tests.
Domain engineering involves identifying the common and
distinct features of all the product line members, creating the
design of the system and implementing the reusable compo-
nents. During application engineering, individual products are
derived based on the artefacts of the first process, using some
techniques of derivation.

Many issues related to SPLE have been addressed both
by researchers and practitioners, such as reusability, product
derivation, variability management, etc. The focus of our study
will be on SPL evolution. Evolution is defined by Madhavji
et al. [2] as ”a process of progressive change and cyclic
adaptation over time in terms of the attributes, behavioral
properties and relational configuration of some material, ab-
stract, natural or artificial entity or system”. This definition
applies to different domains, including software engineering.

In the literature, several studies have dealt with evolution
in Software Product Lines (SPLs). Xue et al. [3] presented a
method to detect changes that occurred to product features in
a family of product variants. In order to support agile SPL
evolution, Urli et al. [4] introduces the Composite Feature
Model (CFM), which consists of creating small Feature Mod-
els (FMs) that corresponds each to a precise domain. Other
approaches, such Ahmad et al.’s [5], focused on the extraction

of architecture knowledge in order to assess the evolutionary
capabilities of a system and to estimate the cost of evolution.
Some papers focused on the co-evolution of different elements
of SPLs [6].

Based on the literature, we have found that most of
the studies addressing software evolution focus on domain
engineering, while application engineering has not received
the same interest. However, the experience has proven in
many industrial contexts that systems continue to change even
after the product derivation. This change can be the source
of many problems in the product line such as inconsistency
and duplication. Indeed, the core assets of the product line
and the artefacts of derived products are most of the time
maintained by different teams. Moreover, developers under
time pressure can forget to refer to the domain model before
starting to implement the changes. For these reasons and
others, duplication in SPL can easily happen. We consider
Duplication the fact of adding to the application model features
of the same semantics, which means that they satisfy the same
functionality. In this paper, we propose a framework that deals
specifically with the problem of duplication when evolving
products in application engineering.

The remainder of the paper is structured as follows. Section
2 gives an overview of the background of our study and
describes the problem we are dealing with. In Section 3, we
present the basic concepts and the overview of the proposed
framework. In Section 4, we provide a formalization of the ba-
sic concepts before describing the algorithm of deduplication.
An application of the framework on a case study is presented
in Section 5. Section 6 positions our approach with related
works. The paper is concluded in Section 7.

II. BACKGROUND

In this section, we introduce the background of our study.
First, we present the SPLE paradigm, then we give an insight
on the problem of duplication when evolving products in
application engineering.

A. Software Product Line Engineering

A SPL is defined by Clements and Northop [7] as ”a set of
intensive-software systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common
set of core assets in a prescribed way”. The main goals of a
SPL are to reduce the cost of developing software products,
to enhance quality and to promote reusability.

The domain engineering phase of the SPLE framework is
responsible for defining the commonality and variability of
the applications of the product line. Capturing the common

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

features of all the applications increases the reusability of
the system, and determining the variant features allows the
production of a large number of specific applications that
satisfy different needs of customers. In order to document and
model variability, many approaches have been proposed. Some
of them proposed to integrate the variability in the existing
models, such as UML models or feature models (FORM [8]).
Pohl et al. [1] preferred to define it separately in a dedicated
model, i.e., the orthogonal variability model. Another approach
proposed by Salinesi et al. [9] used a constraint-based product
line language. When the model is ready, the next step consists
of creating the design of the system which contains the soft-
ware components and their relationships. Those components
are then implemented and the code of the product line is
generated.

The process of creating a specific product based on a SPL
is referred to as product derivation or product instantiation.
Product derivation consists of taking a snapshot of the product
line by binding variability already defined in the domain
engineering and using it as a starting point to develop an
individual product. This process is applied during application
engineering phase and is responsible for instantiating all the
artefacts of the product line, i.e., model, design, components,
etc.

B. Duplication of Features during SPL Evolution

The goal of SPLE is to make an up-front investment to
create the platform. Indeed, during domain engineering, the
requirements of all the potential applications are captured, and
as far as possible, the scenarios of the possible changes have to
be predicted and anticipated. The evolution and maintenance of
the product line are conducted through several iterations until
the platform becomes as stable as possible. As new evolutions
arise, the domain artefacts are adapted and refined.

On the one hand, the team responsible for developing
and maintaining the product line studies the requirements of
each customer and derives specific applications that respond
to these requirements. On the other hand, a different team
takes in charge the maintenance of each application. Following
the logic of SPLE, the derived applications are not supposed
to change much, but the experience has shown that this
assumption is not always true. In fact, even after the derivation
of a specific product, new demands can be received from the
customer, either changes to existing features or addition of new
ones.

During the maintenance of a product, duplication of knowl-
edge can easily happen when evolving the model, the design
or the code. In [10], four categories of duplication are distin-
guished:

• Imposed duplication: Developers cannot avoid dupli-
cation because the technology or the environment
seems to impose it.

• Inadvertent duplication: This type of duplication
comes about as a result of mistakes in the design.
In this case, the developers are not aware of the
duplication.

• Impatient duplication: When the time is pressing and
deadlines are looming, developers get impatient and

tend to take shortcuts by implementing as quick as
possible the requirements of customers. In these con-
ditions, duplication is very likely to happen.

• Inter-developer duplication: Different people working
on one product can easily duplicate information.

In the context of SPLE, at least the three last categories
might occur. Indeed, when a derived application is shipped,
developers responsible for maintaining it do not have a clear
visibility of the domain model because another team conceived
it. Thus, developers of the application may add features which
are already satisfied in the domain model and have only to
be derived or configured. In addition, under time pressure,
developers do not refer to the application model and might
add features which are already implemented. To the best of
our knowledge, few attempts have dealt with duplication in
the application engineering. The aim and contribution of this
paper is to provide a framework that helps developers avoid
duplication in a SPL when evolving a specific product.

III. A FRAMEWORK TO AVOID DUPLICATION WHEN
EVOLVING DERIVED PRODUCTS

In this section, we first provide a short definition of the
basic concepts used in the framework, then we present the
overview of the framework.

A. Basic Concepts

Before going any further, we will give an insight of the
basic concepts used in the framework.

Domain Model: A domain is a family of related products,
and the domain model is the representation of all the different
and common features of these products. There are many types
of domain models, but the most interesting are the feature
model [8] and the variability model [1].

Application Model: The model corresponding to an indi-
vidual application. It is generated by binding the variability of
the domain model in a way that satisfies the needs of a specific
customer [1].

Feature: A feature is the abstraction of functional or
non-functional requirements that help characterize the system
and must be implemented, tested, delivered, and maintained
[8][11]. A feature is either:

• Mandatory: it exists in all products.

• Optional: it is not present in all products.

• Alternative (One Of): it specializes more general fea-
ture; only one option can be chosen from a set of
features.

• Or: One or more features may be included in the
product.

Variation Point: Variation points are places in a design or
implementation that identify the locations at which variation
occurs [12].

Variant: It is a single option of a variation point and is
related to the latter using a variability dependency [13].

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Specification: Requirements specification is a description
of the intended behavior of a software product. It contains the
details of all the features that have to be implemented during
an evolution of the system.

Specific Variant or Variation point: We consider a variant
or a variation point as specific when they concern a particular
need of an application that belongs to the product line (e.g.,
features related to confidential data, features that need legal
authorization).

Generic Variant or Variation point: We consider a
variant or a variation point as generic if they can be demanded
by many applications of the product line (e.g., ergonomic or
utility features, non-functional features).

B. The Framework in a Nutshell

With the large number of features in the SPLs, the manual
checking of duplication becomes a complicated and an error-
prone task. In order to deal efficiently with the problem
of duplication during the evolution of derived products, we
propose the framework depicted in Figure 1 as an attempt to
set an automated deduplication tool.

Figure 1. The overview of the framework.

Initial Specification: In this framework, we take as an
input the specification of a new evolution related to a derived
product. This specification contains the requirements that have
to be implemented in this specific product. To use these
requirements, we need to express them as features using the
FODA feature model [14]. In the context of our framework, we
consider that a feature is the association of a variation point and
a variant. To create the feature model, we opt for FeatureIDE
[15]. This tool enables to graphically create the feature model
and the associated XML is generated automatically.

Domain and Application Models: The main prerequisites
of the framework are the domain model and the application
model. To create these models, we use the FeatureIDE tool in
order to generate the sources in the form of XML files.

Repository: The repository contains the features of the
domain model and also the set of all the possible synonyms
and alternatives for the concepts used in the product line.
The elements of the repository are defined using the Resource

Description Framework (RDF). RDF [16] is a W3C rec-
ommendation that supports semantic interoperability between
different resources on the web.

Deduplication Tool: This tool contains a set of algorithms
of features verification. In this paper, we focus on the algorithm
of deduplication. Before describing the algorithm, we need to
define some predicates.

Equivalence: We consider that a variation point (resp. a
variant) is equivalent to another variation point (resp. variant)
if they both implement the same functionality, which means
that they have the same semantics. We define the function
Equiv which can take three values:

Equiv(x) = x0 ⇒

{
x0 = x
x0 is equivalent to x and x0 6= x
x0 ∈ ∅

Example: The variant ”On-line Sales” associated to the
variation point ”Sales” is equivalent to the new variant ”e-
sales” (cf. Section 5).

Duplication: We consider that a feature of the specification
is duplicated if the associated variation point and variant have
equivalents in the application model or the domain model.

The aim of the algorithm is thus to verify the non-
duplication of all the features of the initial specification in
order to generate a new correct specification. Indeed, for
each feature of the initial specification, the algorithm verifies
whether the associated variation point and variant have equiv-
alents in the domain model and the application model. The
detection of equivalence is carried out based on the Repository
content. The steps of the algorithm are explained in details in
Section 4.

Duplication-Free Specification: The output of the frame-
work is a specification that does not contain features causing
duplication in the SPL.

IV. AN ALGORITHM FOR DUPLICATION-FREE SPL

In this section, we provide the formalization of the basic
concepts used in the framework, then we describe the dedu-
plication algorithm.

A. Formalizing the Basic Concepts

Prior to explaining the algorithm, a certain number of
predicates must be defined. We denote by D the domain model.
PD is the set of variation points of D, and VD is the set of
variants of D.

PD = {PD1, PD2, . . . , PDp}

V D = {V D1, V D2, . . . , V Dq}

Similarly, we denote by A the application model of a
derived application. PA is the set of variation points of A,
and VA is the set of variants of A.

PA = {PA1, PA2, . . . , PAs} with s ≤ p

V A = {V A1, V A2, . . . , V At} with t ≤ q

Thus:
PA ⊆ PD and V A ⊆ V D

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

We denote by S0 the specification of an evolution, i.e., the
set of new features to implement.

S0 = {F1, F2, . . . , Fn}

P and V are, respectively, the sets of variation points and
variants, which correspond to the features defined in S0.

P = {P1, P2, . . . , Pv}, V = {V1, V2, . . . , Vu}

It has to be noted that P and V are not subsets of PA and
VA. In our framework, we consider that a feature in S0 can
be defined as follows: Fk = (Pi, Vj).

B. The Deduplication Algorithm

To implement a new evolution, we propose an evolutionary
framework that verifies whether a feature of the specification
is duplicated in the model and generates in the end a new
verified specification. Figure 2 shows the relationship between
the specification of an iteration k-1, the feature Fk and the
resulting specification.

Figure 2. Relationship between Sk−1, Fk and Sk .

To verify whether a feature Fk is duplicated or not, the
algorithm distinguishes six different cases in each iteration (k-
1). These cases are represented in Figure 3.

Figure 3. The figure shows the different cases of variants and variation
points: Every pair (Pi,Vi) corresponds to a case i.

Case 1: The variation point associated to the feature Fk
has an equivalent in PA and the variant has an equivalent
in V A. Consequently, the feature is duplicated and must be
removed from the specification, but the domain model and the
application model do not change.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) ∈ PA) ∧ (Equiv(Vj) ∈ V A)

⇒ Sk = Sk−1 \ {Fk}

Case 2: The feature Fk consists of adding a new variant
to a variation point that has an equivalent in PA, where an
equivalent of the variant exists already in V D. Consequently,
the feature must be removed from the specification.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) ∈ PA) ∧ (Equiv(Vj) ∈ V D \ V A)

⇒ Sk = Sk−1 \ {Fk}

The variant Vj must be added to the application model.

Case 3: The feature Fk requires adding a new variant to a
variation point that has an equivalent in PA, and the variant
does not have an equivalent in V D. In this case, we assume
that V = VS ∪VG where VS is the set of variants of V that are
specific to the business of the application, and VG is the set of
variants of V that are generic. We distinguish two sub-cases:

Case 3.1: If the variant in question belongs to VS . In this
case, the specification does not change and the feature is added
directly to the application model.

(Fk = (Pi, Vj))∧(Equiv(Pi) ∈ PA)∧ (Equiv(Vj) = ∅)∧(Vj ∈ VS)

⇒ Sk = Sk−1

Case 3.2: If the variant in question belongs to VG. In this
case, the feature is removed from the specification.

(Fk = (Pi, Vj))∧(Equiv(Pi) ∈ PA)∧ (Equiv(Vj) = ∅)∧(Vj ∈ VG)

⇒ Sk = Sk−1 \ {Fk}

The variant Vj is added to the domain model and then to the
application model.

Case 4: The variation point related to Fk has an equivalent
in PD but not in PA, and the variant has an equivalent in V D
but not in V A. Consequently, the feature must be removed
from the specification.

(Fk = (Pi, Vj))∧(Equiv(Pi) ∈ PD\PA)∧(Equiv(Vj) ∈ V D\V A)

⇒ Sk = Sk−1 \ {Fk}

The variation point and the variant must be derived from the
domain model and added to the application model.

Case 5: The variation point related to Fk has an equivalent
in PD but the variant is new. In this case, the feature is
removed from the specification.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) ∈ PD \ PA) ∧ (Equiv(Vj) = ∅)

⇒ Sk = Sk−1 \ {Fk}

The variant is added to the domain model then to the applica-
tion model.

Case 6: The variation point related to Fk does not have an
equivalent in PD, and the variant does not have an equivalent
in V D. In this case, we assume that P = PS∪PG where PS is
the set of variation points of P that are specific to the business
of the application, and PG is the set of variation points of P
that are generic. We distinguish two sub-cases:

Case 6.1: If the variation point belongs to PS , the speci-
fication does not change and the feature is added directly to
the application model.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) = ∅) ∧ (Equiv(Pi) ∈ PS)

⇒ Sk = Sk−1

Case 6.2: If the variation point belongs to PG, the feature
is removed from the specification, added to the domain model
then to the application model.

(Fk = (Pi, Vj)) ∧ (Equiv(Pi) = ∅) ∧ (Equiv(Pi) ∈ PG)

⇒ Sk = Sk−1 \ {Fk}

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 4. The Domain Feature Model of the CRM.

Result:

In the end, when all the verifications are carried out for all
the features of S0, we obtain SN . This new specification is a
duplication-free specification which contains only the features
that have to be implemented directly in the application model.

V. CASE STUDY

To illustrate our framework, we propose a part of a feature
model of a CRM (Customer Relationship Management). The
Figure 4 depicts the domain feature model of the CRM. The
feature model is created using FeatureIDE as mentioned in
Section 3.

We consider a derived application with the feature model
depicted in Figure 5. Based on the XML source, we consider
that the tags ”and” correspond to variation points and the tags
”feature” correspond to variants.

Figure 5. The Application Feature Model in XML.

During a new evolution of this application, a number of
requirements are demanded by the customer. In our case study,
we will take into account only the following requirements:

1) Users can use the application in a disconnected mode.
2) The sector header can contact customers by setting

up an appointment.

3) The application must enable users to follow the
activity of competitors’ shops.

4) The system must manage e-sales.
5) The sector header can generate summary reports in

Excel.

We distinguish the following features:

• F1= (P1, V1)= (Connexion, Disconnected mode)

• F2= (P2, V2)= (Contacting Customers, Appointment)

• F3= (P3, V3)= (Shop, Competitor’s store)

• F4= (P4, V4)= (Sales, e-sales)

• F5= (P5, V5)= (Reporting, Excel Report)

with S0 = {F1, F2, F3, F4, F5}.

The list of equivalents of the variation points and variants
related to these features is described in Table 1.

TABLE I. The Equivalents of Features

x (VP or V) Equiv(x)
P1 Access

V1 Remote

P2 Contacting Customers

V2 RDV

P3 Store

V3 ∅
P4 Sales

V4 on-line sales

P5 ∅
V5 ∅

After applying the verification algorithm to this specifica-
tion, we came up with the results of Table 2.

∗: V3 is specific to this application, because following the
activity of competitors’ stores requires a legal authorization,
which is not possible for all companies.

∗∗: Generating reports (e.g., in Excel or Word) can be
considered as a generic feature, because it can be demanded
by other applications.

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE II. The Results of the Verification Algorithm

Feature Verification of VP and V Case Result

F1
(Equiv(P1) ∈ PA) ∧ Case 2 S1 = S0 \ {F1}
(Equiv(V1) ∈ V D \ V A)

F2
(Equiv(P2) ∈ PD \ PA) ∧ Case 4 S2 = S1 \ {F2}
(Equiv(V2) ∈ V D \ V A)

F3

(Equiv(P3) ∈ PA) ∧
Case 3.1 S3 = S2(Equiv(V3) = ∅) ∧

(V3 ∈ VS)
∗

F4
(Equiv(P4) ∈ PA)

Case 1 S4 = S3 \ {F4}(Equiv(V4) ∈ V A)

F5
(Equiv(P5) = ∅) ∧ Case 6.2 S5 = S4 \ {F5}
(P5 ∈ PG)∗∗

In the end, we obtain S4 = {F3}, which means that
developers have to implement only the feature F3 in the
application model. The other features are all sent to the team
maintaining the domain model in order to add the new features
and bind the existing ones then re-derive the model.

VI. RELATED WORK

In this section, we provide an overview of the studies most
relevant to our work by categorizing them according to the
issues addressed in this paper.

Evolution of feature and variability models: In order to
reduce complexity and improve the maintenance of variability
in large-scale product lines, Dhungana et al. [17] proposes to
organize product lines as a set of interrelated model frag-
ments that define the variability of particular parts of the
system, and presents a support to semi-automatically merge
the different fragments into a complete variability model.
The same approach is proposed by Pleuss et al. [18] for
feature models. Voelter et al. [19] proposes an approach which
consists of separating features in models and composing them
by aspect-oriented composition techniques. Cordy et al. [20]
defines two particular types of features, regulative features
and conservative features, and explains how the addition of
these features to the SPL can reduce the overhead of model-
checking. The common denominator of the cited studies is that
they all consider evolution in domain engineering, while our
approach deals with evolution in application engineering.

Model Defects in SPL: Several papers in the literature
have addressed model defects caused by SPL Evolution. For
example, Guo and Wang [21] proposes to limit the consistency
maintenance to the part of the feature model that is affected
by the requested change instead of the whole feature model.
Romero et al. [22] introduces SPLEmma, a generic evolution
framework that enables the validation of controlled SPL evo-
lution by following a Model Driven Engineering approach.
This study focused on three main challenges: SPL consistency
during evolution, the impact on the family of products and
SPL heterogeneity. In [23], Mazo provides a classification of
different verification criteria of the product line model that he
categorizes into four families: expressiveness criteria, consis-
tency criteria, error-prone criteria and redundancy-free criteria.
Redundancy can easily be confused with Duplication, but it is
completely different, because Mazo focuses on redundancy of

dependencies and not redundancy of features. The same study
defines also different conformance checking criteria, among
which two features should not have the same name in the
same model. This is also different from our approach which
is based on equivalence and not only equality of features.

Evolution in application engineering: Carbon et al. [24]
presents an empirical study which consists of adapting the
planning game to the product line context in order to introduce
a lightweight feedback process from application to family engi-
neering at Testo, but it does not provide a general approach that
is applicable to all SPLs. Hallsteinsen et al. [25] introduces the
concept of Dynamic Software Product Lines (DSPL), which
provide mechanisms for binding variation points at runtime
in order to keep up with fluctuations in user needs. However,
this approach does not explain in details how the variability is
managed between application and domain engineering. Thao
[26] proposes a versioning system to support the evolution of
product line and change propagation between core assets and
derived products. But this study also does not provide a method
to manage features in application engineering. Our approach
is different because it provides a feature-oriented approach to
manage the evolution of derived products in a way that insures
non-duplication in the SPL feature models.

VII. CONCLUSION AND FUTURE WORK

In the literature, many studies have addressed the evolution
in SPLs, but the majority of them focused on the domain
engineering phase, when application engineering has not been
thoroughly discussed. Based on industrial experience, products
are also likely to evolve even after their derivation, and this
evolution can cause many problems especially duplication in
the different artefacts of the product line. In this paper, we
provided a framework that deals specifically with duplication
in feature models. This framework uses a repository that
contains the set of domain features and alternatives of the
different concepts of the product line at the aim of verifying
the non-duplication of all the features of a new specification.
To illustrate the framework, we applied it to a case study
from the CRM field. In a future work, we intend to initiate
a tool based on the framework architecture, whose objective
is to automatize the algorithm of verification and to generate
automatically a duplication-free specification that contains
only the relevant features to implement.

REFERENCES

[1] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line
Engineering Foundations, Principles, and Techniques, Berlin, Germany:
Springer-Verlag, 2005.

[2] N. H. Madhavji, J. Fernandez-Ramil, and D. Perry, Software Evolution
and Feedback: Theory and Practice, John Wiley & Sons, 2006, ISBN
978-0-470-87180-5.

[3] Y. Xue, Z. Xing, and S. Jarzabek, ”Understanding feature evolution in
a family of product variants,” Proc. WCRE’10, IEEE, Oct. 2010, pp.
109-118.

[4] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, ”Using composite
feature models to support agile software product line evolution,” Proc.
6th International Workshop on Models and Evolution, ACM, Oct. 2012,
pp. 21-26.

[5] A. Ahmad, P. Jamshidi, and C. Pahl, ”A Framework for Acquisition
and Application of Software Architecture Evolution Knowledge,” ACM
SIGSOFT Software Engineering Notes, vol. 38, no. 5, Sept. 2013, pp.
65-71.

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[6] C. Seidl, F. Heidenreich, and U. Assmann, ”Co-evolution of models and
feature mapping in Software Product Lines,” Proc. SPLC’12, ACM, New
York, USA, 2012, Vol. 1, pp. 76-85.

[7] P. Clements and L. Northop, Software Product Lines - Practices and
Patterns, Boston: Addison-Wesley, 2002.

[8] K. C. Kang et al., ”FORM: A feature-oriented reuse method with domain-
specific reference architectures,” Annals of Software Engineering, vol. 5,
no. 1, 1998, pp. 143-168.

[9] C. Salinesi, R. Mazo, O. Djebbi, D. Diaz, A. Lora-Michiels, ”Constraints:
the Core of Product Line Engineering,” In. RCIS’11, IEEE, Guadeloupe-
French West Indies, France, May 19-21, 2011, pp. 1-10.

[10] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman
to master, Addison-Wesley Professional, 2000.

[11] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, New York, USA: ACM Press/Addison-
Wesley, 2000.

[12] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse. Architecture,
Process and Organization for Business Success, Addison-Wesley, ISBN:
0-201-92476-5, 1997.

[13] S. Creff, ”Une modélisation de la variabilité multidimensionnelle pour
une évolution incrémentale des lignes de produits,” Doctoral dissertation,
University of Rennes 1, 2003.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ”Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University, Software Engineering
Institute, Nov. 1990.

[15] C. Kastner et al., ”FeatureIDE: A Tool Framework for Feature-Oriented
Software Development,” Proc. The 31st International Conference on
Software Engineering, 2009, pp. 611-614.

[16] O. Lassila, R. R. Swick, Resource Description Framework (RDF)
Model and Syntax Specification, W3C Recommendation 22 Feb. 1999,
http: //www.w3.org/TR/1999/REC-rdf-syntax-19990222/ [retrieved: Au-
gust, 2014].

[17] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer, ”Structuring
the modeling space and supporting evolution in software product line
engineering,” Journal of Systems and Software, vol. 83, no. 7, 2010, pp.
1108-1122.

[18] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski,
”Model-driven support for product line evolution on feature level,”
Journal of Systems and Software, vol. 85, no. 10, 2012, pp. 2261-2274.

[19] M. Voelter and I. Groher, ”Product line implementation using aspect-
oriented and model-driven software development,” Proc. SPLC’07, IEEE,
Sept. 2007, pp. 233-242.

[20] M. Cordy, A. Classen, P. Y. Schobbens, P. Heymans, and A. Legay,
”Managing evolution in software product lines: A model-checking per-
spective,” Proc. 6th International Workshop on Variability Modeling of
Software-Intensive Systems, ACM, Jan. 2012, pp. 183-191.

[21] J. Guo, and Y. Wang, ”Towards consistent evolution of feature models,”
In. Software Product Lines: Going Beyond, Springer Berlin Heidelberg,
2010, pp. 451-455.

[22] D. Romero et al., ”SPLEMMA: a generic framework for controlled-
evolution of software product lines,” Proc. 17th International Software
Product Line Conference co-located workshops, ACM, 2013, pp. 59-66.

[23] R. Mazo, ”A generic approach for automated verification of product
line models,” Ph.D. thesis, Pantheon-Sorbonne University, 2011.

[24] R. Carbon, J. Knodel, D. Muthig, and G. Meier, ”Providing feedback
from application to family engineering-the product line planning game
at the testo ag,” Proc. SPLC’08, IEEE, Sept. 2008, pp. 180-189.

[25] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, ”Dynamic
software product lines,” Computer, vol. 41, no. 4, 2008, pp. 93-95.

[26] C. Thao, ”Managing evolution of software product line,” Proc. 34th
ICSE’12, IEEE, Jun. 2012, pp. 1619-1621.

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

