
MDD for Smartphone Application with
Smartphone Feature Specific Model and GUI Builder

Koji Matsui and Saeko Matsuura
Division of Electrical Engineering and Computer Science,

Graduate School of Engineering and Science.
{ma14097@, matsuura@se.}shibaura-it.ac.jp

Abstract—Unlike general PC applications, smartphone
applications have three innovative features that make useful
mobile services a possibility. Conventional code-centric
development tools used for general PC applications are not
efficient for developing high-quality software with mobile
features. The difficulty with conventional development is
because of the variety of platforms and operations. Model
Driven Development (MDD) is a promising approach to
develop high-quality software products efficiently. To develop
richer applications using such features, we propose a UML-
based MDD method. This method uses a Smartphone Feature
Specific Model and a GUI builder, independent of any specific
OSs.

Keywords-MDD; UML; Smartphone Application; GUI
builder.

I. INTRODUCTION
Smartphone applications have three innovative features

that present a possibility of useful mobile services. The first
feature is that the device is equipped with various types of
hardware. This enables the user to input a variety of data;
for example, user actions that cannot be expressed by
characters. The second feature is that the application can be
easily extended by connecting external applications, such as
Intent in Android, or URLScheme in iOS using various
communication mechanisms. The third feature is a set of
rich User Interface components for multi-touch devices that
enables us to use the interface to improve the operability of
a smartphone.

The development of applications for a smartphone is a
complicated task because of the variability of platforms and
the number of different devices that need to be supported.
Moreover, the basic design of a target application that
includes UI operability needs to be analyzed at the early
stages of development to reduce the need to rework.

GUI builder allows a developer to arrange widgets using
a drag-and-drop WYSIWYG editor, so that he/she can
develop the user interface of the application in an intuitive
manner. However, the intuitiveness of the interface is
entirely dependent on the specific programming language
and the analysis of the application logic. This relationship
tends to be insufficient in regards to the first two features.

We propose a unified modeling language (UML)[1]-
based Model Driven Development (MDD) method using a

smartphone feature-specific model and a GUI builder that is
platform independent.

The remainder of the paper is organized as follows.
Section II discusses how to develop smartphone applications
efficiently. Section III explains how to model the smartphone
application using suitable development tools stated in our
approach. Then, the related work is discussed in Section IV.

II. PROBLEMS IN DEVELOPMENT OF SMARTPHONE
APPLICATION

Since mobile services with the abovementioned features
support varied platforms and operations, it is difficult to
implement conventional code-centric development to
develop such a system efficiently. MDD [2] [3] is a
promising approach to develop high-quality software
products efficiently because it enables code generation and
has high traceability.

The issue with changeability of platforms can be solved
by separating concerns about platforms. The Platform
Independent Model (PIM) and the Platform Specific Model
(PSM) use UML. However, to realize appropriate
operability, we need to design a system that uses a concrete
screen image.

A developer can use GUI builder [4] for the specified
OSs and develop application user interfaces in an intuitive
manner. However, the intuitiveness of the interface is
entirely dependent on the specific programming language
and the analysis of the application logic. This relationship
tends to be insufficient. Thus, the product developed using
GUI builder is difficult to reuse in other applications and
cannot follow various requirements changes.

UML is a well-known general-purpose modeling
language that provides a standard method to visualize the
design of a system. There are several convenient UML
editors, such as astah* [5]. astah* and other UML editors
are effective tools to design the static structure and behavior
of a system; however, these tools are unsuitable to design
GUI in an intuitive manner.

The problem is how to efficiently develop smartphone
applications that deliver feasible static content, as well as an
intuitive behavioral model. Further, these applications must
also be independent of any specific OSs.

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

III. UML-BASED MODEL DRIVEN DEVELOPMENT
METHOD

A. Overview of Development Process
To solve the above-mentioned problem, we propose a

UML-based MDD method using a Smartphone Feature
Specific Model and an original GUI builder independent of
any specific OSs. Figure 1 shows an overview of our method.

Figure 1. Overview of our Method

Use case analysis [6] is known as an effective method to
define functional requirements. Therefore, because a use
case represents a basic unit of function that is used by an
end-user, we begin the method by constructing a use case

diagram
The Smartphone Feature Specific Model consists of two

types of data edited by such different design views as a
UML modeling tool and the GUI builder.

The first data is a UML Model specified by a glossary of
smartphone features, as shown in Figure 2. A UML Model
consists of a use case diagram and a pair of an activity and a
class diagram. An activity diagram and a class diagram
correspond to a use case. A developer edits the pair using
the UML modeling tool, astah*.

The second data is defined by the GUI builder and
consists of Abstract GUI Information and Concrete GUI
Information. The former consists of abstract components
that are common in the Android, iOS, and Windows Phone
SDK [7] [8] [9]. Moreover, the second data is connected
with the UML Model by a mapping rule based on a meaning
of a use case. The latter shows properties such as size,
position, font, color, and concrete values, which are added
to the first data.

The mapping rule defines mutual transformation
between both data defined by the UML modeling tool and
the GUI builder. The data of the UML Model is extracted
using the astah* API Plug-in.

After a developer edits a target application using proper
views that he/she thinks fit to design such aspects as
function, structure, behavior, and operability. Smartphone
Feature Specific Model data is written in XML and can be
translated into codes in specific programming language such
as Java, Objective-C, and C#.

B. Glossary of smartphone features.
Figure 2 shows a glossary of smartphone features

mentioned in Section I. Smartphone features are classified
into four classes: View, Gesture, State, and ExternalSystem.
These classes are used as basic components of the
smartphone specific model.

View consists of 13 Widgets and 5 Layout classes that
are used for editing on the GUI builder. Widgets are

Figure 2. The Glossary of Smartphone Features

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

classified into InputWidget and OutputWidget and both of
become components in a class diagram corresponding to a
use case.

The Gesture class has a role of expressing requests for
the operability of a system.

The State class is used to express a distinction of a
property of a process in an early stage of development.
Background processing has API usage restrictions.

The ExternalSystem class expresses a system with which
an application can cooperate to improve the service. The
class becomes an object node in an activity diagram and an
actor of the use case. These classes include not only
cooperating with other applications, but also the use of
various types of hardware and communication methods.

C. UML Models
A use case diagram includes several use cases with the

related actor, such as a user or available external application
or hardware component. A developer may decide a root use
case by relating the other use cases using extend or include
relationships. The root use case represents a scenario of
starting the application. By the end of the operation, each
use case is defined by an activity diagram and the
relationship is expressed by calling a sub activity
corresponding to the other use case in the activity diagram
(Figure 3).

An activity diagram expresses a series of processing
actions with related data. The background action is
distinguished from the foreground action by the use of a
partition. An object node is used to denote the linking of
external applications or hardware. A User partition includes

user actions with input data whereas the Interaction
partition includes actions with output data through a user
interface.

Figure 4 shows a class structure of system partition
specified by State of the glossary. In this model, the general
components in an activity diagram are specified by
smartphone features. A class of the glossary is displayed in
red and a developer can design smartphone features by
using this class.

Figure 4. System Partition in Activity Diagram

Figure 5 shows how a use case corresponds to a screen
of the application preventing complication of models.
Information about input/output data that are used in the use
case is expressed by a class diagram composed of a class

Figure 3. Activity Diagram for a Use Case

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

corresponding to three types of classes in the glossary.
Entity data is also defined by a class related to the use case,
as shown in Figure 5.

Figure 5. Use case and Class Diagram

D. UI Design with GUI Builder
Based on a use case diagram, a developer can design the

UI screen image using the drag-and-drop WYSIWYG editor.
In this step, the UI is designed using subclasses of View and
Gesture in the glossary. As Figure 6 shows, there are 17
types of widgets in View. Each View has one or more
Gestures that is a trigger to call the use case function.
EventAction objects can have a connection with the other
use cases. EntityData object expresses data that is created
by the function and will be read by the View object. Abstract
GUI Information is automatically generated or updated by
these operations on the GUI builder. This sequence of
operations corresponds to a sequence of actions in the
related activity diagram.

Figure 6. Abstract GUI Information

A developer defines attributes or values such as the size
of a widget, the position, font type and font size, the content
of the message presented, and a name of a label or button.
Such data is saved as Concrete GUI Information written in
XML.

Another important role of the GUI builder is to decide
the most appropriate screen transition based on the amount
of information caused by the combination of use cases.
Figure 7 shows an example of how such a decision is made,
to integrate two screens into one screen or not to integrate
the screens.

Figure 7. Products of UML-based MDD

IV. RELATED WORK
Lettner et al. [10] has stated that MDD is a promising

approach for mobile phones in solving problems of
conventional code-centric development approaches. They
discuss the problem from the viewpoint of the reusability of
parts of a system and the adaptability to various changing
platforms. However, Lettner did not propose a concrete
mechanism in which we can design reusable models with
smartphone specific features independent of specific OSs.

There have been several studies of MDD for smartphone
applications. In one study, Sabraou, et al. [11] proposed a
MDD method to design GUI using object diagrams in UML.
These diagrams are translated into XML based data on the
Android GUI Meta model. However, in comparison with
our approach, a developer cannot design the user interface
in an intuitive manner. Moreover, consideration of screen
transition in accordance of the amount of information is not
discussed in the Sabraou study.

In another study, Diep et al. [12] proposed an MDD
environment to provide developers with a platform-
independent GUI design for mobile applications. Though the
static screen composition can be defined, dynamic screen
changes cannot be performed. In contrast, we use a GUI
builder to design GUI. Moreover, we analyze application
logic called by UI components using the activity diagram
and the entity data. This combination ensures that dynamic
screen changes can be performed.

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

MD2 [13] is a framework for cross-platform model-
driven mobile development. In their approach, a developer
needs to design an application model by using a specific
DSL in text form. However, the DSL is insufficient to
flexibly design the smartphone application model from both
the structural view and the UI view.

Franzago et al. [14] also proposed a collaborative
framework for the development of data-intensive mobile
applications exploiting MDD techniques and separation of
concerns. Our approach uses familiar modeling Language
UML and GUI builder which can easily use in intuitive
manner.

V. CONCLUSION AND FUTURE WORK
In our paper, we proposed an MDD method by using an

existing UML modeling tool and our own GUI builder to
operate abstract widgets in an intuitive manner. This allows
flexibility in the design of the smartphone application from
both the structural view and the UI view. We are currently
developing the GUI builder using the Android tablet PC
based on the Smartphone Feature Specific Model. By
applying our method to more smartphone applications, we
will verify if minute differences between features of OSs can
be discussed on the model.

REFERENCES
[1] OMG,” Unified Modeling Language”, http://www.uml.org/

(accessed: Aug. 13, 2014)
[2] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, MDA Distilled

Principles of Model-Driven Architecture. Addison-Wesley, 2004.

[3] OMG, “MDA Guide Version 1.0.1.” Object Management Group,
Tech. Rep., 2003.

[4] ADT Plugin, http://developer.android.com/tools/sdk/eclipse-adt.html
(accessed: Aug. 13, 2014)

[5] astah:http://astah.change-vision.com/ja/ (accessed: Aug. 13, 2014)
[6] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-

oriented software engineering: A usecase driven approach, Addison-
Wesley Publishing, 1992.

[7] Android developers, http://developer.android.com/index.html, 2014
[8] iOS Developer Library,

https://developer.apple.com/library/ios/navigation/ (accessed: Aug.
13, 2014)

[9] Windows Phone Dev Center, https://dev.windowsphone.com/en-
us/home (accessed: Aug. 13, 2014)

[10] M. Lettner and M. Tschernuth “Applied MDA for Embedded
Devices: Software design and code generation for a low-cost mobile
phone”, the 34th Annual IEEE Computer Software and Applications
Conference Workshops, 2010, pp. 63-68.

[11] A. Sabraou, M. E. Koutb, and I. Khriss, ”GUI Code Generation for
Android Applications Using a MDA Approach”, International
Conference on Complex Systems, 2012, pp. 1-6.

[12] C. K. Diep, Q. N. Tran and M. T. Tran, ”Online Model-driven IDE to
Design GUIs For Cross-platform Mobile Applications”, SolCT, ACM
International Conference Proceeding Series, 2013, pp. 294-300.

[13] H. Heitkotter, A. T. Majchrzak and K. Herbert. "Cross-platform
model-driven development of mobile applications with md 2."
Proceedings of the 28th Annual ACM Symposium on Applied
Computing. ACM, pp. 405–411, 2013.

[14] M. Franzago, H. Muccini and I. Malavolta, Towards a collaborative
framework for the design and development of data-intensive mobile
applications. In Proceedings of the 1st International Conference on
Mobile Software Engineering and Systems (MOBILESoft 2014). pp.
58-61, 2014.

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

