
Model Transformations for the Automatic Suggestion of Architectural Decisions in the
Development of Multi-Layer Applications

Jose Garcia-Alonso
Quercus Software Engineering Group

Centro Universitario de Merida
Merida, Spain

Email: jgaralo@unex.es

Javier Berrocal Olmeda
Juan Manuel Murillo

Quercus Software Engineering Group
Escuela Politecnica

Caceres, Spain
Email: {jberolm, juanmamu}@unex.es

Abstract—Multi-layer architectures have become one of the
most widely used architectures for enterprise application devel-
opment. Among other reasons, this is due to the proliferation
of development frameworks simplifying the implementation of
applications based on such architectures. However, the design of
these architectures poses a significant challenge to the software
architect, mostly due to the large number of design patterns and
development frameworks that can be used in the development of
these architectures. The present work proposes a set of model
transformations to automatically suggest the design patterns and
frameworks best suited to satisfy both the functional and non-
functional requirements of the system. This technique is part of
a broader procedure to facilitate the software architect’s task of
converting the preliminar design of an application into a specific
design tailored to the software architecture.

Keywords—Multi-layer architectures; design patterns; develop-
ment frameworks; model transformation; architectural decisions.

I. INTRODUCTION

The layer architectural pattern allows software architects to
decompose a system into decoupled components called layers.
Each layer provides services to the layer above and uses the
services of the layer below. The use of this pattern benefits the
modifiability, portability, and reusability of the final system
[1]. Therefore, multi-layer architectures are those in which
the system has been decomposed into two or more decoupled
components in a vertical manner.

These architectures are one of the most common solutions
to develop enterprise web applications, since they allow de-
velopers to focus on the application’s business logic instead
of its structural details. However, the responsibility for the
effective use of these architectures lies with each individual
development team [2]. Specifically, the figure of the software
architect takes on particular importance since the architecture
plays a very important role in the way the application will be
developed [3].

Thus, a development success will largely depend on the
architect’s experience, expertise, and skill in avoiding the
introduction of potential errors [4]. Defining the architecture
requires the architect to follow an arduous and complex process
for getting information on the system requirements and for
making decisions about how to structure the application to
comply with them [5]. First, the architect has to acquire a
great knowledge on the requirements and the relationships
between them [6]. Subsequently, the knowledge extracted from
the analysis of the requirements is used as the basis for

making decisions about how to structure the system [7]. This
implies that the architect cannot make these decisions based
on a single requirement; she must have a complete view of
all the requirements and how they interact. This conjuncture
complicates the architect’s work and exposes her to situations
in which a misinterpretation can lead to the selection of an
incorrect architectural pattern.

This situation gets even more complicated due to the
close relation between architectural patterns. The application
of a given pattern favors the selection of other patterns [8].
Therefore, the incorrect selection of a pattern can lead the
architect to make incorrect decisions during the refinement of
the architecture. This may cause the final design to fail the
requirements of the system, jeopardizing the success of the
project. Development frameworks, one of the most used tools
in complex software development [9], complicate this problem.
The increasing amount of frameworks and their rapid evolution
rate [10] make it really difficult to keep up-to-date knowledge
about them.

In this paper, a set of model transformations is presented
to automatically suggest the architectural decisions best suited
for each project. The transformations take as input the initial
design of a system, including both functional and non func-
tional requirements, and provides a set of architectural deci-
sions, including design patterns to be applied and development
frameworks to be used in the development, that would help
the system meet its requirements. This work forms part of a
broader proposal that covers the entire process of designing
multi-layer applications.

The rest of this communication is organized as follows.
Section 2 motivates this work by introducing the process of
which the presented transformations are part of. Section 3
details the proposed transformation for automatically suggest
architectural decisions. Section 4 specifies the validation per-
formed over the transformation. Section 5 gives a review of the
most significant related work. Finally, Section 6 presents the
conclusions to be drawn from this work, and some indications
of future work planned in this line of research.

II. MULTI-LAYER ENTERPRISE APPLICATIONS

Figure 1 shows a complete diagram of the process proposed
for the development of framework-based multi-layer applica-
tions.

It shows how the proposed process begins with the pre-
liminar design, normally consisting of a use case diagram and

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 1. The multi-layer application development process.

multiple activity diagrams representing the behaviour of those
use cases. In activity 1, this design has to be refined by the
architect or requirements experts to include information about
the quality attributes of the system.

Usually, the relationship between functional and non-
functional requirements are not explicitly detailed [11]. To
make these relationships explicit, the architect or the require-
ments expert mark the preliminary design with information
about the quality attributes to be met by the application. The
technique used to accomplish this marking is described in more
detail in another paper by Berrocal et al. [12].

Once the architect has the marked design, the next task
is to select the layers into which to split the application,
activity 2 in the diagram. In order to simplify this task, the
process offers to the architect an initial selection of layers.
This initial selection is based on the preliminary design and
the information added by the marks. However, is the architect
who must refine, validate or reject it based on other criteria
such as technological limitations, type of project, client, etc.
This task is done in the activity 3 in the diagram, more details
on the decision-making process followed by architects may be
found in [13].

Once the layers have been selected, the initial design can
be refined to adapt it to them. This adaptation is performed
by a transformation of the model that takes as input the
initial design and the configuration of the feature model. This
correspond to activity 4.

Feature modeling is one of the most extensively accepted
techniques for modeling variability [14]. The specific model
used in the present work follows the approach of Cardinality
Based Feature Modeling, a widely used technique with proven
usefulness in working with development frameworks [15].

To use a feature model as input or output for models trans-
formations it needs to conform to a clearly defined structure or
some sort of “metamodel”. This structure must, however, be
flexible enough to incorporate both the existing architectural

and technological elements and any new ones that may arise in
the future. For the model to have these features, we performed
a study of some of the most used development frameworks
(including Spring, Hiberate, Struts, JSF, CXF, Axis, DWR,
etc.). More details on the analysis performed for the creation
of the feature model and the decisions made for its creation
may be found in [16].

At this point in the process, the architect must specify the
design patterns and development frameworks on which to base
the final design of the application, activity 5 in the diagram.
To make this selection, the architect uses the information
contained in the feature model, and then must link each
element of the layer design to the architectural decisions that
affect it, activity 6 in the diagram.

It should be noted that we propose a specific order for
the decision making process, first the layers then the design
patterns and finally the development frameworks. However,
this order is not fixed and the architect can change it to suit
their needs and preferences The abilities exhibited by features
model to allow such flexibility were one of the main motivation
to choose them as our architectural knowledge representation
tool.

Finally, with all the information available, a model trans-
formation is performed to convert the application layer design
obtained previously into a specific design for the architectural
decisions taken by the architect, activity 7 in the diagram. For
this transformation, information is required about the develop-
ment frameworks to be used. This information is included in
the transformation by means of specific models describing the
use of a particular technology.

The present work focuses on the model transformations
used to offer a set of viable architectural suggestion to the ar-
chitect; specifically, on activities 2 and 5 in the diagram shown
in Figure 1. To accomplish these activities, the transformation
use two elements: the feature model containing information
about the design patterns and development frameworks that
can be used for the development and the preliminary marked

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 2. Layer Suggestion Transformation application diagram

design that contains information about the relationship between
the requirements and the system’s quality attributes.

III. AUTOMATIC SUGGESTION OF ARCHITECTURAL
DECISIONS

This section will describe in detail the model transforma-
tion used in activities 2 and 5 of the process presented above to
automatically provide a set of architectural decisions that can
be used for the architect to design a multi-layer architecture
that meets the requirements of the system.

A. Automatic layer suggestion

The first model transformation presented is the Layer
Suggestion Transformation. Figure 2 shows the elements of
the process involved in the application of this transformation.

The goal of this transformation is to provide to the architect
a possible set of layers to be used in the development of a
system. For this, the transformation take as input a feature
model containing the set of possible architectural decisions
and the initial design of the system marked with information
about the QAs it must fulfill. With this information, the
transformation generates a copy of the feature model in which
the suggested layers has been selected.

As shown in Figure 2, the transformation is designed in
such way that it can be applied multiple times, if the initial
design of the system is described in several models. Each
application of the transformation generates an enriched layer
suggestion that can be used as the input of the next application
of the transformation. The final result obtained is the set of
layers suggested to implement all the elements contained in
the different initial design models.

The transformation will suggest a given layer based on
specific features found in the initial design of the application
or based on the marks containing information about the QAs
of the system. Figure 3 shows a fragment of the transformation
that suggest the use of a persistence layer if the initial design
model contains any DataStore elements.

Figure 5 shows a fragment of the transformation that
suggest the use of a security layer if any element of the initial
design model is annotated with the given QAs.

This simple set of criteria for layers suggestion can be
adapted to meet company policies or architects preferences by

Figure 3. Persistence layer suggestion transformation

Figure 5. Security layer suggestion transformation

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 4. Design Patterns and Frameworks Suggestion Transformation application diagram

Figure 6. Alternative security layer suggestion transformation

enriching the transformations that suggest each of the layers.
Figure 6 shows an alternative to the security layer suggestion
that only select such layer if half or more of the use cases of
the initial design are marked with the given QAs.

The final product obtained by this transformation is a
configuration of the feature model in which the suggested
layers are selected. This model will be later used by other
transformations to further advance in the development process
and can also be used or modified by the software architect.

B. Automatic design patterns and frameworks suggestion

The next model transformation presented is the Design
Patterns and Frameworks Suggestion Transformation. Figure 4
shows the elements of the process involved in the application
of this transformation.

The goal of this transformation is to provide to the architect
a possible set of design patterns and frameworks to be used
in the development of a system. To do this, the transforma-
tion is divided in two. The first one take as input the set

of layers selected and the marked use case diagram. With
this information, the transformation generates a copy of the
feature model in which the suggested design patterns have
been selected. The second transformation take as input the
previously generated set of selected design patterns and the
marked use case diagram and generates a copy of the feature
model in which the suggested frameworks have been selected.

The transformation has been divided in two steps in order
to give architects the opportunity to refine or validate each
level of suggestion independently. Thus, the set of selected
design patterns using in the second part of the transformation
are not necessarily the ones automatically suggested by the
transformation but the ones validated by the architect.

To suggest a particular design pattern or framework the
transformation uses the information about the QAs affected
by them included in the feature model. This information is
checked against the QAs the system must fulfill, as indicated
by the marks included in the use case diagram, not forgetting
the effect the combination of different design patterns and
frameworks has on the final system QAs. Figure 7 shows a
fragment of the algorithm used to suggest a framework on the
basis of such information.

For each selected design pattern this prioritization algo-
rithm suggest the framework that best helps to fulfill the system
QAs based on the framework influence in the QAs and in
the relations with the already selected frameworks. The final
product obtained by this transformation is a configuration of
the feature model in which the suggested design patterns and
frameworks are selected. This model will be later used by
the last transformation to further advance in the development
process and can also be used or modified by the software
architect.

The transformation fragment showed in Figure 7 calculates
the priority value of a specific framework given the positively
and negatively affected QAs by such framework and by its
combination with the rest of the frameworks already selected.
The framework with the highest priority value is suggested to
be used in the development

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 7. Framework suggestion transformation

IV. VALIDATION

This section tries to detail the usefulness of the presented
transformations. To validate them, they have been applied to
two industrial project. Industrial projects were used instead of
other validation methods since, to properly ensure their impact
and benefits, reasonably large projects were needed.

The two projects involved the development of a medium-
size multi-layer application. In each project, the transforma-
tions presented here were used and the following features were
evaluated: their feasibility, their completeness and the effort
required to apply them.

The results obtained evaluating the feasibility of the trans-
formations were very positive. All the information available in
the process was used to suggest a set of architectural decision
by evaluating every architectural decision posible and choosing
the best suited to the system requirements. The only feasibility
drawbacks were found on the usability of the transformations.
Some of the detected problems were fixed, but additional effort
is needed in that regard. In general, the performed validation
strongly support that the transformations are feasible, i.e.,
they can be applied to real-life examples by averagely trained
personnel.

The results obtained assessing the completeness of the
transformations were encouraging. A significant amount of the
architectural decisions taken during the projects were automati-
cally suggested by the transformations. The goal of the process,
of which the presented transformations are part of, never was
to include the complete range of development frameworks,
but to provide a mechanism flexible enough to admit all of
them. However, this flexibility has some disadvantages, namely
the transformations will never be complete because there will
always be a new technology to add. Summarizing, the data
collected support that the transformations are complete. They
facilitate the use of a broad range of architectural decisions
and development frameworks, which is very useful for the
development multi-layer applications but they have to be
constantly updated to keep up with technological evolution.

The results obtained assessing the effort required to use the
transformations are very promising. The use of the transforma-
tions causes a small overhead in effort needed, but its effect is
diluted in the time saved during development. Additional effort
are needed when new architectural decision or technologies
have to be included into the transformations. This additional
effort can be a major drawback using them. Their potential
benefits are shown more clearly where no additional element
has to be taken into account. Concluding, the data collected
strongly support the effort needed characteristic, indicating
that the use of the proposed transformation reduces the total
effort spent in the design and development of multi-layer
applications.

V. RELATED WORK

In the area of architectural decision making, particularly
stand out for their close relationship with our proposal two
works of Zimmermann [17][18]. They present a framework for
the identification and modeling of recurring architectural deci-
sions, and for converting those decisions into design guidelines
for future development projects. In particular, Zimmerman

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

proposes seven Identification Rules (IRs). These rules have
their counterpart in our transformations. The main difference
between our work and that of Zimmerman is the use made of
those architectural decisions. In his work, the main objective
is to gather information for use in future projects. Our focus is
on automatically suggesting the best suited decisions to meet
the requirements of the system being developed.

In the field of Web application development, Melia et al.
[19] propose an extension to the model-driven methods of Web
application development. Their proposal is closely related to
the present work. Both pursue the same goal – to increase
the architect’s reliability when using model-driven techniques
to design the architecture of a Web application. Nevertheless,
their work focuses on RIA development, while ours is intended
to encompass the entire class of multi-layer applications. Also,
unlike our proposal, the approach in [19] does not allow for
control of the technologies used to implement the application,
and neither does it provide any mechanism to log and store
the decisions made by the architect for later use.

Finally, the studies of Antkiewicz et al. [15] and Hey-
darnoori et al. [20] are of particular interest in the area of
framework-based software development. Antkiewicz’s tech-
niques allow the modeling of specific designs for certain
frameworks, and these models are then used to generate
the source code. Heydarnoori et al. propose a technique for
automatically extracting templates for implementing concepts
of development frameworks. Unlike our work, the proposed
techniques are very code centric, and their creation requires
expertise in each framework employed. Our work is aimed at
increasing the level of abstraction in the sense of being able
to start from a technology-independent design, and progress to
obtaining the final specific design by using the decisions made
by the architect and model transformations.

VI. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problems facing the soft-
ware architect when designing a multi-layer architecture. The
complexity of these architectures, the complex relationship
between functional and non-functional requirements and the
high number of development frameworks and how they affect
the non-functional requirements complicate the architect’s task.
We have proposed a technique for simplifying the architectural
decision making process by means of the use of a feature
model, a marked preliminary design and a set of model
transformations to automatically suggest the best suited design
patterns and development frameworks. The proposed technique
forms part of a broader procedure to address the transition from
an initial design of an application to a design adapted to the
architecture and technologies selected by the architect. This is
a complex process that requires deep technical knowledge of
the technologies involved. This complexity can be significantly
mitigated by using model-driven development processes.

The next steps related to the architect’s decision making
and the model transformations presented in this work will
be based on improving the prioritization algorithm used to
suggest the most appropriate development framework based
on the QAs affected by it. This algorithm can be improved by
taking into account the frameworks that has not been selected
but that can improve the system QAs if they are chosen over
the architect manual selection.

ACKNOWLEDGMENTS

This work was partially funded by the Spanish Ministry
of Science and Innovation under Project TIN2012-34945, as
well as by the Autonomous Government of Extremadura and
FEDER funds.

REFERENCES

[1] P. Avgeriou and U. Zdun, “Architectural patterns revisited - a pattern
language,” in EuroPLoP, 2005, pp. 431–470.

[2] R. S. Pressman, “Manager - What a tangled web we weave,” IEEE
Software, vol. 17, no. 1, 2000.

[3] L. Northrop, “The importance of software architecture,”
http://sunset.usc.edu/GSAW/gsaw2003/s13/northrop.pdf, SEI, Carnegie
Mellon University, [retrieved: 07, 2014], 2003.

[4] M. Dalgarno, “When good architecture goes bad,” Methods & Tools,
vol. 17, no. 1, 2009, pp. 27–34.

[5] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P. Verma,
“The duties, skills, and knowledge of software architects,” in Pro-
ceedings of the Sixth Working IEEE/IFIP Conference on Software
Architecture, ser. WICSA ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 44–47.

[6] R. Capilla, M. A. Babar, and O. Pastor, “Quality requirements engi-
neering for systems and software architecting: methods, approaches,
and tools,” Requir. Eng., vol. 17, no. 4, 2012, pp. 255–258.

[7] P. C. Clements, “On the importance of product line scope,” in PFE,
2001, pp. 70–78.

[8] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? a model and annotation,” Journal of Systems and
Software, vol. 83, no. 10, 2010, pp. 1735–1758.

[9] I. Vosloo and D. G. Kourie, “Server-centric web frameworks: An
overview,” ACM Comput. Surv., vol. 40, no. 2, 2008.

[10] M. Raible, “Comparing JVM web frame-
works,” Jfokus, [retrieved: 07, 2014], 2012. [On-
line]. Available: http://static.raibledesigns.com/repository/presentations/
Comparing JVM Web Frameworks Jfokus2012.pdf

[11] L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual Modeling: Foundations and
Applications, 2009, pp. 363–379.

[12] J. Berrocal, J. Garcı́a-Alonso, and J. M. Murillo, “Facilitating the
selection of architectural patterns by means of a marked requirements
model,” in ECSA, ser. Lecture Notes in Computer Science, M. A. Babar
and I. Gorton, Eds., vol. 6285. Springer, 2010, pp. 384–391.

[13] J. Garcia-Alonso, J. B. Olmeda, and J. M. Murillo, “Architectural de-
cisions in the development of multi-layer applications,” in Proceedings
of the 8th International Conference on Software Engineering Advances,
ser. ICSEA ’13, 2013, pp. 214–219.

[14] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, 2005.

[15] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
framework-specific modeling languages,” IEEE Trans. Software Eng.,
vol. 35, no. 6, 2009, pp. 795–824.

[16] J. Garcia-Alonso, J. B. Olmeda, and J. M. Murillo, “Architectural
variability management in multi-layer web applications through feature
models,” in Proceedings of the 4th International Workshop on Feature-
Oriented Software Development, ser. FOSD ’12. New York, NY, USA:
ACM, 2012, pp. 29–36.

[17] O. Zimmermann, “Architectural decisions as reusable design assets,”
IEEE Software, vol. 28, no. 1, 2011, pp. 64–69.

[18] ——, “Architectural decision identification in architectural patterns,” in
WICSA/ECSA Companion Volume, 2012, pp. 96–103.

[19] S. Meliá, J. Gómez, S. Pérez, and O. Dı́az, “Architectural and technolog-
ical variability in rich internet applications,” IEEE Internet Computing,
vol. 14, no. 3, 2010, pp. 24–32.

[20] A. Heydarnoori, K. Czarnecki, W. Binder, and T. T. Bartolomei, “Two
studies of framework-usage templates extracted from dynamic traces,”
IEEE Trans. Software Eng., vol. 38, no. 6, 2012, pp. 1464–1487.

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

