
Performance Optimisation of Object-Relational Database Applications in Client-Server
Environments

Zahra Davar∗, Janusz R.Getta†, Handoko‡

School of Computer Science and Software Engineering, University of Wollongong
Email: ∗zd991@uowmail.edu.au, †jrg.@uow.edu.au

, ‡h629@uowmail.edu.au

Abstract—The optimisation of object-relational database ap-
plications implemented as a mixture of object-oriented and
non-procedural code, requires accurate balancing of the data-
processing load between the client side and the server side. When
there are large amounts of procedural code and less efficient and
overly simple algorithms, the majority of the data processing
takes place on the client side. As a consequence it usually increases
the amounts of data transmitted to the client side and also,
the amounts of time needed to process data on the client side.
This paper shows how object-relational database applications can
be optimised through a better balancing of the data processing
load between the client and the server sides. A collection of
transformation rules is developed, which replaces the typical iter-
ative structures of procedural code with the equivalent structures
of non-procedural code. The software patterns proposed in the
paper allow for the automatic optimisation of object-relational
applications.

Keywords–Object-Relational Application; Performance; Trans-
formation Rule; Software Patterns.

I. INTRODUCTION

Object-relational mapping and the efficient implementation
of object-relational applications, have recently received great
deal of attention, especially in commercial environments [1].
Over the past decade, the performance of object-relational
applications has become a serious challenge for programmers
and database researchers [2].

An object-relational database application is a typical
client/server application [3]. In relational systems, the ma-
jority of query processing is performed on the server side
[4]. Object-relational mapping makes the relational database
system available on the server side and visible to an application
programmer as a collection of classes of objects on the client
side. This means that, relational tables or stored procedures
on the server side are wrapped into classes on the client side,
so that objects and methods can be used on the client side
as well. This is why object-relational database applications
are typically implemented in the object-oriented programming
language embedded with the simple non-procedural statements
of the Object Query Language (OQL).

Programmers, access data on the client side through it-
erations over the classes of objects or over the results from
the processing of OQL statements. Such an approach to
the implementation of object-relational applications tends to
reduce the amount of non-procedural code and to significantly
simplify the code when accessing the object-oriented view
of the database. For instance, a traversal of an associations
between two classes of objects, is implemented as nested loops
which iterate over the objects [5]. Programmers typically focus

on the logic of an application rather than on how the data
will be processed on the client side. This approach to the
implementation of an object-relational application, is the main
cause of two serious performance problems.

First, the iterations over the large classes of objects on the
client side require transferring large amounts of data from the
server side. Second, to process these data on the client side,
a programmer uses the algorithms which are not as efficient
as algorithms which can process the same data on the server
side. For example, a traversal of an association on a client side
is typically implemented as a join of two relational tables on
a server side [5]. Then implementation of join operation on
the server side with a hash-based or index-based algorithms
is much more efficient than implementation of the same join
operation on the client side with a nested loop algorithm.

Implementing efficient object-relational applications is a
serious challenge. There are a number of ways to solve this
problem. Recognising the control structures of an application
so that it can be rebuilt with more non-procedural code is one
solution. This means that, only the objects needed to satisfy
the filtering conditions of the application are transferred from
the server side to the client side. By using this approach,
each relational application written by a programmer can be
restructured so as to achieve the same results faster.

This paper, presents a set of transformation rules which
can eliminate the iteration over a large number of objects and
reduce the amounts of data transmitted over a network by
changing the control structures of an application. By applying
the rules, some of the procedural components are replaced with
OQL statements. This results in faster and more efficient per-
formance of the application. This paper also proposes software
patterns which can be used by an application programmer.
These patterns, allow the automatic optimisation of object-
relational applications.

In the remainder of this paper, experimental results are
presented in Section II to show the scale of the problem.
Section III reviews the existing research on performance tuning
of object-relational applications. The transformation rules are
presented in Section IV. Software patterns for different styles
of programs are presented in Section V. Section VI contains
the conclusion and suggested future work.

II. CASE STUDIES/EXPERIMENTS
Experiments, were conducted using the TPC-H benchmark

database which has 300 MB of relational data. The Lucid Lynx
Ubuntu system running on 3.33GHz Intel(R), Core(TM)2, Duo
CPU with 3.25GB RAM was used to run the applications.
The examples were run in Java Persistence API (JPA) format

637Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

and in the NetBeans 7 environment. Various experiments were
performed for different size databases and the run-time of the
applications was measured, using NetBeans run-time clock. In
all examples, the Supplier class, consists of 3000 objects and
the Lineitem class varies between 400,000 objects to 1,800,000
objects.

In this section, two sets of experiments are presented
to show the motivation of this research. In each set of
experiments, the run-time of two different applications with
the same output is measured and compared. In each set of
experiment, the first application is the original inefficient
version of the application and the second one is the improved
version. The first set of experiments, presents anti-join
traversal and the second, illustrates counting from aggregation
applications.

A. Anti-Join Traversal
The following anti-join application, is used to identify

suppliers whose products have never been ordered.
{Query query1 = em.createQuery
("SELECT s FROM Supplier s", Supplier.class);
List list1 = query1.getResultList();
while(iterator1.hasNext())

{Query query2 = em.createQuery
(" SELECT l FROM Lineitem l
WHERE l.L_SUPPKEY="
+query1.getInt("s.S_SUPPKEY"));

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
boolean found = false;
while (iterator2.hasNext())
if (query1.getInt("s.S_SUPPKEY") ==

query2.getInt("l.L_SUPPKEY")){
found=true; } }

if (!found) {
System.out.println
("ITEM " + query1.getInt("s.S_SUPPKEY")
+ "not exist in LINEITEM ");

found = false; } }

Figure 1. Application C.

To test the performance of Application C, the run-time of
the application with different sizes of the class Lineitem is
recorded.

Figure 2. Execution Time for Application C.

Figure 2 shows the result of running the nested loop struc-
ture of the anti-join application with different size Lineitem
classes. The run-time of Application C started from 30 seconds
with 400,000 objects in the Lineitem class and increased to
approximately 130 seconds for 1,700,000 objects.

Next, Application D is implemented using a left outer
join clause. Using this, only the objects which satisfy the
anti-join condition transfer to the client side. This anti-join
application, has the same output as Application C but in the
shorter run-time.

{Query query = (Query) em.createQuery
("SELECT s FROM Supplier s
LEFT OUTER JOIN Lineitem l WHERE

s.S_SUPPKEY=l.L_SUPPKEY", Supplier.class);
List list1 = query.getResultList();
Iterator iterator1= list1.iterator();}

Figure 3. Application D.

Figure 4 shows the run-time of Application D for different
size Lineitem classes. The run-time was varied, between 2-4
seconds.

Figure 4. Execution Time for Application D.
Figure 2 and Figure 4 clearly show that Application D

is much more efficient than Application C. The run-time
for Application C, took 30 seconds with 400,000 objects in
the Lineitem class and increased to approximately 2 minutes
for 1,700,000 objects. Implementing the anti-join application
with a left-outer-join, instead, caused a run-time of between
2 to 4 seconds. On average, Application D ran 26 times
faster than Application C. Therefore, to implement an anti-
join application for large database with complex objects,
the implementation of Application D is more efficient than
Application C.

B. Counting Objects

Two different applications were run for counting objects
from a class. Both applications retrieve the same outputs.
Application E is implemented with two SELECT statements,
which iterates on the results of the first SELECT statement.
This application finds the same objects in Lineitem class
and counts them. Application E, is implemented by nested
SELECT statements as follows:

638Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

{ Query query1 = em.createQuery
("SELECT Distinct l_Suppkey FROM Lineitem l");

List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext())
{ Query query2 = em.createQuery
("SELECT COUNT(*) FROM Lineitem l

WHERE
l_Suppkey= list1.l_Suppkey ");

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();}}

Figure 5. Application E.

Application E was run several times with different size of
databases. The results of running Application E are set-out in
Figure 6.

Figure 6. Execution Time for Application E.

Figure 6 shows that, the run-time of Application E took
1.5 hours for 400,000 objects and increased to around 6 hours
for 1,800,000 objects.

Application F is implemented by reconfiguring Application
E. Application F, used a Group by clause to group the results
of counting the same objects and transfer them to the client
side. This approach, eliminates the necessity for iteration over
all of the objects in the class.

{Query query = (Query) em.createQuery
("SELECT l.l_Suppkey,
COUNT(l.L_Suppkey) As total
FROM Lineitem l
GROUP BY l.l_Suppkey
ORDER By total");
Number countResult=
(Number) query.getResult();}

Figure 7. Application F.

The results of running Application F with different sizes
of Lineitem class is presented in Figure 8. The run-time of
Application F varied between 3 and 5 seconds.

Figure 8. Execution Time for Application F.

A comparison of Figures 6 and 8 shows a very large
performance difference between Application E and Application
F. Application F was 55 times faster than Application E.
The experimental results show that by reconfiguring object-
relational applications so that fewer objects are transferred to
the client side and more data-processing is done on the server
side, better performance of the application is achieved.

III. RELATED WORK

Agarwal [6] proposed the idea of using a client-side
object cache in order to increase the performance of the
application and suggested that the actual performance was
greatly dependent on the degree to which the application can
take advantage of data stored in the object cache. The problem
in this method, however, is that the complexity of the query
must be managed so that it can return instances of commonly
used classes with minimum use of joins. In 2006, P. V Zyl et
al. focused on comparing the performance of object databases
and object-relational mapping tools. This research discussed
object-relational mapping in open source applications [7].
This approach, however, only dealt with one framework and
was not tried on the distributed or multi-user frameworks
which are often used by developers. R. Kalantari et al.
compared the performance of object and object-relational
database systems. They suggested a number of factors which
system developers must consider when selecting a database
management system for persisting objects [8] but it was done
based on basic query implementation which means that, it
did not consider complex queries involving two or more
objects. This also means that it is less than optimal for todays
applications with complex queries. Rahayu et al. discussed
the performance evaluation of object-relational transformation
methodology. The aim of this research was to clarify the
efficiency of the operations on relational tables based on
certain object-relational transformation methodology [9]. The
performance of object-relational transformation methodology
was also compared with that of the conventional relational
model. This work, however, did not involve the dynamic
parts of the object orientation. Meng et al. proposed a some
transformation rules for object-oriented database systems.
The rules used in this research were designed to transform
the structural part of an object-oriented database schema into
an equivalent relational schema [10]. These rules provided
a relational view of the object-oriented database schema for

639Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

relational users. This research is limited, however, to the
structure of a relational front end for object-oriented database
systems. The idea of translating queries from an SQL into
an OQL in an automatic way, was suggested by Mostefaoui
et al. Their method was based on graph representations [11].
A formal approach for translating object-oriented database
queries into equivalent relational queries was proposed by
Yu et al. who used the same method as Mostefaoui et al.
[11][12]. These works, however, did not consider all the
possible forms of SQL queries. In addition, the methods
suggested were not general enough to be extended to other
clauses and they could not address the performance problem
of object-relational applications. Grust et al., developed the
FERRY language which was designed as an intermediate
language which acts as glue that permits a programming
style in which developers access database tables using their
programming language’s own syntax and idiom [13]. In 2010,
the same authors extended this approach by proposing the
FERRY-based LINQ to SQL approach [14]. Both papers
were based on compiling the first-order functional programs
into SQL which is not an applicable approach in industry.
Recently, Chen et al. proposed a framework which can
detect and prioritise instances of object-relational mapping
performance anti-patterns [15], and therefore, improve the
systems response time. This is useful but this approach can
detect performance bugs and leaves the debugging process
for the developer. In our previous work, performance tuning
of object-oriented applications in distributed frameworks was
discussed. The structure of the proposed approach needs to
be upgraded in order to be more efficient. Also, the approach
in [16] is only applicable to distributed frameworks and
the templates are not general enough to be applicable to
complicate applications. It should also be noted that the idea
presented in [16], was not sufficiently evaluated through
experimental results.

IV. TRANSFORMATION RULES

The transformation rules presented in this paper convert
the non-optimised version of the object-relational database
applications into optimised ones in order to provide the neces-
sary efficiency and high speed. The configuration of object-
oriented application has been changed by replacing certain
procedural parts of the code with non-procedural code. The
transformation rules create equivalent applications, where less
data is transferred from the server and more data-processing
is done on the server side. The transformation rule is applied
to the non-optimised version of the program which is an
input component and the result is an optimised version of the
program, which is an output component. By using more OQL
code and changing the structure of the input component, the
output component is implemented.

In this paper a filtering (selection) transformation rule,
an association anti-traversal rule and an aggregation rule are
presented. The rule for Association Traversal (presented in
our previous work) is presented here, in order to make the
JAVA pattern of this specific rule which is obtained in Section
V meaningful. Except Association Traversal rule, other rules
are designed based on the recent experimental results. In the
following algorithms, a text p r o c e s s i n g means any block
of Java code.

A. Selection/Filtering Transformation Rule

Each relational application, can include an iteration over
one class of objects (selection) which filters the outputs. For
this case, the configuration of the application is changed from
a program with one SELECT statement and one IF clause
(as shown in Algorithm 1), to a program with one SELECT
statement and one WHERE clause (as shown in algorithm 2).
Therefore, some procedural parts of the code, are replaced
with non-procedural code. Figure 9 is the input component
algorithm for the filtering rule.

Algorithm 1: Input component
Iteration over one class of objects
1 for each t in (SELECT * FROM Class) do
2 if ϕ [t.t1, t.t2, ..., t.tn] then
3 p r o c e s s i n g
4 end
5 end

Figure 9. Input component for Selection Rule.

Figure 10 presents the algorithm of the output component,
after applying the above changes to the input component.

Algorithm 2: Output component
Filtering
1 for each t in (SELECT * FROM Class WHERE ϕ
[t1, t2, ..., tn]) do

2 p r o c e s s i n g
3 end

Figure 10. Output Component for Selection Rule.

An example of ϕ [t1, t2, ..., tn] is: Class.Objecti=2.
Non-relational conditions in the input component ϕ
[t.t1, t.t2, ..., t.tn], will convert to ϕ [t1, t2, ..., tn] in the
output component. This means that, references to the objects
(t.t1), are removed and the output component operates on
the name of the properties (t1). The structure of the entire
expression and all contents, however, remain unchanged.

B. Association Anti-Traversal/Anti-Join Transformation Rule
A common input component algorithm, for the anti-join

rule is introduced in Figure 11. The input component, includes
a variable which is False by default. This variable will become
true if the SELECT statement finds any object from class 2,
which satisfies the same condition as the object in class 1.
Anti-join applications, retrieve objects from the second class,
which do not exist in the first class.

640Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Algorithm 3: Intput component
Anti-Join by Variable
1 for each t in (SELECT * FROM Class 1) do
2 Found = False
3 for each s in (SELECT * FROM Class 2 WHERE

Class 2.Memberj = Class1.t)do
4 Found = True
5 Exit
6 end
7 If not Found p r o c e s s i n g

8 end

Figure 11. Input Component for Association Anti-Traversal.

The algorithm of the output component for association anti-
traversal is presented in Figure 12. Our experimental results
show that the algorithm presented in Figure 12, can be used as
an input component for any possible implementations of the
anti-join’s input components.

Algorithm 4: Output component
Anti-Join by Left outer join
1 for each p in (SELECT * FROM Class1 Left Outer

Join Class2 on Class2.Memberj = Class1.Memberi)
do

2 if Class2.Memberj is Null then
3 p r o c e s s i n g
4 end
5 end

Figure 12. Output Component for Association Anti-Traversal.

In our approach, the output component is written by only
one SELECT statement. The left-outer-join is used in the
output component of this rule to select the objects with the
same condition and makes it unnecessary to transfer them to
the client side.

C. Aggregation
Based on our recent experimental results, the input compo-

nent of the aggregation rule is designed as Algorithm 5. The
rule, can support all different types of aggregation applications.
The aggregation rule is based on finding similar objects in a
class and then applying the aggregation function. For instance,
for counting similar objects from a class of objects, F(x) can be
a COUNT(*) in the input component and COUNT(Memberi) in
the output component. Algorithm 5, is designed using nested
SELECT statements. In this algorithm, F(x) is the function
related to the specific aggregation type, which is used by the
application developer. This function can be MIN, MAX, SUM,
AVG, or COUNT.

Algorithm 5: Input component
Aggregation with nested loop
1 for each t in (SELECT a.Memberi FROM Class a) do
2 for each s in (SELECT F(x) FROM Class b

WHERE b.Memberi=a.Memberi) do
3 p r o c e s s i n g
4 end
5 end

Figure 13. Input Component for Aggregation.

Algorithm 6 presented in Figure 14, used Group by clause
to group the necessary objects and transfer them to the client
side.

Algorithm 6: Output component
Aggregation with grouping objects
1 for each t in (SELECT Memberi, F(x) FROM Class

Group by Memberi) do
2 x = getInt(Memberi)
3 y = resultset(F(x))
4 p r o c e s s i n g
5 end

Figure 14. Output Component for Aggregation.

By using the Group by clause, less objects will be trans-
ferred from the server side to the client side. This means that,
less run-time is needed to run a application.

D. Iterations over two classes of objects/Association Traversal
Rule

Algorithm 7, includes two nested SELECT statements
which performs the JOIN operation. Algorithm 7 is the input
component for association traversal applications.

Algorithm 7: Input component
Iterations over two classes of objects
1 for each t in (SELECT * FROM Class1 WHERE ϕ
[t1, ..., tn]) do

2 for each s in (SELECT * FROM Class2 WHERE γ
[s1, s2, ..., sn] + γ’ [< s1, t1 >, ..., < sn, tn >]) do

3 p r o c e s s i n g
4 end
5 end

Figure 15. Input Component for Association Traversal.

In the output component, two SELECT statements are
merged into one SELECT statement with a JOIN clause. More
non-procedural code is used to write the output component.

641Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Algorithm 8: Output component
Join
1 for each p in (SELECT * FROM Class1 Join Class2 on
2 γ’ [< t1, s1 >,< t1, s2 >, ..., < tn, sn >]
3 Where
4 ϕ [t1, ..., tn] ‖ γ [s1, s2, ..., sn] do
5 p r o c e s s i n g
6 end

Figure 16. Output Component for Association Traversal.

An example of the function: γ′

[< s1, t1 >,< s2, t1 >, ..., < sn, tn >] in the input component
is Class2.Memberi = Class1.Memberj . They are the relational
conditions of the application. The filtering conditions of
Class2 are presented as γ [s1, s2, ..., sn]. Concatenation in the
output component can merge the non-relational conditions
of both classes [16]. By using this rule, filtering conditions
were applied to the objects on the server side and as a result,
only necessary objects which satisfy the JOIN condition will
transfer to the client side. This means that much data will
remain on the server side. This leads to changing the balance
of the data-processing between server and client and, as a
result, enhances the performance of the application.

V. SOFTWARE PATTERNS FOR OBJECT-RELATIONAL
APPLICATIONS

An input component of any transformation rule, is a
non-optimised version of an object-relational application. An
object-relational application can be written in different ways,
and these require a large number of rules to support and
optimise them. To use the transformation rules, input compo-
nents based on what most application programmers use, were
needed. To solve this problem, number of software patterns in
JAVA programming language have been suggested. The soft-
ware patterns presented are based on new implementation of
the rules and they are all standardised with the JAVA template.
As long as the input component, which is the non-optimised
version of the application is consistent with the following
patterns, then the rules can be applied to the application and
optimise it. Depending on the application, the name of the
objects, the classes, the functions, the relational conditions
and the non-relational conditions will change. Object-oriented
programmers need to replace the statement inside < >, with
the appropriate statement of their own code. The other parts
of the pattern remain unchanged.

A. Selection/Filtering Template (SF.Temp)
The input component of the first rule in Section IV-A, must

be be consistent with the following template:

{ Query query1 = em.createQuery(
<Any SQL SELECT STATEMENT

WHICH RETRIEVE OBJECTS>);
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext()){
{
if <CONDITIONS> then
<JAVA code>;
}

}

Figure 17. Selection/Filtering Template (SF.Temp).

CONDITIONS can be any filtering conditions for the class.
For instance: Class1.Objecti =X

B. Association Traversal Template (AT.Temp)
If the input component matches this style, the output

component of the rule for iteration over two classes of
objects, which is presented in Section IV-D, is the optimised
configuration of the application. In the algorithm, ’n’ and
’n-1’ are used to show the order of the tables. For instance,
if there are two classes of objects, n must be considered as 2
and this means that the outer loop is analysed class 1, while
the inner loop is analysed class2:

{ Query query’n-1’ = em.createQuery
<SQL SELECT statement from CLASS’n-1’>;
<GET VARIABLE> ;

<NON-RELATIONAL CONDITIONS of CLASS’n-1’>;
List list1 = query’n-1’.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext()){

<VARIABLE> = query’n-1’.getInt(1);
Query query’n’ = em.createQuery
<SQL SELECT statement from CLASS’n’>
where <RELATIONAL CONDITIONS>;
List list2 = query’n’.getResultList();
Iterator iterator2= list2.iterator();
while (iterator2.hasNext())
{

<NON-RELATIONAL CONDITIONS of CLASS’n’>;
}
<JAVA code>;
} }

Figure 18. Association Traversal Template (AT.Temp).

Assume that, ’t’ is an object variable which get the objects
from the first class and ’s’ is another object variable which
get the objects from the second class. Then: An example of
’NON-RELATIONAL CONDITIONS of CLASS1’:
ϕ [t.t1, t.t2, ..., t.tn]. Example: Class1.Objecti =X.
An example of ’RELATIONAL CONDITIONS’ :
γ’ [< s1, t1 >, ..., < sn, tn >]. Example:
Class2.Objectj=Class1.Objecti.
An example of ’NON-RELATIONAL CONDITIONS of
CLASS2’ :
γ [s.s1, s.s2, ..., s.sn]. Example: Class2.Objectj=Y.

C. Anti-Join Template (AJ.Temp)
If the input component of the rule, matches this anti-join

style, then it can be modified according to the rule, which is

642Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

presented in IV-B.

{ Query query1 = em.createQuery(
<SQL SELECT statement from CLASS1>);
GET VAR = FALSE;
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext()){

Query query2 = em.createQuery(
<SQL SELECT statement from CLASS2>
where
<RELATIONAL CONDITIONS

between CLASS1 and CLASS2>;
List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
while (iterator2.hasNext())
{
if <ANTI-JOIN CONDITION>{

VAR = True,
Exit;

} }
if VAR=FALSE

{ <JAVA code>;
}

}
}

Figure 19. Anti-Join Template (AJ.Temp).

An example of <ANTI-JOIN CONDITION> is:
list1.Memberi=list2.Memberj .

D. Aggregation Template (AG.Temp)
The general template to use the aggregation rule, is pre-

sented as below.

{ Query query1 = em.createQuery
("SELECT <a.Memberi> FROM <CLASS a>");
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext())
{
Query query2 = em.createQuery
("SELECT <F(x)>
FROM <CLASS b>
WHERE
<AGGREGATION CONTITION>);

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
while (iterator2.hasNext())

{
if <AGGREGATION CONTITION> then

}
<JAVA code>;
} }

Figure 20. Aggregation Template (AG.Temp).

To use the output component presented in IV-C, the appli-
cation must match the following style. F(x) can be any type
of the aggregation: MIN , MAX , SUM , AVG or COUNT.

E. n Associations Template
Assume that F: Filtering, C: Condition, J: Java Code, JC:

Join Conditions, V: Variable, A: Array, AGC: Aggregation
Conditions and OV is an object variable which can keep the

results from one template and passes it to the other template.
The object variable, takes the results from each template and
pass it to the next template. At the end of each template, the
object variable is updated to the new object variable which
includes new results from the current template and this object
template is ready to use in the next template. Therefore,
generally all the templates can be presented as:
TF < F,C,OV, J >
TTA < F1, F2, C, JC,OV, J >
TAJ < F1, F2, C,OV, J >
TAG < A,F,AGC,OV, J >

For n association, the template will be a mixture of
the above templates. To mix the templates, ’J’ must be
replaced with the desire template. Also, OV from the first
template must pass to the next template. The inner most class
is considered as class 2. For instance, let us assume that
there are 3 classes: Student Name(Class1), Course(Class2),
Marks(Class3) and the programmer would like to find all the
student names which start with A and then find who does not
take Maths and then find who gets a mark above 50 in other
courses. In this case, there is a filtering at the beginning for
class1, then an antijoin of class1 and class2 and at the end
association of traversal between class2 and class3. By using
the above short templates, the following template was written
for this example:
TF < F,C,OV,< TAJ >> ——-> TF ,A J < F,C,<
OV, F1, F2, C,OV, J >> ——-> TF ,A J ,T A < F,C,<
OV, F1, F2, C, JC,< OV, F2, F3, C, JC,OV, J >>>

Now by replacing each actual template instead of the
name of the template, the final template will design. To make
the above example more applicable, the actual templates are
replaced in the last achived template (TF ,A J ,T A < F,C,<
OV, F1, F2, C, JC,< OV, F2, F3, C, JC,OV, J >>>).

{\\Filtering template\\
Get OV;
Query query1 = em.createQuery(
<Any SQL SELECT statement
which retrieve objects>);
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();
while(iterator1.hasNext())
{if <CONDITIONS> then
{\\Anti join template\\
Get OV;
Query query2 = em.createQuery(
<SQL SELECT statement from CLASS1>);
GET VAR = FALSE ;
List list1 = query2.getResultList();
Iterator iterator2= list1.iterator();
while(iterator2.hasNext())
{Query query3 = em.createQuery(
<SQL SELECT statement from CLASS3>
where <RELATIONAL CONDITIONS
of CLASS1 and CLASS2>;

List list2 = query3.getResultList();
Iterator iterator3= list2.iterator();
while (iterator3.hasNext())
{VAR = True;
Exit;}}

643Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

if VAR=FALSE {\\Join template\\
Get OV;
Query query4 = em.createQuery(
<SQL SELECT statement from CLASS1>);
<GET VARIABLE> ;
<NON-RELATIONAL CONDITIONS of CLASS1>;
List list4 = query4.getResultList();
Iterator iterator4= list1.iterator();
while(iterator4.hasNext())
{<VARIABLE> = rset4.getInt(4);
if <CONDITIONS> then{
Query query5 = em.createQuery(
<SQL SELECT statement from CLASS2>
where
<RELATIONAL CONDITIONS

of CLASS1 and CLASS2>);
List list5 = query5.getResultList();
Iterator iterator5= list5.iterator();
while (iterator5.hasNext()){
if <NON-RELATIONAL CONDITIONS

of CLASS2> then
<JAVA code>; } } } } } } }

Figure 21. n Associations Template.

After obtaining the final design of the input component
template, the rules can be applied. To do this, the developers
must first find out which styles their application consist of.
Then they can use the n Associations Template to build their
application step by step. Then the rules can be applied to
the application and the result is the optimised version of
the application. By replacing the short form with the actual
template, the final template is achieved as above.

Figure 22. Use templates to prepare the input component

Figure 22, shows how theoretically the templates can be
applied to the above example. The templates, however, were
applied on the real applications, but the presentation of these,
is beyond the scope of this paper.

VI. CONCLUSION AND FUTURE WORK
This paper attempted to solve the problem of implementing

efficient object-relational applications in client-server frame-
works. Certain transformation rules, which can shift more data-
processing to the server side, have been proposed. Using this
approach, decreases the amount of data transfer from the client
side to the server side. Therefore, only the essential objects will
be transferred from the server side to the client side. Software
patterns of the rules are also presented to make the rules more
applicable. The correctness of the rules did not fit in the scale

of this paper. Future work will introduce a support tool, which
can apply the patterns automatically to the applications.

VII. ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge the help of Dr.
Madeleine Strong Cincotta in the final language editing of this
paper.

REFERENCES
[1] J. Orsag, ”Object relational mapping”, D. thesis, Comenius University,

Bratislava, Slovakia, 2006.
[2] J. Duhl and C. Damon, ”A performance comparison of object and rela-

tional databases using the Sun Benchmark”, In Proc. ACM Conference
on object-oriented programming systems, languages and applications
(OOPSLA ’88), New York:Norman Meyrowitz, 1998, pp. 153-163.

[3] S. Son, I. Yoon, and C. Kim, ”A Component-Based Client/Server Appli-
cation Development Environment using Java”, In Proc. IEEE Computer
Society Conference on the Technology of Object-Oriented Languages
and Systems (TOOLS ’98), Washington, 1998, pp. 168.

[4] M. J. Franklin, B. T. Jnsson, and D. Kossmann, ”Performance tradeoffs
for client-server query processing”, In Proc. of the ACM SIGMOD
international conference on Management of data (SIGMOD ’96), 1996,
Jennifer Widom (Ed.), New York, pp. 149-160.

[5] R. Ramakrishnan and J. Database Management Systems. New York:
McGraw-Hill, 2002.

[6] S. Agarwal, ”Architecting Object Applications for High Performance
with Relational Databases”, In OOPSLA Workshop on Object Database
Behavior, Benchmarks, and Performance, Persistence Software, Inc,
1995.

[7] P. van Zyl, D.G. Kourie, and A, ”Comparing the performance of
object databases and ORM tools.Boake”, In Proceedings of the annual
research conference of the South African institute of computer scientists
and information technologists on IT research in developing countries
(SAICSIT ’06), 2006, Judith Bishop and Derrick Kourie, pp. 1-11.

[8] R. Kalantari and C. H. Bryant, ”Comparing the performance of object
and object relational database systems on objects of varying complexity”,
In Proceedings of the 27th British national conference on Data Security
and Security Data (BNCOD’10), 2010, Lachlan M. MacKinnon (Ed.),
Springer-Verlag, Berlin, Heidelberg, pp. 72-83.

[9] J. Wenny Rahayu, E. Chang, T. Dillon, and D. Taniar, ”Performance
evaluation of the object-relational transformation methodology,” Data
Knowl. Eng, vol. 38, no. 3, pp. 265-300, 2001.

[10] W. Meng, C. T. Yu, W. Kim, G. Wang, T. Pham, and S. Dao,
”Construction of a Relational Front-end for Object-Oriented Database
Systems”, In Proc. IEEE Computer Society Conference, 1993, pp. 476-
483.

[11] A. Mostefaoui, and J. Kouloumdjian, ”Translating Relational Queries
to Object-Oriented Queries According to ODMG-93.”, In: ADBIS,
Springer, 1998, pp. 328-338.

[12] C. Yu, Y. Zhang, W. Meng, W. Kim, G. Wang, T. Pham, and S. Dao,
”Translation of Object-Oriented Queries to Relational Queries”, In: Proc.
of the 11th Int. Conf. on Data Engineering, 1995, pp. 90-97.

[13] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber ”FERRY: database-
supported program execution”, In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of data (SIGMOD ’09), Carsten
Binnig and Benoit Dageville, ACM, New York, 2009, pp. 1063-1066.

[14] T. Schreiber, S. Bonetti, T. Grust, M. Mayr, and J. Rittinger, ”Thirteen
new players in the team: a FERRY-based LINQ to SQL provider”, Journal
of VLDB, vol. 3, no.2, pp. 1549-1552, 2010.

[15] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora,
”Detecting performance anti-patterns for applications developed using
object-relational mapping”, In Proc. the 36th International Conference
on Software Engineering (ICSE 2014), ACM, New York, USA, 2014,
pp. 1001-1012.

[16] Zahra Davar, Janusz R Getta, ”Performance Tuning of Object-Oriented
Applications in Distributed Information Systems” Presented in 16th
International Conference on Enterprise Information Systems (ICEIS
2014), Lisbon, Portugal, 2014.

644Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

