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Abstract— The paper focuses on creating of a software 

reliability model based on phase type distribution. Usually, the 

length of intervals between the moments of fault detection and 

correction have unknown distributions. In this paper, a new 

approach how to approximate any distribution of positive 

random variable by mixture and convolution of exponential 

phases, known as the general type of phase-type distribution, is 

proposed. The optimization algorithm of Local Unimodal 

Sampling (LUS) is applied to estimate parameters of phase-

type distribution. After such procedure, the dynamics of a 

software reliability model can be described by a continuous 

time absorbing Markov chain. The probabilities of the 

resulting absorbing Markov chain are used to compute 

performance measures of the software reliability model. 

Keywords-software reliability model; phase–type distribution; 

absorbing Markov chain; performance measures. 

 

I. INTRODUCTION 

Software reliability is the failure probability of the 
software under investigation. The situation on creating 
software reliability models is clearly explained in the 
following citation from the Wikipedia: “Over 225 models 
have been developed since early 1970s, but how to quantify 
reliability still remains unsolved. There is no single model 
which can be used in every situation. There is no model 
which is either complete or fully developed” [1]. 

A software reliability model allows forecasting the  
software reliability at any moment of time. One of the 
important problems in creating models is an assumption 
about distribution of the length of intervals between the 
moments of fault detection. Some of authors assumes that 
the length of intervals is distributed according to the 
exponential law [2][3]. For example, the model developed by 
Moranda and Jelinski [4] assumes an exponential time 
between failures having parameter that time intervals of 
detection software faults follow exponential law with the 
parameter proportional to the number of faults remaining in 
the system. The similar assumptions are used in [5][6]. 
Recently, non-homogenous Poisson processes became 
popular for describing stochastic behavior of the number of 
detected faults, because of their simplicity [7][8][9]. Beside 
the mentioned distributions, other models that are based on 
Weibull [10], hyper geometric [11], Pareto [12] and other 
distributions [13] are investigated. 

The use in the software reliability model of any non-
exponential distributions is complicated from the computing 

point of view. Therefore, in this paper, a novel approach to 
apply a convolution and mixture of exponential distributions, 
called the Phase-Type (PH) distribution, to approximate time 
distributions of fault detection and fixing is suggested. It is 
known that the PH distribution can approximate an arbitrary 
probability distribution of a positive random variable with an 
arbitrary accuracy by adjusting the phase structure [14]. 
Some authors use concrete structure of PH distributions, 
such as Erlang and hyper exponential [15], Cox [16], or 
others. The concrete structure of the PH distribution may not 
approximate the desired distribution with the required 
accuracy. Many models have been utilised for evaluating  the 
quality of a software using reliability but very little focus on 
general type of three phase  distribution. Hence, this paper 
mainly focuses on this direction. Using such distribution, the 
performance of the model can be described by an absorbing 
Markov chain [14]. 

The paper is organized as follows. Section II gives 
description of software reliability model under consideration. 
Section III describes the algorithm for finding the structure 
and parameters of approximating PH distribution. The 
algorithm for constructing the set of all possible states of the 
system and transition matrix between states is given in 
Section IV. The modelling results are presented in Section V. 
The paper is concluded in Section VI. 

II. DESCRIPTION OF THE MODEL 

Let us describe the conceptual model of a software 
reliability model. Say, that the software contains a fixed 
number of faults Fc (fault count). Assume that the fault 

detection time follows some distribution ������� and fixing 
time of detected faults obeys another distribution law �������. The modelling process can be represented as the 
queuing system (see Figure 1).  

 

Figure 1. The process of identifying and fixing faults in software. 

It is proposed to approximate any general distribution of 
a positive random variable by the general phase-type 
distribution (GPH). The phase-type (PH) distribution is 
defined as the absorbing time distribution of Continuous-
Time Markov Chain (CTMC). The detected fault enters the 
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queue if the previously detected one is not fixed yet. The 
process of detecting and fixing faults ends when all the faults 
are identified and fixed. The developed software reliability 
model gives probabilistic measures of the process. 

III. PARAMETER  ESTIMATION OF THE PHASE-TYPE 

DISTRIBUTIONS 

Parameter estimation of general phase-type distribution is 
one of the most challenging problems. 

The precision of approximation of non-markovian model � by markovian one �∗ depends on how well distributions ���� , ���� are approximated by phase-type distributions 	
���, 	
��� . There are several methods to search for 
optimal phase-type distribution parameters: moment 

matching method [17][18], expectation maximization 

method [19][20][21][22], and others. We will search for the 

optimal parameters by employing a vector optimization 

algorithm. 

The phase-type distribution  	
��, 
�, which has three 
exponential phases (see Figure 2),  

 

 
Figure 2. The general structure of PH distribution with three phases. 

 

is determined by 12 variables : 

 

� � ���, ��, ���, 
 � �
��� ��� ������ ��� ������ ��� ���� (1) 

 

The coordinate �� , � � 1,2,3	of the vector �  (1) denotes 
the probability of process starting in ith phase. The intensity 

rates of transition from one phase to other are defined in 

matrix 
. For example, the value ���  indicates the average 
transition number from the first phase to the third one per 

unit of time. The auxiliary vector � � ���, ��, ��� : � ���  
�! denotes rates the absorbing state (black circle) 
from each phase is reached. For example, the value �� 
indicates the rate of transition from second phase to 

absorbing state. The transition rates satisfy the following 

equalities and unequalities  

 

���, ���, ��� " 0,���, ���, ���, ���, ���, ���, ��, ��, �� $ 0,��� �  ���� % ��� % ���,��� �  ���� % ��� % ���,��� �  ���� % ��� % ���.
 (2) 

 

The problem of finding optimal parameters of  	
��, 
� 
is transformed to a problem of finding the vector '∗ ∈ �), *�, 
such that ∀' ∈ �), *� ∶ -�'∗� . -�'� . Here -�∙�  is an 
objective function; ), * – lower and upper bounds of vector '. The mapping of vector '  to the set of parameters of the 
phase-type distribution 	
��, 
�  is carried out in the 
following way  

' � ���, ��, … , ���� → � ≔ �34,35,36�34735736 ,�� ≔ �8, ��� ≔ �9, ��� ≔ �:,��� ≔ �;, �� ≔ �<, ��� ≔ �=,��� ≔ ��>, ��� ≔ ���, �� ≔ ���.	
 (3) 

 

The objective function, to be minimized, is defined as an 

area between the density functions ?��; 	A� and ?BCD��; 	�, 
�, as 
 E � F |?BH��; 	�, 
�  ?��; 	A�|I> J� (4) 

 

The estimation of E  (4) is obtained by the following 
expression  

 EK��LMN , ∆�; �, 
� � ∑ |?BH��Q; 	�, 
�  ?��Q; 	A�|∆�MQR� , 

 

�Q � �S  0.5�∆�, 	U � V3WXY∆3 Z (5) 

 

where: �LMN  denotes the end value of discretization and ∆� – 
the step of discretization. After the discretization the 

objective function (4) has the form  

 -�'� ≔ EK��LMN , ∆�; �, 
�; 	' → �,
. (6) 

 

The lower and upper bounds of ' are defined as  
 

) � [0,0, … ,0\]̂ ]_
��

` ,
* � �1,1,1, λb�3 , λb�3 , … , λb�3\]]]]]^]]]]]_

=
� ,
 (7) 

 

where λb�3  – is the maximal transition rate. Using the 
mapping ' → �,
, the optimal parameters of the phase-type 
distribution are obtained from solution '∗, which is given by 
a certain optimization algorithm. 
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IV. SYSTEM STATE GRAPH CONSTRUCTION ALGORITHM 

The scheme of the process of detecting and fixing faults 

in software after approximating the arbitrary distributions by 

PH distributions is represented in Figure 3. 

 

 
 
Figure 3.The process  of detecting and fixing faults in software after 

distribution approximation. 

 

The algorithm for constructing the set of states and the 

transition matrix for markovian model �∗  is described in 
this section. The set of states of the system is defined by  the 

vector c � �S�, S�, S�, S8� , where S� ∈ d1,2,3e  denotes the 
index of an active phase of 	
��� and S� � 0 indicates that 
there is any active phase in 	
��� ; S� ∈ d0,1, … , �f  1e 
denotes a number of detected faults which are waiting in the 

queue; S� ∈ d1,2,3e denotes the index of an active phase of  	
��� , S� � 0  indicates that there is any active phase in 	
���;S8 ∈ d0,1, … , �fe – denotes a number of fixed faults. 
The number of detected faults in the state c  is defined 
according the formula  

 f�c� � !dQ4g>e % S� % !dQ6g>e % S8. (8) 

 

All the states are enumerated by the mapping  

 �h � 	i�c� ∈ d0,1, … , jb�3  1e, (9) 

  

where jb�3  denotes the number of states: jb�3 � 16�f��f % 1�. The mapping i�c� is defined as  
 i�c� � ��f % 1��4S��f % 4S� % S�� % S8. (10) 

 

The inverse mapping im���h� is obtained by the formulas  
 im���h� � nf, o%�f, q%4, �h%��f % 1�r, (11) 

 

where: q � stmst%�uv7��uv7� , o � �m�%8
8 , f � �m�%uv

uv , and % is a 
reminder operator.  

The vector * � nw>, w�, … , wxyz{m�r of boolean variables 
(false or true) are used to determine all the possible states of 

the system. The following sets of states are used: |�M�} 
contains initial states of the system; | contains all possible 
states of the system; |M~ includes states which are going to 
be investigated in the next iteration and |}b~  is the 
temporary set of states obtained from the investigated states 

after one iteration. Each state contained in these sets is 

represented by its index  �h. 
The transitions rates between all states are stored in the 

matrix �7 � ����7�; 	�, � � 0, jb�3  1.  

The algorithm for generating the set of possible states of 

the system consists of the following   steps: 

1) Mark all the states as not investigated: wst≔ ?q���	�	���	��q��	��	U��	�U�����-q��J	����,	 �h � 0, jb�3  1 
 

2) Calculate the initial probability vector : 

 �st7 ≔ 0, �h � 0, jb�3  1 ��n��,>,>,>�r7 ≔ �����, � � 1,2,3 
 

3) Determine the initial states of the system: 

 � � 1,2,3: ����� � 0	 ⇒ |�M�} ≔	|�M�} ∪ in��, 0,0,0�r 
 

4)  Determine the initial values of the sets: 

 | ≔ |�M�} , |}b~ ≔ |�M�} ����7� ≔ 0; 	�, � � 0, jb�3  1 
 

5) Determine the states that have to be 

investigated: 

 |M~ ≔ |}b~ 
 

     Clear the temporary set |}b~ ≔ ∅ 
 

     Let d|M~e~ be an �-th element of the set |M~. � ≔ 1 
6) Find the coordinates of the state vector to be 

investigated: 

 c ≔ im�nd|M~e~r, �h: � i�c� 
 

7) Let us denote the set of the state vectors, that can 

be reached from the state  c, by |∗ ≔ ∅ and the 
set of transition rates, at which all states in set |∗ are reached from the  state c, by λ∗ � ∅. 

 

8) Find the elements of the sets |∗ �	 dc�, c�, … , cQe  and λ∗ � dλ�, λ�, … , λQe . 
The algorithm will be described later. 

 

9) Update the transition rates matrix: 

 �stst�7 ≔ λ�;	�h� � i�c��, � � 1, S 
 

10) Include not yet investigated states into the sets |and |}b~ (see Figure 4) 
 

    for i from 1 to k 

        �h� ≔ i�c�� 

593Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



        if wsh� � ?q��� then 

            |}b~ ≔ |}b~ ∪ ��h��, | ≔ | ∪ ��h�� 

        endif 

    endfor 
 

Figure 4. Pseudocode for including not investigated states into the sets 

|and |}b~. 
 

11)  Mark the current state c as investigated: 
 

wst ≔ �jw� 
 

12) If  � < fqjJ�|M~� then  � ≔ � + 1 and go to 
step 6.  

 

13) If  |}b~ ≠ ∅ go to step 5. 
 

14) Create the final transition rates matrix � =
����� and the initial probability vector ��0� from 
�7and�7�0� (see Figure 5). 

 

    for i from 0 to fqjJ�|� − 1 
        � ≔ i�d|e��, 
        �� ≔ �s

7 

        for j from  0 fqjJ�|� − 1 

            � ≔ ind|e�r, 
            ��� ≔ �s�

7  

        endfor 

    endfor 
 

Figure 5. Pseudocode for creating final transition rates matrix and initial 
probability vector. 

 

15) The end of the algorithm.  

 

The explanation of the step 8 in detail follows. 

Denote by the vector c = �S�, S�, S�, S8�  the state of the 
system. There are four events that make the system to 

change the state: e1 – the change of an active phase in 

	
��� , e2 – the detection of fault, e3 – the change of an 
active phase in 	
��� and e4 – the correction of fault. The 
pseudocode needed to process these events is shown in the 

Figures 6, 7, 8, and 9. 

 

    for � from 1 to 3 

        if S� > 0, �Q4�
��� > 0 then 

            |∗ ≔ |∗ ∪ d��, S�, S�, S8�e, 
            �∗ ≔ �∗ ∪ ��Q4�

���� 

        endif 

    endfor 
 

Figure 6. Pseudocode for processing the e1 event. 

 

    if S� = 0 then 

        if f�c� < �f then 

            for � from 1 to 3 

                for � from 1 to 3 

                    if S� > 0, �Q4
��� > 0, ��

��� > 0, ��
��� > 0 then 

                        |∗ ≔ |∗ ∪ d��, 0, �, S8�e,  
                        �∗ ≔ �∗ ∪ ��Q4

�����
�����

���� 

                    endif 

                endfor 

            endfor 

        else 

            for � from 1 to 3 

                if S� > 0, �Q4
��� > 0, ��

��� > 0 then 

                    |∗ ≔ |∗ ∪ d�0, 0, �, S8�e, 
                    �∗ ≔ �∗ ∪ ��Q4

�����
���� 

                endif 

            endfor 

        endif 

    elseif S� > 0 then 

        if f�c� < �f then 

            for � from 1 to 3 

                if S� > 0, �Q4
��� > 0, ��

��� > 0  then 

                    |∗ ≔ |∗ ∪ d��, S� + 1, S�, S8�e,  
                    �∗ ≔ �∗ ∪ ��Q4

�����
���� 

                endif 

            endfor 

        else 

            if S� > 0, �Q4
��� > 0 then 

                |∗ ≔ |∗ ∪ d�0, S� + 1, S�, S8�e,  
                �∗ ≔ �∗ ∪ ��Q4

���� 

            endif 

        endif 

    endif 
 

Figure 7. Pseudocode for processing the e2 event. 

 

    for � from 1 to 3 

        if S� > 0, �Q6�
��� > 0 then 

            |∗ ≔ |∗ ∪ d�S�, S�, �, S8�e, 
            �∗ ≔ �∗ ∪ ��Q6�

���� 

        endif 

    endfor 
 

Figure 8. Pseudocode for processing the e3 event. 
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    if S� = 0 then 

        if S� > 0, �Q6
��� > 0 then 

            |∗ ≔ |∗ ∪ d�S�, 0,0, S8 + 1�e, 
            �∗ ≔ �∗ ∪ ��Q6

���� 

        endif 

    else 

        for � from 1 to 3 

            if S� > 0, �Q6
��� > 0, ��

��� > 0 then 

                |∗ ≔ |∗ ∪ d�S�, S� − 1, �, S8 + 1�e, 
                �∗ ≔ �∗ ∪ ��Q6

�����
���� 

            endif 

        endfor 

    endif 
 

Figure 9. Pseudocode for processing the e4 event  

 

V. MODELING RESULTS 

Assume that a software program contains 10 faults 

(Fc=10) and suppose that the length of intervals between the 

moments of fault detection has the following Weibull 

density function  

 

?������ � 8
	� �8	��m>.� �m {�.�, � $ 0. (12) 

 

The distribution of the length of intervals between the 

moments of fixing faults has the following Weibull density 

function  

 

?������ � �.�
	�.9 ��.�	�.9�>.� �m {4.6, � $ 0. (13) 

 

The discretization parameters are �LMN � 8 , ∆� �0.0625. 
The distributions ?���, ?���  are approximated by the 

phase-type distributions ?BH���n�;	����, 
���r , 

	?BH���n�; 	����, 
���r  with three phases. The following 
optimal parameters for ?BH�z�n�;	����, 
���r and 

?BH���n�;	����, 
���r density functions are estimated using the 
optimization algorithm LUS [23] and parameter mapping 

given in Section III. 

 EK��� � 0.012693, ���� ¢ �3.456 ⋅ 10m8, 0.767,0.233�, 
 


��� ¢ � 1.516 0.002 1.5090.584  2.348 0.0051.782 7.819  15.604�, 
 EK��� � 0.010634, ���� ¢ �0.008, 1.397 ⋅ 10m8, 0.992�,	 
 


��� ¢ � 1.236 0 01.913  16.338 6.7700.897 0.331  1.402� 
 

The comparision of means and standard deviations 

between original and approximated distributions are given 

in the Tables 1 and 2.  

TABLE I.  MEAN AND STANDARD DEVIATION OF ORIGINAL, 
DISCRETIZED AND APPOXIMATING DISTRIBUTIONS OF TIME FOR FAULT 

DETECTION 

 Distri-

bution ¥�¦� 
Discretized 

distribution ¥§�¦�(deviation,%) 
Phase-type 

distribution ¨©�¦�(deviation,%) 
Mean 0.6798 0.6769 

(0.43%) 0.6958 (2. 35%) 
Standard 

deviation 
0.8569 0.8364 

(2. 39%) 0.8588 (0.22%) 
TABLE II.  MEAN AND STANDARD DEVIATION OF ORIGINAL, 

DISCRETIZED AND APPOXIMATING DISTRIBUTIONS OF TIME FOR FAULT 

CORRECTION 

 Distri-

bution ¥�ª� 
Discretized 

distribution ¥§�ª�(deviation,%) 
Phase-type 

distribution ¨©�ª�(deviation,%) 
Mean 1.3854 1.3841 

(0.09%) 1.4000 (1. 05%) 
Standard 

deviation 
1.0747 1.0719 

(0. 26%) 1.1126 (3. 53%) 
 

The graphs of the original and approximated density 

functions  are represented in Figures 10 and 11. 

 

 
 

Figure 10. The density functions ?��� (blue) and ?BH��� (red). 
 

 
 

Figure 11. The density functions ?��� (blue) and ?BH��� (red). 
 

The markovian software reliability model has 466 states. 

The state probabilities are computed by the following 

formula  
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���� � ��0��«} .  (14) 

 

All possible states are grouped according the number of 

detected faults that are placed in the queue. The values  ¬M���, that there is a certain number n of faults waiting in 
the queue, are obtained by probability summation within 

each state group  

 ¬M��� � ∑ �����,�,Q5RMim��d|e�� � �S�, S�, S�, S8�, U � 0, �f  1, (15) 

 

where d|e� is the ith element in the set |. The graph of the 
values ¬M��� is shown in Figure 12. 
 

 
 
 

 

 

 
Figure 12. The probability functions (of time) of certain number of 

faults waiting in the queue. 

 

Similarly, all possible states of the system are grouped 

according the number of fixed faults. The values �M���, that 
there is a certain number n of fixed faults, are obtained by 

probability summation within each state group  

 �M��� � ∑ �����,			�,Q­RMim��d|e�� � �S�, S�, S�, S8�, U � 0, �f, (16) 

 

where d|e�  is the ith element  in the set |. 
The graph of values  �M���  is shown in Figure 13. 

 

 
 

 
Figure 13. The probabilitiy functions (of time) of a certain number of 

fixed faults. 
 

The density function of time of fixing all errors is shown 

in Figure 14. 

 

Figure 14. Density function of distribution of time necessary to fix all 
10 faults. 

 

The most probable that the time needed to fix all 10 faults 

is about 16 units of time. 

VI. CONCLUSION AND FUTURE WORKS 

In this article, a continuous time absorbing Markov chain 

model of software reliability was proposed. Non-markovian 

distributions of the length of intervals between the moments 

of fault detection and correction are approximated by the 

general phase-type distributions with three phases. The 

model generalizes other software reliability models in which 

various types of distributions are used. The probabilistic 

measures of detecting and fixing faults of created software 

are presented. The proposed model can be useful in 

estimating and monitoring software reliability, which is 

viewed as a measure of software quality. Therefore, it can 

be concluded that this model is more realistic then others for 

a detection of software faults. 

 In the future, the following modified software reliability 

model will be created and investigated. The detected fault 

must be fixed before searching for the next one with the 

assumption that the distributions can change depending on 

number of detected/fixed faults. Examples of the application 

how a model help to have better software will be added.  
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