
Software Relialibility Markovian Model Based on Phase-Type Distribution

Mindaugas Brazenas, Eimutis Valakevicius

Department of Mathematical Modeling

Kaunas University of Technology

Kaunas, Lithuania

e-mail: mindaugas.brazenas@yahoo.com; eimval@ktu.lt

Abstract— The paper focuses on creating of a software

reliability model based on phase type distribution. Usually, the

length of intervals between the moments of fault detection and

correction have unknown distributions. In this paper, a new

approach how to approximate any distribution of positive

random variable by mixture and convolution of exponential

phases, known as the general type of phase-type distribution, is

proposed. The optimization algorithm of Local Unimodal

Sampling (LUS) is applied to estimate parameters of phase-

type distribution. After such procedure, the dynamics of a

software reliability model can be described by a continuous

time absorbing Markov chain. The probabilities of the

resulting absorbing Markov chain are used to compute

performance measures of the software reliability model.

Keywords-software reliability model; phase–type distribution;

absorbing Markov chain; performance measures.

I. INTRODUCTION

Software reliability is the failure probability of the
software under investigation. The situation on creating
software reliability models is clearly explained in the
following citation from the Wikipedia: “Over 225 models
have been developed since early 1970s, but how to quantify
reliability still remains unsolved. There is no single model
which can be used in every situation. There is no model
which is either complete or fully developed” [1].

A software reliability model allows forecasting the
software reliability at any moment of time. One of the
important problems in creating models is an assumption
about distribution of the length of intervals between the
moments of fault detection. Some of authors assumes that
the length of intervals is distributed according to the
exponential law [2][3]. For example, the model developed by
Moranda and Jelinski [4] assumes an exponential time
between failures having parameter that time intervals of
detection software faults follow exponential law with the
parameter proportional to the number of faults remaining in
the system. The similar assumptions are used in [5][6].
Recently, non-homogenous Poisson processes became
popular for describing stochastic behavior of the number of
detected faults, because of their simplicity [7][8][9]. Beside
the mentioned distributions, other models that are based on
Weibull [10], hyper geometric [11], Pareto [12] and other
distributions [13] are investigated.

The use in the software reliability model of any non-
exponential distributions is complicated from the computing

point of view. Therefore, in this paper, a novel approach to
apply a convolution and mixture of exponential distributions,
called the Phase-Type (PH) distribution, to approximate time
distributions of fault detection and fixing is suggested. It is
known that the PH distribution can approximate an arbitrary
probability distribution of a positive random variable with an
arbitrary accuracy by adjusting the phase structure [14].
Some authors use concrete structure of PH distributions,
such as Erlang and hyper exponential [15], Cox [16], or
others. The concrete structure of the PH distribution may not
approximate the desired distribution with the required
accuracy. Many models have been utilised for evaluating the
quality of a software using reliability but very little focus on
general type of three phase distribution. Hence, this paper
mainly focuses on this direction. Using such distribution, the
performance of the model can be described by an absorbing
Markov chain [14].

The paper is organized as follows. Section II gives
description of software reliability model under consideration.
Section III describes the algorithm for finding the structure
and parameters of approximating PH distribution. The
algorithm for constructing the set of all possible states of the
system and transition matrix between states is given in
Section IV. The modelling results are presented in Section V.
The paper is concluded in Section VI.

II. DESCRIPTION OF THE MODEL

Let us describe the conceptual model of a software
reliability model. Say, that the software contains a fixed
number of faults Fc (fault count). Assume that the fault

detection time follows some distribution ������� and fixing
time of detected faults obeys another distribution law �������. The modelling process can be represented as the
queuing system (see Figure 1).

Figure 1. The process of identifying and fixing faults in software.

It is proposed to approximate any general distribution of
a positive random variable by the general phase-type
distribution (GPH). The phase-type (PH) distribution is
defined as the absorbing time distribution of Continuous-
Time Markov Chain (CTMC). The detected fault enters the

591Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

queue if the previously detected one is not fixed yet. The
process of detecting and fixing faults ends when all the faults
are identified and fixed. The developed software reliability
model gives probabilistic measures of the process.

III. PARAMETER ESTIMATION OF THE PHASE-TYPE

DISTRIBUTIONS

Parameter estimation of general phase-type distribution is
one of the most challenging problems.

The precision of approximation of non-markovian model � by markovian one �∗ depends on how well distributions ���� , ���� are approximated by phase-type distributions 	
���, 	
��� . There are several methods to search for
optimal phase-type distribution parameters: moment

matching method [17][18], expectation maximization

method [19][20][21][22], and others. We will search for the

optimal parameters by employing a vector optimization

algorithm.

The phase-type distribution 	
��, �, which has three
exponential phases (see Figure 2),

Figure 2. The general structure of PH distribution with three phases.

is determined by 12 variables :

� � ���, ��, ���, � �
��� ��� ������ ��� ������ ��� ���� (1)

The coordinate �� , � � 1,2,3	of the vector � (1) denotes
the probability of process starting in ith phase. The intensity

rates of transition from one phase to other are defined in

matrix . For example, the value ��� indicates the average
transition number from the first phase to the third one per

unit of time. The auxiliary vector � � ���, ��, ��� : � ��� �! denotes rates the absorbing state (black circle)
from each phase is reached. For example, the value ��
indicates the rate of transition from second phase to

absorbing state. The transition rates satisfy the following

equalities and unequalities

���, ���, ��� " 0,���, ���, ���, ���, ���, ���, ��, ��, �� $ 0,��� � ���� % ��� % ���,��� � ���� % ��� % ���,��� � ���� % ��� % ���.
 (2)

The problem of finding optimal parameters of 	
��, �
is transformed to a problem of finding the vector '∗ ∈ �), *�,
such that ∀' ∈ �), *� ∶ -�'∗� . -�'� . Here -�∙� is an
objective function;), * – lower and upper bounds of vector '. The mapping of vector ' to the set of parameters of the
phase-type distribution 	
��, � is carried out in the
following way

' � ���, ��, … , ���� → � ≔ �34,35,36�34735736 ,�� ≔ �8, ��� ≔ �9, ��� ≔ �:,��� ≔ �;, �� ≔ �<, ��� ≔ �=,��� ≔ ��>, ��� ≔ ���, �� ≔ ���.	
 (3)

The objective function, to be minimized, is defined as an

area between the density functions ?��; 	A� and ?BCD��; 	�, �, as
 E � F |?BH��; 	�, � ?��; 	A�|I> J� (4)

The estimation of E (4) is obtained by the following
expression

 EK��LMN , ∆�; �, � � ∑ |?BH��Q; 	�, � ?��Q; 	A�|∆�MQR� ,

�Q � �S 0.5�∆�, 	U � V3WXY∆3 Z (5)

where: �LMN denotes the end value of discretization and ∆� –
the step of discretization. After the discretization the

objective function (4) has the form

 -�'� ≔ EK��LMN , ∆�; �, �; 	' → �,. (6)

The lower and upper bounds of ' are defined as

) � [0,0, … ,0\]̂]_
��

` ,
* � �1,1,1, λb�3 , λb�3 , … , λb�3\]]]]]^]]]]]_

=
� ,
 (7)

where λb�3 – is the maximal transition rate. Using the
mapping ' → �,, the optimal parameters of the phase-type
distribution are obtained from solution '∗, which is given by
a certain optimization algorithm.

592Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

IV. SYSTEM STATE GRAPH CONSTRUCTION ALGORITHM

The scheme of the process of detecting and fixing faults

in software after approximating the arbitrary distributions by

PH distributions is represented in Figure 3.

Figure 3.The process of detecting and fixing faults in software after

distribution approximation.

The algorithm for constructing the set of states and the

transition matrix for markovian model �∗ is described in
this section. The set of states of the system is defined by the

vector c � �S�, S�, S�, S8� , where S� ∈ d1,2,3e denotes the
index of an active phase of 	
��� and S� � 0 indicates that
there is any active phase in 	
��� ; S� ∈ d0,1, … , �f 1e
denotes a number of detected faults which are waiting in the

queue; S� ∈ d1,2,3e denotes the index of an active phase of 	
��� , S� � 0 indicates that there is any active phase in 	
���;S8 ∈ d0,1, … , �fe – denotes a number of fixed faults.
The number of detected faults in the state c is defined
according the formula

 f�c� � !dQ4g>e % S� % !dQ6g>e % S8. (8)

All the states are enumerated by the mapping

 �h � 	i�c� ∈ d0,1, … , jb�3 1e, (9)

where jb�3 denotes the number of states: jb�3 � 16�f��f % 1�. The mapping i�c� is defined as
 i�c� � ��f % 1��4S��f % 4S� % S�� % S8. (10)

The inverse mapping im���h� is obtained by the formulas
 im���h� � nf, o%�f, q%4, �h%��f % 1�r, (11)

where: q � stmst%�uv7��uv7� , o � �m�%8
8 , f � �m�%uv

uv , and % is a
reminder operator.

The vector * � nw>, w�, … , wxyz{m�r of boolean variables
(false or true) are used to determine all the possible states of

the system. The following sets of states are used: |�M�}
contains initial states of the system; | contains all possible
states of the system; |M~ includes states which are going to
be investigated in the next iteration and |}b~ is the
temporary set of states obtained from the investigated states

after one iteration. Each state contained in these sets is

represented by its index �h.
The transitions rates between all states are stored in the

matrix �7 � ����7�; 	�, � � 0, jb�3 1.

The algorithm for generating the set of possible states of

the system consists of the following steps:

1) Mark all the states as not investigated: wst≔ ?q���	�	���	��q��	��	U��	�U�����-q��J	����,	 �h � 0, jb�3 1

2) Calculate the initial probability vector :

 �st7 ≔ 0, �h � 0, jb�3 1 ��n��,>,>,>�r7 ≔ �����, � � 1,2,3

3) Determine the initial states of the system:

 � � 1,2,3: ����� � 0	 ⇒ |�M�} ≔	|�M�} ∪ in��, 0,0,0�r

4) Determine the initial values of the sets:

 | ≔ |�M�} , |}b~ ≔ |�M�} ����7� ≔ 0; 	�, � � 0, jb�3 1

5) Determine the states that have to be

investigated:

 |M~ ≔ |}b~

 Clear the temporary set |}b~ ≔ ∅

 Let d|M~e~ be an �-th element of the set |M~. � ≔ 1
6) Find the coordinates of the state vector to be

investigated:

 c ≔ im�nd|M~e~r, �h: � i�c�

7) Let us denote the set of the state vectors, that can

be reached from the state c, by |∗ ≔ ∅ and the
set of transition rates, at which all states in set |∗ are reached from the state c, by λ∗ � ∅.

8) Find the elements of the sets |∗ �	 dc�, c�, … , cQe and λ∗ � dλ�, λ�, … , λQe .
The algorithm will be described later.

9) Update the transition rates matrix:

 �stst�7 ≔ λ�;	�h� � i�c��, � � 1, S

10) Include not yet investigated states into the sets |and |}b~ (see Figure 4)

 for i from 1 to k

 �h� ≔ i�c��

593Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 if wsh� � ?q��� then

 |}b~ ≔ |}b~ ∪ ��h��, | ≔ | ∪ ��h��

 endif

 endfor

Figure 4. Pseudocode for including not investigated states into the sets

|and |}b~.

11) Mark the current state c as investigated:

wst ≔ �jw�

12) If � < fqjJ�|M~� then � ≔ � + 1 and go to
step 6.

13) If |}b~ ≠ ∅ go to step 5.

14) Create the final transition rates matrix � =
����� and the initial probability vector ��0� from
�7and�7�0� (see Figure 5).

 for i from 0 to fqjJ�|� − 1
 � ≔ i�d|e��,
 �� ≔ �s

7

 for j from 0 fqjJ�|� − 1

 � ≔ ind|e�r,
 ��� ≔ �s�

7

 endfor

 endfor

Figure 5. Pseudocode for creating final transition rates matrix and initial
probability vector.

15) The end of the algorithm.

The explanation of the step 8 in detail follows.

Denote by the vector c = �S�, S�, S�, S8� the state of the
system. There are four events that make the system to

change the state: e1 – the change of an active phase in

	
��� , e2 – the detection of fault, e3 – the change of an
active phase in 	
��� and e4 – the correction of fault. The
pseudocode needed to process these events is shown in the

Figures 6, 7, 8, and 9.

 for � from 1 to 3

 if S� > 0, �Q4�
��� > 0 then

 |∗ ≔ |∗ ∪ d��, S�, S�, S8�e,
 �∗ ≔ �∗ ∪ ��Q4�

����

 endif

 endfor

Figure 6. Pseudocode for processing the e1 event.

 if S� = 0 then

 if f�c� < �f then

 for � from 1 to 3

 for � from 1 to 3

 if S� > 0, �Q4
��� > 0, ��

��� > 0, ��
��� > 0 then

 |∗ ≔ |∗ ∪ d��, 0, �, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

�����
�����

����

 endif

 endfor

 endfor

 else

 for � from 1 to 3

 if S� > 0, �Q4
��� > 0, ��

��� > 0 then

 |∗ ≔ |∗ ∪ d�0, 0, �, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

�����
����

 endif

 endfor

 endif

 elseif S� > 0 then

 if f�c� < �f then

 for � from 1 to 3

 if S� > 0, �Q4
��� > 0, ��

��� > 0 then

 |∗ ≔ |∗ ∪ d��, S� + 1, S�, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

�����
����

 endif

 endfor

 else

 if S� > 0, �Q4
��� > 0 then

 |∗ ≔ |∗ ∪ d�0, S� + 1, S�, S8�e,
 �∗ ≔ �∗ ∪ ��Q4

����

 endif

 endif

 endif

Figure 7. Pseudocode for processing the e2 event.

 for � from 1 to 3

 if S� > 0, �Q6�
��� > 0 then

 |∗ ≔ |∗ ∪ d�S�, S�, �, S8�e,
 �∗ ≔ �∗ ∪ ��Q6�

����

 endif

 endfor

Figure 8. Pseudocode for processing the e3 event.

594Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 if S� = 0 then

 if S� > 0, �Q6
��� > 0 then

 |∗ ≔ |∗ ∪ d�S�, 0,0, S8 + 1�e,
 �∗ ≔ �∗ ∪ ��Q6

����

 endif

 else

 for � from 1 to 3

 if S� > 0, �Q6
��� > 0, ��

��� > 0 then

 |∗ ≔ |∗ ∪ d�S�, S� − 1, �, S8 + 1�e,
 �∗ ≔ �∗ ∪ ��Q6

�����
����

 endif

 endfor

 endif

Figure 9. Pseudocode for processing the e4 event

V. MODELING RESULTS

Assume that a software program contains 10 faults

(Fc=10) and suppose that the length of intervals between the

moments of fault detection has the following Weibull

density function

?������ � 8
	� �8	��m>.� �m {�.�, � $ 0. (12)

The distribution of the length of intervals between the

moments of fixing faults has the following Weibull density

function

?������ � �.�
	�.9 ��.�	�.9�>.� �m {4.6, � $ 0. (13)

The discretization parameters are �LMN � 8 , ∆� �0.0625.
The distributions ?���, ?��� are approximated by the

phase-type distributions ?BH���n�;	����, ���r ,

	?BH���n�; 	����, ���r with three phases. The following
optimal parameters for ?BH�z�n�;	����, ���r and

?BH���n�;	����, ���r density functions are estimated using the
optimization algorithm LUS [23] and parameter mapping

given in Section III.

 EK��� � 0.012693, ���� ¢ �3.456 ⋅ 10m8, 0.767,0.233�,

��� ¢ � 1.516 0.002 1.5090.584 2.348 0.0051.782 7.819 15.604�,
 EK��� � 0.010634, ���� ¢ �0.008, 1.397 ⋅ 10m8, 0.992�,	

��� ¢ � 1.236 0 01.913 16.338 6.7700.897 0.331 1.402�

The comparision of means and standard deviations

between original and approximated distributions are given

in the Tables 1 and 2.

TABLE I. MEAN AND STANDARD DEVIATION OF ORIGINAL,
DISCRETIZED AND APPOXIMATING DISTRIBUTIONS OF TIME FOR FAULT

DETECTION

 Distri-

bution ¥�¦�
Discretized

distribution ¥§�¦�(deviation,%)
Phase-type

distribution ¨©�¦�(deviation,%)
Mean 0.6798 0.6769

(0.43%) 0.6958 (2. 35%)
Standard

deviation
0.8569 0.8364

(2. 39%) 0.8588 (0.22%)
TABLE II. MEAN AND STANDARD DEVIATION OF ORIGINAL,

DISCRETIZED AND APPOXIMATING DISTRIBUTIONS OF TIME FOR FAULT

CORRECTION

 Distri-

bution ¥�ª�
Discretized

distribution ¥§�ª�(deviation,%)
Phase-type

distribution ¨©�ª�(deviation,%)
Mean 1.3854 1.3841

(0.09%) 1.4000 (1. 05%)
Standard

deviation
1.0747 1.0719

(0. 26%) 1.1126 (3. 53%)

The graphs of the original and approximated density

functions are represented in Figures 10 and 11.

Figure 10. The density functions ?��� (blue) and ?BH��� (red).

Figure 11. The density functions ?��� (blue) and ?BH��� (red).

The markovian software reliability model has 466 states.

The state probabilities are computed by the following

formula

595Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

���� � ��0��«} . (14)

All possible states are grouped according the number of

detected faults that are placed in the queue. The values ¬M���, that there is a certain number n of faults waiting in
the queue, are obtained by probability summation within

each state group

 ¬M��� � ∑ �����,�,Q5RMim��d|e�� � �S�, S�, S�, S8�, U � 0, �f 1, (15)

where d|e� is the ith element in the set |. The graph of the
values ¬M��� is shown in Figure 12.

Figure 12. The probability functions (of time) of certain number of

faults waiting in the queue.

Similarly, all possible states of the system are grouped

according the number of fixed faults. The values �M���, that
there is a certain number n of fixed faults, are obtained by

probability summation within each state group

 �M��� � ∑ �����,			�,QRMim��d|e�� � �S�, S�, S�, S8�, U � 0, �f, (16)

where d|e� is the ith element in the set |.
The graph of values �M��� is shown in Figure 13.

Figure 13. The probabilitiy functions (of time) of a certain number of

fixed faults.

The density function of time of fixing all errors is shown

in Figure 14.

Figure 14. Density function of distribution of time necessary to fix all
10 faults.

The most probable that the time needed to fix all 10 faults

is about 16 units of time.

VI. CONCLUSION AND FUTURE WORKS

In this article, a continuous time absorbing Markov chain

model of software reliability was proposed. Non-markovian

distributions of the length of intervals between the moments

of fault detection and correction are approximated by the

general phase-type distributions with three phases. The

model generalizes other software reliability models in which

various types of distributions are used. The probabilistic

measures of detecting and fixing faults of created software

are presented. The proposed model can be useful in

estimating and monitoring software reliability, which is

viewed as a measure of software quality. Therefore, it can

be concluded that this model is more realistic then others for

a detection of software faults.

 In the future, the following modified software reliability

model will be created and investigated. The detected fault

must be fixed before searching for the next one with the

assumption that the distributions can change depending on

number of detected/fixed faults. Examples of the application

how a model help to have better software will be added.

REFERENCES

[1] List, “List of software reliability models”, available:

http://en.wikipedia.org/wiki/List_of_software_reliability

_models [retrieved: July, 2014].

[2] B. Zachariah and R. N. Rattihalli, “Failure size proportional

models and an analysis of failure detection abilities of

software testing strategies,” IEEE Transactions on

Reliability, vol. 56, n. 2, 2007, pp. 246-253.

 [3] Y. P. Wu, Q. P. Hu, M. Xie, and S. H. Ng, “Modeling and

analysis of software fault detection and correction process by

considering time dependency,” IEEE Transactions on

Reliability, vol. 56, n. 4, 2007, pp. 629-642.

[4] P. Moranda and Z. Jelinski, “Final report on software

reliability study, MADC report number 63921,” McDonnell
Douglas Astronautics Company, 1972.

 [5] J. Musa, A. Iannino, and K. Okumoto, “Software reliability

measurement, prediction, application,” McGraw Hill,

NewYork, 1987.

[6] A. Goel and K. Okumoto, “Time-dependent error-detection
rate model for software reliability and other performance

596Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

measures,” IEEE Transactions on Reliability, R–28 (3),
1979, pp. 206–211.

[7] A. L. Goel, “Software reliability models: assumptions,

limitations and applicability,” IEEE Trans. Software Eng.,
SE-11, 1985, pp. 1411–1423.

[8] S. S. Gokhale and K. S. Trivedi, “Log-logistic software

reliability growth model,” Proc. 3rd IEEE Int’l. High-
Assurance Systems Eng., Symp IEEE CS Press, 1998, pp.

34–41.

[9] M. Ohba, “Inflection S-shaped software reliability growth

model,” Stochastic Models in Reliability Theory, (S. Osaki
and Y. Hatoyama, eds.), Springer-Varlag, Berlin, Germany,

1984, pp. 144–165.

[10] S. Quadri and N. Ahmad, “Software reliability growth

modeling with new modified Weibul testing-effort and

optimal release policy,” International Journal of Computer
Applications, Vol. 6, No.2, 2010, pp. 1-10.

[11] Y. Tohma, R. Jacoby, Y. Murata, and M. Yamamoto,

“Hypergeometric distribution model to estimate the number

of residual software faults,” Proceedings of the 13th Annual

International Computer Software and Applications,

Conference (COMPSAC’89), 1989, pp. 610-617.

[12] Y. Aamsidhar, Y. Srinivas, and A. Brahmini, “Software

reliability growth model based on Pareto type III

distribution,” International Journal of Advanced Research in

Electrical, Electronics and Instrumentation Engineering, Vol.

2, No.6, 2013, pp. 2694-2698.

[13] S. Inoue and S. Yamada, “Lognormal process software

reliability modeling with testing-effort,” Journal of Software

Engineering and Application, Vol. 6, 2013, pp. 8-14.

[14] M. F. Neuts, “Matrix-Geometric Solutions in Stochastic

Models: an Algorithmic Approach”, Dover Publications Inc.,

1981.

[15] H. Okamara and T. Dohi, “Building Phase-Type software

reliability models’, 17th International Symposium on

Software Reliability Engineering (ISSRE'06), November

2007, pp. 289-298.

[16] V. Bubnov, A. Tyrva, and A. Khomonenko, “Model of

reliability of the software with Coxian distribution of length

of intervals between the moments of detection errors,” IEEE

35th Annual Computer Software and Applications

Conference Workshops, COMPSACW, 2011, pp. 310-314.

[17] A. Bobbio, A. Horváth, and M. Telek, “Matching three

moments with minimal acyclic phase type distributions,”

Stochastic Models, 21, 2005, pp. 303-326.

 [18] H. András and T. Miklós, “Matching More Than Three

Moments with Acyclic Phase Type Distributions,”

Stochastic Models, 23, 2007, pp. 167-194.

 [19] S. Asmussen, O. Nerman, and M. Olsson, “Fitting Phase-

Type Distributions via the EM Algorithm,“ Scandinavian

Journal of Statistics, Vol. 23, No. 4, December 1996, pp.

419-441.

[20] R. Sadre and B. R. Haverkort, “Fitting Heavy-Tailed HTTP

Traces with the New Sratified EM-Algoritm,” IT-NEWS

2008 – 4th International Telecommunication Networking

Workshop on QoS Multiservice IP Networks, 2008, pp. 256-

261.

[21] A. Risha, V. Diev, and E. Smirni, “An EM-based technique

for approximating long-tailed data sets with PH

distributions,” Performance Evaluation, 55 (2), 2004, pp.

147–164.

[22] L. J. R. Esparza, “Maximum likelihood estimation of pahse-

type distributions,” Kongens Lyngby 2010, IMM-PHD-

2010-245.

[23] E. Pedersen and A. J. Chipperfield, “Local Unimodal

Sampling”, Hvass Laboratories Technical Report no.

HL0801, 2008.

597Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

