
A Classification Schema for Development Technologies 

 

Davide Taibi, Christiane Plociennik 

University of Kaiserslautern 

Kaiserslautern, Germany 

{taibi, christiane.plociennik}@cs.uni-kl.de 

Laurent Dieudonné 

Liebherr-Aerospace 

Lindenberg, Germany 

laurent.dieudonne@liebherr.com  

   
Abstract— Software and hardware development 

organizations that consider the adoption of new methods, 

techniques, or tools often face several challenges, namely to: 

guarantee process quality, reproducibility, and standard 

compliance. They need to compare existing solutions on the 

market, and they need to select technologies that are most 

appropriate for each process phase, taking into account the 

specific context requirements. Unfortunately, this kind of 

information is usually not easily accessible; it is incomplete, 

scattered, and hard to compare. Our goal is to present a case 

study on a classification schema we applied on the avionic 

domain to help decision makers to easily find, compare and 

combine existing methods, techniques, and tools based on 

previous experience. The results show that the schema helps to 

transfer knowledge between projects, guaranteeing quality, 

reproducibility, and standard compliance.  

Keywords—process improvement; technology classification; 

technology selection; tool selection; method selection; process 

configuration. 

I. INTRODUCTION  

The software and hardware market is evolving 
continuously and companies that develop software or 
hardware need to keep improving their processes by 
introducing new technologies, in order to be able to keep 
pace with other competitors on the market.  

Finding a product development process that guarantees 
quality and reproducibility often takes years. Moreover, in 
certain domains, such as avionics, the process must comply 
with a set of standards, such as DO-178 [13].  

The introduction of a new technology may break the 
consistency and standards compliance of the process. To 
limit this risk, two major aspects must be considered. First, 
the objectives and prerequisites for each process step must be 
fully documented and structured. Second, the contribution of 
each method and tool intended to be used must be limited to 
the objectives set by each domain process activity and their 
role in each process step must be fully described. 

A structured framework, enabling the classification of the 
technologies in the process activities would speed up the 
integration of new technologies and contribute to 
guaranteeing compliance with the company processes. 

To facilitate the classification of technologies, the 
Reference Technology Platform (RTP) has been developed. 
RTP is a set and arrangement of methods, workflows, and 
tools that allow interaction and integration on various levels 
in order to enable efficient design and development of 
(complex) systems [20].  

In the context of the ARAMiS project [16], a 
classification schema based on the RTP has been developed. 
It classifies technologies along two dimensions: abstraction 
levels and viewpoints.  

In this paper, we present a use case on the application of 
this schema in the avionic domain. Moreover, we also 
introduce an implementation of the schema we developed: 
the Process Configuration Framework Tool (PCF) [8]. 

The results of this work suggest that the classification 
provides a useful framework for decision makers and allows 
them to base their decisions on previous experience instead 
of on personal opinions. Moreover, the classification allows 
them to guarantee process quality, reproducibility and 
standards compliance. Finally, it facilitates knowledge 
transfer from project to project or between employees. 

The remainder of this paper is structured as follows: 
Section II describes related work; Section III introduces the 
classification schema, while Section IV describes the avionic 
use case. In Section V, we introduce the PCF tool and 
discuss the benefits of the schema in Section VI. Finally, we 
draw conclusions in Section VII and provide an outlook on 
future work.  

II. RELATED WORK 

In this section, we introduce the most common 
technology classification schemas. 

An early work on technology classification is Firth et al. 
[19] from 1987. It classifies software development methods 
according to the stages of the development process 
(specification, design, and implementation) and the view 
(functional, structural, and behavioral). This schema is two-
dimensional like our schema, and its views dimension is 
similar to our viewpoints dimension. However, the second 
dimension is rather different: Firth et al. focus on the process 
stages, while we map these onto the viewpoints dimension. 
Our second dimension is concerned with abstraction instead. 

Another early work is the Experience Factory, published 
in the late 1980s [3] and updated in 1991 [4] and in 1994 [5]. 
Here, software development artifacts are described in so-
called experience packages along with empirical evidence on 
how they have been used previously. The main goal of the 
Experience Factory is to provide a framework for software 
reuse to help software engineers make decisions based on 
company experience. 

Compared to our work, the Experience Factory is a more 
general concept. In the Experience Factory, an object for 
reuse can be any software engineering artifact, including 
products, requirements documents etc. Furthermore, the 
Experience Factory does not provide a specific schema for 

577Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



storing different technologies for reuse, and it does not 
include algorithms for searching or combining technologies.  
Another approach to technology classification developed in 
parallel to the later experience factory versions is the C4 
Software Technology Reference Guide (C4 STR), a catalog 
containing more than 60 technologies.  

Compared to our work, the C4 STR provides a huge 
number of technologies in its schema. Nonetheless, 
compared to our schema, the attributes it uses are not as 
detailed and there is neither a reference to context nor to the 
impact.  

The C4 STR was later merged with the Experience 
Factory approaches by Birk [5]. In the late 1990s, this 
evolved into a new concept of experience management. 
Based on this work, more publications evolving this schema 
and extending the Experience Factory idea [12] appeared. 

Ploskonos [18] developed a classification schema for 
software design projects. The goal is to facilitate the 
adaptation of generic process descriptions and methods to 
individual processes. Design projects are classified into one 
of four groups: Usability, Capability, Extension, and 
Innovation. Each group is associated with certain process 
characteristics that help the user set up the actual process. 
This approach is narrower than ours: It focuses on 
classifying processes according to the project type, omitting 
other characteristics such as project size or domain. 

III. THE CLASSIFICATION SCHEMA 

In this section, we introduce the classification schema 
applied, as foundation for our case study. The schema is 
aimed at providing a complete engineering tool chain for 
collecting and integrating technologies to support the 
activities of a structured development process. 

The paper addresses the development of big, complex 
projects in the industry, which are spread out over several 
years and occupy many employees.  

Industries usually work with requirements-based process 
models planning the different baselines in order to ensure the 
accomplishment of these baselines on time via different 
phases of realization. Each phase and each step of the 
processes usually produces artefacts used as inputs for the 
next phase(s) or step(s). These models are derived from, or 
include, the V-Model [23], which is traditionally used inside 
the iterations made for the accomplishment of each baseline. 
Additionally to the iterations, other concepts like definition 
of phases, definition of objectives, periodical assessments, 
definition of roles, forward and backward traceability, etc. 
are traditionally used in these development processes, and 
have widely inspired current agile methodologies, like 
SCRUM [23].  

The schema presented in this paper represents a generic 
development model covering the industry development 
processes. The instances of the generic development model 
are naturally dependent on the industry development 
standards and on the company itself. 

 The information provided in this schema, enables 
decision makers to find the most appropriate technology 
based on their interaction and integration on various levels. 
This contributes to the efficient design and development of 

complex systems. Furthermore, the schema can give an 
overview of methods and tools used in past projects. Via the 
different planning phases, assessment meetings and 
accomplishment summaries inherent to the industry 
processes and performed periodically during each project 
development, the decisions made, the quality and special 
uses of the tools, methods and technologies, can be collected 
during the whole development life cycle of each project. This 
contributes to building a knowledge database, addressing 
both best practices and pitfalls, adapted to the company 
development processes. Hence, new projects do not have to 
start from scratch, but can benefit from previous experience. 
The same applies for new employees: The schema can help 
them to familiarize themselves quickly with the methods and 
tools available for each phase of the development process. 
Thus, the schema facilitates knowledge transfer inside a 
company.  

The schema can be represented as a matrix with 
viewpoints as columns and abstraction levels as rows. The 
viewpoints of the classification are defined as 
“Requirements”, “Functional”, “Logical”, and “Technical”. 
These viewpoints can be mapped to the three phases of the 
development process where the requirements viewpoint 
coincides with the requirements capture phase, the functional 
and logical viewpoints are related to the design phase, and 
the technical viewpoint is related to the construction or 
implementation phase (see Figure 1). 

 

 
In the generic version of the schema, the abstraction 

levels resemble the decomposition of the system into sub-
systems, components, and sub-components or units (see 
Figure 1). For specific application domains (e.g., automotive, 
avionics and railways), a different, domain-specific set of 
abstraction levels can be defined. For example, in the 
avionics domain, abstraction levels are defined as 
“Aircraft”, “System”, “Equipment”, and “Item” (see  
Figure 2). Each cell of the schema represents a step of the 
product development process that must be performed starting 
from the topmost and leftmost cell to the rightmost, as shown 
by the arrows in Figure 1. 

The output of each step leads to the realization of 
artifacts contributing directly to the fulfillment of the process 
objectives required by the domain or indirectly by focusing 
artifacts needed by other cells, which are inputs for later 

Figure 1. Generic representation of our classification schema. 

578Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



steps. The objectives specified by the domain process depend 
on the development phase and the abstraction level.  

 

 
 

 
Starting at a given abstraction level, the requirements 

suitable for this abstraction level must first be captured in the 
requirement viewpoint. These filtered requirements are the 
outputs of this viewpoint and are necessary to start the design 
of the system. During the design phase, the function network 
determined in the functional viewpoint is needed first in 
order to perform decomposition and/or structuration of the 
identified functions, realized in the logical viewpoint. Once 
the objectives of the logical viewpoint have been achieved, 
the construction of the system can be started in the technical 
viewpoint. Iterations are possible, among others to introduce 
new requirements or to consider realization constraints 
appearing a posteriori that influence the system design. 

At the end of an abstraction level, the requirements 
derived from the design and thus from the requirement 
viewpoint not being fulfilled at this abstraction level are used 
as a basis for the next abstraction level. They are captured in 
the requirement viewpoint at the new current abstraction 
level, where similar work as for the previous abstraction 
level is performed again. 

To allow partial and iterative development, the transition 
from one cell to the next is controlled by a set of transition 
criteria. Transition criteria support the evaluation of the risks 
of starting the next development step although the objectives 
of the current step are only partially fulfilled. The current 
fulfillment of the objectives can then be controlled and will 
be realized after several iterations. 

To fulfill the objectives of each matrix cell, the system 
and software engineers have to use methods that must mostly 
be supported by tools. Depending on the category of product 
to be developed, its requirements, the abstraction level, and 
the focus set in the current development iteration (e.g., which 
objectives are addressed), the methods and tools may differ, 
and the technology chain used can also be integrated 
differently. The transition criteria between the process steps 
must be supported by the methods as well. 

IV. APPLYING THE CLASSIFICATION SCHEMA IN THE 

AVIONICS DOMAIN  

In this section, we sketch an example of a use case of the 

classification schema in the avionics domain. 

In the avionic industry, two main processes are defined 

and address two different aspects corresponding to the two 

branches of the V-Model: the Development Process and the 

Integral Process [14]. The combination of both main 

processes defines abstraction levels (Aircraft, System, 

Equipment/Item, Software, Hardware, etc.) and specific 

processes for each of them. Iterations can be done inside an 

abstraction level, or inclosing them. The overall resulting 

applicable development process can be summarized like the 

following suite of development phases, where the previous 

ones are required by the next ones: Aircraft Requirements 

Identification, Aircraft Function Development, Allocation of 

Aircraft Function to Systems, System Requirements 

Identification, Development of System Architecture, 

Allocation of System Requirements to Items, Item 

Requirements Identification, Item Design (corresponds to 

Software and Hardware Development, both having specific 

processes), Item Verification, System Verification, and 

Aircraft Verification. 

These different phases can be well mapped onto the 

generic development model, among others by instancing the 

abstraction levels and by specifying the objectives of the 

viewpoints for each abstraction level, according to the 

company and project needs. 

For example, at the system level, the System 

Requirements Identification corresponds to the Requirement 

Capture Viewpoint, the Development of System Architecture 

is realized via the Functional and Logical Viewpoints, the 

Allocation of System Requirements to Items belongs to the 

Technical Viewpoint, where the decision is taken on which 

technology will be involved to realized the Items (Item 

Design corresponds to Software and Hardware 

development). The Verification phases are realized in the 

Technical Viewpoint of corresponding abstraction levels, 

where the integration activity is performed. For each phase, 

objectives concerning safety assessments, validation, 

verification, etc. are defined via the Integral Process and 

should be met in order to move to the next phase, or must be 

accomplished during a next iteration. The same logic applies 

when moving to the next abstraction level. 

The same principles apply for all the other abstraction 

levels. This is also true for the Software and Hardware 

development, but with different steps inside the phases and 

different objectives, because they are defined by specific 

processes specified in the avionics standards DO-178C [13] 

and the DO-254 [21]. 
We consider the development of a safety-critical system 

– a Flight Control System (FCS). We give an example on 
how the regular avionic development process, according to 
the civilian aircraft and systems development process 
guidelines ARP4754A [14], can be mapped on the 
classification schema (see Figure 2).  

Here, we briefly introduce how to use the classification 
schema efficiently by describing the most important 
development process steps and their artifacts. 

Figure 2. Example of classification schema for the avionics domain. 

579Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



Based on the high-level aircraft requirements and design 
decisions, the requirements on the FCS must first be 
captured, expressed, and validated precisely (requirement 
viewpoint). The artifacts for this step are the functional and 
non-functional requirements that contain the goals of the 
system (e.g., “control the three axes of the aircraft: pitch, 
yaw, and roll”), the operational requirements (e.g., 
operational modes), the safety requirements (e.g., which 
criticality for which surface/axis), the high-level 
performance requirements (e.g., aircraft response time 
following cockpit control requests), etc. The requirement 
capture can be facilitated with use-cases, such as 
SysML/UML, or with requirements tools using structured 
text. 

Once captured, the requirements must be validated, 
which is a transition criterion for proceeding to the next step. 
Different activities and requirements types are analyzed 
using different technologies, according to the avionics 
standards. 

Based on these requirements, the behavior of the system 
is then analyzed and a functional architecture in the form of a 
network of the essential functions covering the major system 
functionalities must be formulated (functional viewpoint). An 
example of a major functionality at the system abstraction 
level is the altitude control via the pitch axis, which is 
realized by the elevator surfaces. Essential functions are 
those realizing the functionality and having an external 
interface with other parts of the system, for example actuator 
control, acquiring of the surface position, synchronization 
with the other surfaces, etc. For example, block definition 
diagrams from the SysML and signal flow diagrams are well 
suitable to model the functions network. 

Once the definition of these functions and their related 
requirements is completed, a Functional Hazard Assessment 
(FHA) must be performed [14]. The FHA produces safety 
requirements and design constraints for the next design step 
which are necessary to make decisions about the 
decomposition and structuration of the functions in order to 
realize a suitable system design. In this next step (logical 
viewpoint), these essential functions are structured, 
completed, and/or decomposed in order to shape the 
components to be realized on this abstraction level – here 
named “logical components”. The logical architecture 
determination is also efficiently supported by the 
SysML/UML technologies, and the behavior can be well 
designed via control flow diagrams, state machines, etc. 
Simulation technologies can be used to validate the 
interactions and behavior between the logical components, 
once they are correctly formalized. 

Based on these components and their inherited 
requirements (the logical components are derived from the 
functions of the functional viewpoint, which are themselves 
derived from the requirements of the requirement viewpoint), 
technical solutions suitable for this abstraction level are 
identified or existing technical solutions are chosen 
(technical viewpoint). These technical solutions are called 
“technical components” in this paper. The requirements 
expressed by the logical components drive the selection of 
the technical components. 

Iterations inside an abstraction level are feasible for 
introducing new requirements, or for increasing the 
reusability rate by considering already existing technical 
components. As a consequence, the structuring 
(decomposition and composition) of the logical components 
may be performed in a different way. A configuration 
management system is mandatory for managing the different 
alternatives and versions. 

At the end of the technical viewpoint, different validation 
activities (part of the transition criteria) must be 
accomplished, like a Preliminary System Safety Assessment 
(PSSA), a preliminary common cause analysis (CCA), etc. 
[14] in order to validate the decisions made in the functional, 
logical, and technical viewpoints. 

If the already existent technical components fulfill 
exactly the requirements expressed by the logical 
components mapped onto them, the work is completed and 
the associated requirements are considered as fulfilled. This 
is an ideal case of reusability and will probably not arise very 
often at higher abstraction levels such the Aircraft and the 
System levels, but may arise at the Equipment or Item level. 

The technical components that do not exist yet or that do 
not completely fulfill the requirements expressed by the 
logical components mapped onto them, and the logical 
components that are still too complex to be allocated to a 
particular technical solution are both inputs for the next 
abstraction level. They express requirements that have not 
been fulfilled at the current abstraction level and must be 
dealt with at the next one. Thus, the work on the next 
abstraction level can start. 

The traceability, required by avionics processes at the 
different abstraction levels, is performed 1) between the 
viewpoints of the same abstraction level and 2) between the 
abstraction levels. For this second case, the traceability is 
performed between the technical and logical viewpoints of a 
given abstraction level and the requirement viewpoint of the 
next abstraction level.  

For example: For 1), the technical components (technical 
viewpoint) are assigned to the logical components (logical 
viewpoint) that drove their selection. For 2), on abstraction 
level AL, each technical component not already realized and 
each logical component that cannot be mapped to a technical 
component must be addressed on abstraction level AL-1. 
They express requirements to be captured in the requirement 
viewpoint of AL-1. The requirements expressed at the 
Requirement viewpoint of AL-1 are then linked to the 
requirements expressed by the corresponding technical and 
logical components from the abstraction level AL. 

The other abstraction levels follow the same logic for 
each step with methodology objectives, process objectives 
and artifacts, and similar activities that need to be carried 
out. All of them can be well mapped in the classification 
schema. 

For example, at the Aircraft abstraction level, similar 
process activities as for the system level are realized, like an 
FHA, a Preliminary Aircraft Safety Assessment (PASA), and 
a CCA. For the equipment abstractions level, a Fault Tree 
Analysis (FTA) is required as well as a Common Mode 
Analysis (CMA), etc. For the software abstraction level, the 

580Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



avionics standard DO-178 [13] defines different phases 
(called “processes”, such as the Software Requirements 
Process and the Software Design Process) with several 
objectives requiring numerous artifacts, such as requirements 
and detailed design descriptions, validation and verification 
artifacts, etc., which can be performed by using different 
methods and tools (e.g., for verification: Classification Tree, 
Equivalence Partitioning, Cause-and-Effect Analysis), with 
each containing pros and cons, depending on the context of 
the current development. 

Another issue that belongs to the top-down process 
explained here is that the reusability of existing solutions 
potentially fulfilling parts of the system also requires suitable 
and standardized methods and tools. Existing technical 
solutions may also consist of components developed outside 
the company, such as a microcontrollers, software libraries, 
etc. with other degrees of quality and using different 
processes. In any case, these existing solutions need to be 
completely and suitably characterized and must be integrated 
efficiently into the development process.  

 However, reusability is not a separate activity that can be 
transposed directly as a technology that can be integrated 
into the schema. In fact, it influences different activities, 
such as the decomposition in the design phase at the logical 
viewpoint, the accurate characterization of the existing 
solutions and the deployment activity at the technical 
viewpoint, etc. All these aspects related to reusability must 
also be taken into account in these activities. For example, it 
should be possible to integrate a systematic deployment 
process and its related techniques as explained by Hilbrich 
and Dieudonné [15] into the schema via these activities. As 
an example for this case, the software applications that are to 
be mapped optimally onto electronic execution units (ECU) 
need to be decomposed and structured in a way that makes 
them well compatible with the capabilities of the ECUs in 
order to allow the use of a minimum number of ECUs. 
However, on the other hand, the ECUs must be formalized 
completely and their description must be easily accessible by 
the system and software architects in order to influence the 
system design and to be correctly selected during 

deployment. In ARAMiS, we also provide a template for 
formalizing multicore processor capabilities in a form and on 
an abstraction level that can be used by system and 
equipment engineers. The formalization must be performed 
by the software and hardware engineers who design the 
ECUs. A noticeable advantage is to be able to validate per 
analysis or per simulation more aspects of the system, like 
the timing reactions, or the resource consumption. 

These activities related to reusability are scattered across 
different cells of the matrix. At present, they need to be taken 
care of by the system designer. It would be helpful if they 
could be better integrated into the chain of methods and tools 
in the future. 

V. IMPLEMENTING THE CLASSIFICATION SCHEMA IN PCF 

The proposed schema has been implemented as a web 
application in the PCF tool [8]. PCF allows users to search 
for technologies based on abstraction levels and viewpoints 
as defined in the schema. Furthermore, PCF adds two more 
aspects to provide information about previous experience 
using a specific technology: Context and Impact. Hence, the 
data schema in PCF is based on three models as defined in 
[9] (as shown in Figure 3):  

 Technology: includes a set of attributes for describing 
a technology in as much detail as possible.  

 Context: includes information on the context, such as 
application domain, project characteristics, and 
environment in which the respective technology has 
been applied.  

 Impact: includes previous experience on applying a 
specific technology in a specific context.  

The PCF tool contains a search feature that allows users 
to search for technologies based on the attributes defined in 
the models in Figure 3. This enables the user to search for 
technologies used in projects with specific characteristics, 
e.g. projects fulfilling a certain industrial standard. 

Basic use cases for PCF, as shown in Figure 4, are: 

 Search for a technology based on context 
requirements (not mandatory) 

Figure 3. PCF Data Schema. 

581Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



Figure 4. PCF Use Case. 

o List view 
o Matrix view 

 View details for a technology  

 View related context  

 View details for a context 

 View related impacts 

 View details for a related impact 
Moreover, PCF implements the schema for different 

domains (avionics, automotive, and railways). 
 

 
Figure 5. An example of the schema in the avionic domain implemented in 

PCF. 

 
Figure 5 shows an example of the schema represented in 

PCF for the avionics domain. This figure includes the 
methods mentioned in the use case or directly the tools 
realizing them, as well as several other technologies for the 
avionics domain in addition to those mentioned above. In 
this version of the tool, we do not consider interoperability 
issues. The next version of the tool will address the challenge 
of interoperable tool chains. 

VI. BENEFITS  

The classification schema provides benefits for different 
people working in software projects, especially for project 
managers, software engineers, and technology providers 
(software and hardware vendors).  

The use case indicates that, from the point of view of 
software engineers and decision makers, the classification 
schema provides an effective platform for searching for 
existing technologies. For industry domains strongly based 
on process based development, it also provides a toolbox for 
accurately specifying the use of each technology for rigorous 
process steps.  

The main benefit for the ARAMiS project was that 
creating the classification schema for the avionics domain 
helped us to improve the schema. Several changes to the 
schema have been suggested based on issues raised during 
the application of the schema concept in practice. Another 
major benefit for the ARAMiS project was the identification 
and specification of methods and tools for improving the 
integration of multicore processors for safety-critical 
domains. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a use case reporting on the 
usage of a classification schema in the avionics domain and 
its implementation in the PCF tool.  

The schema is aimed at collecting and integrating 
methods and technologies to support the activities of a 
structured development process. It allows decision makers to 
find the most appropriate technology based on their 
interaction and integration on various levels to enable 
efficient design and development of complex systems.  

The schema provides a matrix representation of the 
development activities classified into viewpoints and 
abstraction levels that enables users to easily search for the 
most appropriate technologies throughout the whole 
development lifecycle. 

The use case shows that the schema helps process 
managers to keep track of the technologies used in previous 
projects and to maintain traceability throughout the whole 

582Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



process. Moreover, the schema can be useful to enable 
knowledge transfer inside the company.  

Supported by the ARAMiS project and its partners, 
future work will include the collection of existing 
technologies to create a baseline for the platform. Moreover, 
we are planning to run an empirical study to validate the 
effectiveness of the schema. 

ACKNOWLEDGMENT 

This paper is based on research carried out in the 
ARAMiS project, funded by the German Ministry of 
Education and Research (BMBF O1IS11035Ü).  

REFERENCES 

[1] A. Rajan and T. Wahl, “CESAR - Cost-efficient methods and 
processes for safety-relevant embedded systems”, Springer, 2013, 
ISBN: 978-3-7091-1386-8. 

[2] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, “Model-based 
engineering of embedded systems - The SPES 2020 Methodology”, 
Springer, 2012, ISBN: 978-3-642-34614-9. 

[3] V. Basili and D. Rombach, “Towards a comprehensive framework for 
reuse: A reuse-enabling software evolution environment”, Technical 
Report, University of Maryland, 1988. 

[4] V. Basili, D. Rombach, “Support for comprehensive reuse”, Software 
Engineering Journal, vol. 6, Sep. 1991, pp. 303-316, ISSN: 0268-
6961. 

[5] V. Basili, G. Caldiera, and D. Rombach, “Experience factory”, In: 
Encyclopedia of Software Engineering, Marciniak, John J., Ed., New 
York: Wiley, pp. 469-476, 1994. 

[6] A. Birk, “A knowledge management infrastructure for systematic 
improvement in software engineering”, PhD dissertation, Stuttgart, 
Fraunhofer IRB Verlag, 2000. 

[7] K. Schneider, J.P. Hunnius, and V. Basili, “Experience in 
implementing a learning software organization”, IEEE Softw., vol. 
19, May 2002, pp. 46-49. 

[8] P. Diebold, L. Dieudonné, and D. Taibi, “Process configuration 
framework tool”, Euromicro Conference on Software Engineering 
and Advanced Applications 2014, in press. 

[9] P. Diebold, “How to configure SE development processes context-
specifically?”, 14th International Conference on Product-Focused 
Software Process Improvement (PROFES 2013), Springer, Jun. 2013, 
pp. 355-358, ISSN: 0302-9743. 

[10] P. Diebold, C .Lampasona, and D. Taibi, “Moonlighting Scrum: An 
agile method for distributed teams with part-time developers working 
during non-overlapping hours”, Eighth International Conference on 

Software Engineering and Advances, IARIA, Oct. 2013, pp. 318-323, 
ISBN: 978-1-61208-304-9. 

[11] A. Jedlitschka, N. Juristo, and D. Rombach, "Reporting experiments 
to satisfy professionals' information needs", Empirical Software 
Engineering, 2013, doi: 10.1007/s10664-013-9268-6. [Online]. 
Available from: http://publica.fraunhofer.de/documents/N-
266529.html. Last access 2014.07.21. 

[12] A. Jedlitschka, D. Hamann, T. Göhlert, and A. Schröder, “Adapting 
PROFES for use in an agile process: An industry experience report”, 
Sixth International Conference on Product-Focused Software Process 
Improvement (PROFES 2005), Springer, Jun. 2005, pp. 502-516, 
ISSN: 0302-9743, ISBN: 3-540-26200-8. 

[13] RTCA DO-178C, “Software considerations in airborne systems and 
equipment certification”, Dec. 2011. 

[14] SAE ARP4754 Rev. A, “Guidelines for development of civil aircraft 
and systems”, Dec. 2010. Available from: 
http://standards.sae.org/arp4754a. Last access 2014.07.21. 

[15] R. Hilbrich and L. Dieudonné, “Deploying safety-critical applications 
on complex avionics hardware architectures”, Journal of Software 
Engineering and Applications (JSEA), vol. 6, May 2013, pp. 229-235, 
ISSN: 1945-3124. 

[16] ARAMiS project, “Automotive, railway and avionics multicore 
systems”. [Online]. Available from: http://www.projekt-aramis.de/. 
Last access 2014.07.18.  

[17] SPES_XT project, “Software platform embedded systems”. [Online]. 
Available from: http://spes2020.informatik.tu-muenchen.de/spes_xt-
home.html. Last access 2014.07.18. 

[18] A. Ploskonos and M. Uflacker, “A classification schema for process 
and method adaptation in software design projects”, Tenth 
International Design Conference (DESIGN 2008), May 2008, pp. 
219-228. 

[19] R. Firth, W. G. Wood, R. D. Pethia, L. Roberts and V. Mosley., "A 
classification scheme for software development methods", Technical 
Report CMU/SEI-87-TR-041, Software Engineering Institute, 
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1987. 

[20] P. Reinkemeier, H. Hille, and S. Henkler, “Towards creating flexible 
tool chains for the design and analysis of multi-core systems”, Vierter 
Workshop zur Zukunft der Entwicklung softwareintensiver, 
eingebetteter Systeme (ENVISION 2020), colocated with Software 
Engineering 2014 conference, Feb. 2014. [Online]. Available from: 
http://ceur-ws.org/Vol-1129/paper37.pdf. Last access: 2014.07.21.  

[21] RTCA DO-254, “Design Assurance Guidance for Airbone Electronic 
Hardware”, Apr. 2000. 

[22] K. Forsberg and H. Mooz, “The Relationship of System Engineering 
to the Project Cycle”, First Annual Symposium of National Council 
on System Engineering, Oct. 1991, pp. 57-65. 

[23] K. Schwaber and M. Beedle, “Agile software development with 
Scrum”, Prentice Hall, 2002, ISBN: 0-13-067634-9.

 

583Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://publica.fraunhofer.de/documents/N-266529.html
http://publica.fraunhofer.de/documents/N-266529.html
http://standards.sae.org/arp4754a
http://www.projekt-aramis.de/
http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html
http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html
http://ceur-ws.org/Vol-1129/paper37.pdf

