
Automatic Classification of Domain Constraints for Rich Client Development

Manuel Quintela-Pumares, Daniel Fernández-Lanvin, Alberto-Manuel Fernández-Álvarez, Raúl Izquierdo

Computer Sciences Department

University of Oviedo

Oviedo, Spain

e-mail: manuel.quintela@gmail.com, dflanvin@uniovi.es, alb@uniovi.es, raul@uniovi.es

Abstract— The current trend in web development, powered by

the popularization of technologies like Ajax or platforms like

iOS and Android, leads developers to gradually leave the classic

light-weight web client in favor of rich clients. These clients

manage not only presentation logic, but also business rules that

transform part of the domain model that afterwards must be

reintegrated in the server. This temporary duplication and

transformation of part of the domain model force developers to

deal with the management of the domain constraints that must

be retrieved and applied in the client. This is a complicated and

error prone task that usually involves redundant design and

implementation on both sides. This work describes a tool that,

given a domain model with its complete set of constraints, and

the subset of classes that are required in the client,

automatically identifies those constraints that the client

requires and that can be applied separately from the server,

classifying them according to their level of dependency with

the server.

Keywords-rich clients; constraints; OCL; UML.

I. INTRODUCTION

The architecture of web applications has been

continuously evolving since the popularization of the

primitive transactional script based systems. The current

trend, powered by the popularization of technologies like

Ajax or mobile platforms where native applications connect

to the internet, leads developers to gradually leave the classic

web light-weight client model, in which the client deals

mostly with presentation logic [1], to a more distributed

model, in which a Subset of the Domain Model (SDM) is

retrieved and transformed in the client, to be redelivered

back to the server to be reintegrated with the complete

domain model (CDM) located on the server [1][2][3]. Some

well-known web applications, like Google Docs or Google

Calendar, are good examples of this approach.

This rich Internet application (RIA) architectural model

carries a better user experience, since the classical delay

between requests is mitigated [4]. However, it also involves

important issues during the design and implementation [5].

The temporary splitting of the domain model, and its later

reintegration in a multi user environment, force developers to

figure out which of the constraints of the model should be

checked in the client [6], whether they should be

transformed, and which and how they should be checked

again once the transformed sub-domain is reintegrated in the

server [7].

Identifying at design time the constraints that can be

safely verified on the client is a tricky job, and finding out if

the existing ones can be modified -so that they can be located

on the client- is a complicated and error prone task. Even

when some constraints could be fully checked on the client, a

redundant checking must be done back in the server for

security reasons [8], requiring a redundant implementation.

Also, if there are different teams working at client and

server side, human coordination problems can lead to

inconsistencies. This problem is aggravated by the ever

present changes in the requirements, making the constraints

variable in both client and server. All these elements make

the design and implementation of constraints a very

complex, tedious and error prone task, especially as

requirement changes accumulate over time [8].

All these problems would be avoided if we could

automatically determine which of the constraints can be

checked in the client and which cannot, and how they should

be managed all along the process. This would support de

dynamic generation of the control logic that manages those

constraints in the client, avoiding redundant implementation

and turning the development process more agile.

In our understanding, all the information we need for that

can be deduced, for a specific SDM, from the information

contained in the CDM in terms of entities, relationships and

constraints.

To address these problems, we have designed a tool that

can aid developers to easily produce the client subset using

the CDM, its UML (Unified Modeling Language) [9] class

diagrams and OCL (Object Constraint Language) [10]

constraints as input parameters. A new class model will be

generated for the client, maintaining the relations according

to that subset, and discarding all unrelated classes, relations,

methods and constraints. Since some of the constraints will

require information from the server to be checked, and

involve different levels of coupling, the tool automatically

identifies and classifies the constraints that are relevant to the

client by their dependency degree: (a) Completely

independent of the server, (b) Can be dependent to the server

in some circumstances and (c) Completely dependent to the

server.
The rest of this paper is organized as follows. Section II

describes the method we propose for the automatic
classification of constraints. Section III provides an example
illustrating how the tool works. Section IV addresses the
related work. Section V presents the conclusion and future
work. The acknowledgement closes the article.

570Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:manuel.quintela@gmail.com
mailto:dflanvin@uniovi.es
mailto:alb@uniovi.es
mailto:raul@uniovi.es

II. METHOD FOR THE AUTOMATIC CLASSIFICATION OF

CONSTRAINTS

We propose a method where the designer creates the

UML model for the CDM located on the server, including its

constraints described in OCL, as he/she would usually do,

and then determine the classes and interfaces from the server

model that corresponds to the SDM. With this information, a

new class model and a new set of constraints are generated

for the client. The constraints for the client are analyzed and

automatically classified according to their level of

dependency with the server, detecting those that may be

problematic and require special attention.

The tool we have developed for implementing this

method is a programmatic API written in Java that

automatically generates the SDM from the CDM. Its

implementation is based on EMF Ecore [11] class models

and OCL files [10]. The input is the Ecore and OCL files that

describe the server model, and the classes that belong to the

SDM. The output will be a new Ecore file with the class

model for the client, a new OCL file with the constraints that

can be checked on the client, and an additional text file with

information about the modifications of the class diagram,

and the analysis, classification and documentation about the

constraints.

Figure 1. Inputs, outputs and processes that the tool carries out.

A. Analizyng the CDM and its constraints

The tool first analyzes the classes in the model, their

attributes, methods and relationships. To ease the analysis of

the cardinality constraints described in the class model

relationships, those constraints are automatically transformed

to OCL language, so that they can be processed

homogenously with the rest (Figure 1, I.).

For every constraint, it collects information about the

classes that are being referenced in its body, as well as the

attributes that are being referenced and their primitive types,

or the return type and parameters that are being used from

their methods.

With all this information, the constraints are classified

(Figure 1, II.) applying the following criteria:

 Attribute constraint: A constraint that only concerns a

single attribute of the context class. We deduct this by

observing the parameters that receive the operations of

the constraint. If it contains a single property call whose

type is of a primitive type, it is classified as an attribute

constraint.

 Object constraint: A constraint that concerns more than

one attribute of the context class. We deduct this as we

did with the attribute constraint. If it contains different

property references whose types are primitive types, it is

an object constraint.

 Class constraint: A constraint that concerns several

instances of the context class, and not elements of any

other class. We determine this by observing if the types

of the references (navigations, property accesses or

method invocations) or parameter calls correspond to

the context class, and not any other classes.

 Domain constraint: A constraint that makes reference in

its operation to elements of other classes different than

the class of its context. We calculate this in the same

way that class constraints, but if a class has a different

type than the context class, it is a domain constraint.

B. Generating the SDM for the client

After analyzing the CDM, the tool uses the subset of

classes that the designer has selected to generate the SDM

(Figure 1, III.). The new class model will contain only the

classes described in the client subset. The relationships

affecting the SDM classes are maintained in the new model.

Those that connect any of those SDM classes to any class

outside the SDM are processed as follows:

 Association, aggregation and uses relationships: If a

class within the client subset has any of these types of

relationship with a class outside the client subset, the

relationships and the classes outside the client subset

will be removed from the SDM.

 Inheritance relationships: A parent class can exist

without its child classes, but in a class model a child

class does not make sense without its parent classes. To

address this problem, if a child class is included in the

client subset by the designer, the tool automatically

571Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

includes its parent class. If there are various levels of

inheritance above the selected child class, all the

inheritance hierarchy for that class will be recursively

included in the client subset.

 Interface relationships: We take the same approach as in

inheritance relationships.

 Composition relationships: Composition is a

relationship that models a strong relationship between a

component and a container class, tying their lifecycles

tightly. We consider that a component class can make

sense without its relationship with a container class, but

not the other way around. If the client subset includes a

container class, we automatically include also its

component classes and their composition relationships

even if the designer did not consider them for the client

subset. As in inheritance relationships, if the

automatically included component classes are also

containers of other classes, their components will be

recursively included in the client subset.

 Methods: If the classes included in the client subset

contain methods whose signature contains classes

outside the client subset, those methods will be deleted

from the class. We consider that, if those classes are

kept outside the client subset, the methods that make

reference to them will not be needed on the client.

C. Selecting and classifying the constraints for the client

The tool will select the OCL constraints whose context

matches the elements in the client subset. The rest of the

constraints will be discarded for the client (Figure 1, IV.).

Constraints whose context is not in the SDM will not be

considered due to the fact that there will not be any object of

those classes in the SDM object graph.

The tool will also warn the designer about the level of

dependency of each constraint with the server (Figure 1, V.).

We define three levels of dependency:

1. Completely independent: All attribute and object

constraints are completely safe for being checked

independently on the client, since all the elements

needed to check those constraints are already within

the SDM object graph.

2. Potentially dependent:

a. Class constraints may or may not be checked safely

within the client. This will depend upon how the

behavior of the client objects is defined. If every

object of that class is always on the client, the

constraint will be always safe. If the objects are

requested from the server under request, the

constraint could not be safe without some

previous communication with the server in order

to retrieve the required objects.

b. Domain constraints that exclusively make reference

to classes within the client subset are in the same

circumstances as the class constraints. Their

safety depends on the way the model is being

managed. If a constraint needs information from

objects that are not currently on the client,

communication with the server will be required.

3. Completely dependent: Domain constraints that

make reference to classes that are not in the client

subset will always be dependent from the server,

since they reference elements that are not

considered on the client. These constraints should

be delegated to the server, or when possible, be

reformulated by the designer so that at least part of

their operations can be checked on the client,

delegating the rest to the server.

The output of this whole process is an Ecore file with the

resulting SDM, a text file with the results of the

modifications made from the CDM, and the analysis of the

constraints related to the client and their classification. It also

generates an OCL file containing the constraints that can be

checked on the client without modification (those classified

as completely independent or potentially dependent), and

excluding the completely dependent (they cannot be checked

on the client without modification).

III. THE ROYAL AND LOYAL EXAMPLE

The Royal and Loyal model [10] is a popular example

usually used to explain the OCL language. We used a

version of it to show the way the tool works if we need to

develop a rich client for managing the addition of new

Loyalty Programs. Figure 2 shows the Ecore model of the

CDM located on the server, simplified for displaying only

class names and references.

Figure 2. The Royal and Loyal Ecore model as CDM.

572Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The version we used for this example has 22 constraints

defined. After being analyzed by the tool, it automatically

generates 28 additional constraints based on the cardinalities

of the relationships of the class model, resulting a total of 50

constraints to process.

The model in our rich client will have the following

classes from the CDM located on the server: “Service”,

“ServiceLevel”, “LoyaltyProgram” and “ProgramPartner”.

Those classes will allow us to define new Loyalty Programs,

partners, and the services they provide. The other

functionalities that the full model provides, such as defining

customers or managing their subscriptions to loyalty

programs are out of the scope of this client.

Figure 3. The resulting Ecore model as SDM generated by our tool for the

client.

In Figure 3, we show the resulting SDM. Figure 4 presents

the information it provides about the methods that have been

deleted from the original class (due to their dependence from

elements outside the client model), and also about the

relationships that have been deleted from the original model.

Deleted classes:
Transaction, Customer, CustomerCard, Membership,
LoyaltyAccount, Burning, Earning, Transaction Report,
TransactionReportLine
--
Deleted Methods:
Customer-> enroll, selectPopularPartners,
enrollAndCreateCustomer, addTransaction, getServices
--
Deleted relationships:
Service ->Transaction: transactions
LoyaltyProgram -> Membership: memberships
LoyaltyProgram -> Customer: participants
ServiceLevel -> Membership: membership

Figure 4. The tool generates information about the classes, methods and
relationships that are deleted in the process.

Regarding the constraints, it generates a plain text file

describing those that affect each class, classifies them, and

points out if they can be checked on the client or not. It

detects 14 related to this SDM, 13 of them are classified as

domain constraints and 1 as attribute constraint. After

analyzing the dependency of these constraints, 1 is detected

as completely independent, 9 as potentially dependent, and 4

as completely dependent. Figure 5 shows one constraint of

each level of dependency as an example.

context Service::upgradePointsEarned(amount : Integer)
post postServiceUpgradePointsEarned: calcPoints() =
calcPoints@pre() + amount
 Classification: attribute
 Context Class: Service
 Referenced Classes: []
 Classes in context operation: [Service]
 Dependency: Completely independent
--
context LoyaltyProgram inv firstLevel:
levels->first().name = 'Silver'

Classification: domain
 Context Class: LoyaltyProgram
 Referenced Classes: [ServiceLevel]
 Dependency: Potentially dependent
--
context ProgramPartner inv totalPoints:
deliveredServices.transactions.points->sum() < 10000
 Classification: domain
 Context Class: ProgramPartner
 Referenced Classes: [Service, Transaction]
 Dependency: Completely dependent

Figure 5. A selection of three of the resulting constraints, each one with a
different level of dependency.

There are some constraints that can always be checked on

the client without communicating with the server, like the

postcondition for “upgradePointsEarned”.

Some of the constraints have all the elements needed for

checking the constraint in the client model, but it may need

to communicate with the server to update the data, like the

“firstLevel” invariant.

Other constraints reference elements outside the client

model, that is, objects of that class don’t exist on the client,

like the “totalPoints” invariant.

The problem of having constraints on the client that

reference elements that only exists on the server can be

solved in several ways. The most straightforward way would

be delegating the checking to the server. However, if we still

want to make the checking on the client, it can be achieved

by adding some kind of proxy that requests from the server

the dependent values needed to check that constraint.
Finally, it creates an OCL file with the constraints that are

completely independent, and potentially dependent (10 in

total). It excludes the completely dependent ones since they

refer to classes that are not on the SDM. The user should use

this information to figure out the best way to adapt those

dependent constraints for the SDM.

573Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

IV. RELATED WORK

There are several proposals that encourage locating more

responsibilities on the client side rather than delegating them

to the server. Hallé and Villemaire’s [12] proposal is

centered on rich clients that connect with web services, a

system that checks the preconditions defined on the service

interface on the client side before making the request,

avoiding an unnecessary expenditure of resources on the

server. Heidegger and Thiemann [13] add annotation-like pre

and postcondition support to Javascript, a language widely

used to develop rich clients where developing complex

business logic is more common every day. The work

presented by Zhang [14] suggests to move all business logic

to the client, and leaving on the server only a database

accessible through REST services. Leff and Rayfield [15]

show a client designed to work in mobile environments

where connection can be lost, defining mechanisms that

support offline functionality and maintaining the integrity

when the client is back online. All these proposals recognize

the benefits of moving tasks to the client side and try to

address some aspects of making integrity checks on clients.

However, in all of them the responsibility of deciding which

constraints are relevant on the client must be manually done

by the developer.

Other authors try to solve the implementation problems of

having constraints on a rich client [16][17], since popular

tools to address business rules and validations are still very

limited on this scenario. Rule engines, like Drools [18] or

ILog [19], are a suitable solution for the server side, but they

are not designed to deal with the ones located on the client.

Tools to address client side validations like Struts [20],

jQuery Validation Plugin [21], or Simfatic [22] are still

limited to simple form checking, but are not designed to

cover the complexity that client side business rules can

require.

Liang et al. [16] propose a system in which validations are

defined on an XML file, managing constraints that involve a

combination of several attributes on the client’s forms. This

automates the implementation of part of the client side

constraints, and improves the maintenance process.

However, they explicitly left out of their scope the more

complex and problematic class and domain. Schmidt et al.

[17] designed a rule engine for the client side based on the

RETE algorithm, where the constraints are defined on a file

on the server. While they support the definition of complex

constraints and even their delegation of to the server, the

specific constraints affecting the client have to be manually

specified. Most of these solutions would benefit with our

proposal.

Louwsma et al. [7] analyzes the problems derived from

managing constraints in a rich client for a GIS, where the

user can add elements to the map over a graphic interface

that will be updated to a central database. They propose a

framework based on UML and OCL for the specification of

constraints, and suggest several constraint classification

criteria, but their implementation is hard-coded and delegates

all the constraint checking to the database. They identify the

problem of having constraints that can affect both client and

server, proposing as future work that some types of

constraints should be validated on the client for a better user

experience, as well as automatic classification and detection

of conflicting constraints, and their automatic

implementation from a central specification.

Other previous works specifically address the problem of

deciding how to split applications between different

machines in an automatic way. Proposals like J-Orchestra

[23] or Coign [24] process existing compiled applications,

analyzing the way their different elements communicate. By

means of code instrumentalization, they provide stubs to

allow the division in different parts that can communicate,

maintaining the same functionality. Also, Yang et al.

designed a platform based on the Hilda language [25] with a

runtime in both client and server that decides dynamically

which elements of the application should run on the client

and which on the server, basing on the characteristics of the

client device.

All these approaches use different strategies to decide

which the optimal distribution of their components is, by

gathering information about the application behavior (like

communication delay between elements, the size of the data

transmitted, memory usage, capacity of the devices, or the

demand by users of a certain functionality). However, none

of these proposals deals with the problem of constraint

redistribution. They add proxies to communicate the

different split elements of the original design but do not

change them to support constraint checking in order to

maximize UI usability and responsiveness. All these

solutions could benefit from automatic constraint

classification and modification techniques in those cases in

which client responsiveness is a priority.

Outside the scope of rich client development, techniques

for automatically adapting OCL constraints have been

developed to fit different purposes. Hassam et al. [26]

propose techniques for automatically maintaining the

consistency of the OCL constraints after applying

modifications to the UML model. For each change made to a

model, their tool identifies the OCL constraints affected by

it, and then decides if the constraints have to be removed

because they are no longer relevant, of if they can be

automatically modified to be consistent with the modified

model. Cabot and Teniente [27] developed techniques for

automatically modifying constraints and domain models to

achieve a more efficient integrity checking. For doing that,

they develop techniques for simplifying OCL constraints,

identify which operations trigger certain OCL constraints,

and reformulate the constraints in the most efficient way

given the possible operations found in the model.

These proposals acknowledge the problem of delegating

to the designer the task of revising existing OCL constraints

for achieving certain objectives when that tasks can be

deduced from the UML model. In addition to this, although

they are designed to solve scenarios different than the one we

574Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

propose, the principles behind the identification of which

OCL constraints need attention, and some of the automatic

modification mechanisms described in them could be useful

for future developments of our tool.

V. CONCLUSION AND FUTURE WORK

The proposed tool deals with the generation of the new

domain model for the client, selecting and classifying the

constraints for the client, and automatically identifying the

conflicting elements of the constraints that are not

completely independent from the server. At its current state,

it removes from the designer the responsibility of modeling

the part of the client class model that overlaps with the

server, providing useful documentation about the constraints

that potentially affects the client.

If the designer wants to make a domain model on the

client where as many as possible validations are made

locally, the tool can help him/her to make better informed

decisions while trying to modify the constraints and the

client model to fit that purpose.

This approach can also complement the existing tools that

deal with the implementation of constraints on the client, but

currently delegate to developers the responsibility of

organizing them.

We have previously developed means to achieve

automatic error recovery in rich clients [28], letting the

developer to choose which parts of the model require this

mechanism and which do not, so that the overhead this

recovery techniques involve is avoided where not needed.

We believe that the information this tool provides can be

used to find a way to automatically identify the parts of the

client model that may benefit from the automatic error

recovery and discard the ones that do not.

These tasks of analyzing, identifying and classifying the

constraints managed with this tool are a first step. With this

support, we can use this information to automatically modify

the domain model and its constraints in a way that the

resulting client can validate as many constraints as possible,

minimizing communication with the server, and relieving the

designer from finding out the required transformations that

can be deduced automatically. Techniques for the automatic

modification of constraints and domain models to achieve a

more efficient integrity checking have already been studied,

like the ones proposed by Cabot and Teniente [27], as well as

techniques for adapting OCL constraints after the

modification of UML models like Hassam et al. [26]

proposals. We believe we can adapt some aspects of these

techniques for our future needs regarding the automatic

modification of constraints.

ACKNOWLEDGMENT

This work has been funded by the Department of Science

and Technology (Spain) under the National Program for

Research, Development and Innovation: project TIN2011-

25978 entitled Obtaining Adaptable, Robust and Efficient

Software by including Structural Reflection to Statically

Typed Programming Languages.

REFERENCES

[1] J. Duhl, “White paper: Rich internet applications,” Tech.
report, IDC, 2003.

[2] J. Allaire, “Macromedia Flash MX—A next-generation rich
client,” Macromedia white Pap., no. March, 2002.

[3] J. Garrett, “Ajax: A New Approach to Web Applications |
Adaptive Path,” 2005. [Online]. Available from:
http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications/ 2014.08.20

[4] A. Bozzon, S. Comai, P. Fraternali, and G. Carughi,
“Conceptual modeling and code generation for rich internet
applications.,” in Proceedings of the 6th international
conference on Web engineering ICWE 06, 2006, vol. 1, p.
353.

[5] J. Preciado and M. Linaje, “Designing rich internet
applications with web engineering methodologies,” Web Site
Evol., pp. 23–30, 2007.

[6] A. Mesbah and A. Van Deursen, “An Architectural Style for
Ajax,” in 2007 Working IEEEIFIP Conference on Software
Architecture WICSA07, 2006, pp. 9–9.

[7] J. Louwsma, S. Zlatanova, R. Lammeren, and P. Oosterom,
“Specifying and Implementing Constraints in GIS—with
Examples from a Geo-Virtual Reality System,”
Geoinformatica, vol. 10, no. 4, pp. 531–550, Jan. 2007.

[8] Z. L. Z. Liang and S. J. S. Jianling, “A field-oriented
approach to web form validation for Database-Isolated Rule,”
in 2009 IEEE International Conference on Systems Man and
Cybernetics, 2009, no. October, pp. 4607–4612.

[9] “Object Management Group: UML 2.4.1 Superstructure
Specification.” [Online]. Available from:
http://www.omg.org/spec/UML/2.4.1/ 2014.08.20

[10] J. Warmer and A. Kleppe, The OCL, Second edition.
Addison-Wesley, 2003.

[11] “Eclipse Modeling Framework Project - EMF.” [Online].
Available from: http://www.eclipse.org/modeling/emf/
2014.08.20

[12] S. Hallé and R. Villemaire, “Browser-based enforcement of
interface contracts in web applications with BeepBeep,”
Comput. Aided Verif., pp. 648–653, 2009.

[13] P. Heidegger and P. Thiemann, “JSConTest: Contract-Driven
Testing and Path Effect Inference for JavaScript.,” J. Object
Technol., vol. 11, no. 1, p. 6:1, 2012.

[14] W. Z. W. Zhang, “2-Tier Cloud Architecture with maximized
RIA and SimpleDB via minimized REST,” Comput. Eng.
Technol. ICCET 2010 2nd Int. Conf., vol. 6, pp. V6–52–V6–
56, 2010.

[15] A. Leff and J. Rayfield, “Programming model alternatives for
disconnected business applications,” Internet Comput. IEEE,
no. June, pp. 50–57, 2006.

[16] Z. L. Z. Liang and S. J. S. Jianling, “A field-oriented
approach to web form validation for Database-Isolated Rule,”
in 2009 IEEE International Conference on Systems Man and
Cybernetics, 2009, no. October, pp. 4607–4612.

[17] K. Schmidt, R. Stühmer, and L. Stojanovic, “Gaining
reactivity for rich internet applications by introducing client-
side complex event processing and declarative rules,” in
AAAI 2009 Spring Symposium: Intelligent Event Processing,
2009, pp. 67–72.

[18] “Drools - JBoss.” [Online]. Available from:
http://drools.jboss.org/ 2014.08.20

[19] “IBM - ILOG,” Mar-2014. [Online]. Available from:
http://www.ibm.com/software/info/ilog/ 2014.08.20

575Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 [20] “Apache Struts 2 Validation.” [Online]. Available from:
http://struts.apache.org/development/2.x/docs/validation.html
2014.08.20

[21] “jQuery Validation Plugin.” [Online]. Available from:
http://jqueryvalidation.org/ 2014.08.20

[22] “Simfatic Forms.” [Online]. Available from:
http://www.simfatic.com/ 2014.08.20

[23] E. Tilevich and Y. Smaragdakis, “J-orchestra: Automatic java
application partitioning,” in ECOOP ’02 Proceedings of the
16th European Conference on Object-Oriented Programming,
2002, pp. 178–204.

[24] G. Hunt and M. Scott, “The Coign automatic distributed
partitioning system,” in OSDI ’99 Proceedings of the third
symposium on Operating systems design and implementation,
1999, no. February, pp. 187–200.

[25] F. Yang et al., “A unified platform for data driven web
applications with automatic client-server partitioning,” in
Proceedings of the 16th international conference on World
Wide Web - WWW ’07, 2007, p. 341.

[26] K. Hassam, S. Sadou, V. Le Gloahec, and R. Fleurquin,
“Assistance System for OCL Constraints Adaptation during
Metamodel Evolution,” in 2011 15th European Conference on
Software Maintenance and Reengineering, 2011, pp. 151–
160.

[27] J. Cabot and E. Teniente, “Incremental integrity checking of
UML/OCL conceptual schemas,” J. Syst. Softw., vol. 82, no.
9, pp. 1459–1478, Sep. 2009.

[28] M. Quintela-Pumares, D. Fernández-Lanvin, R. Izquierdo,
and A.-M. Fernández-Álvarez, “Implementing automatic error
recovery support for rich web clients,” in WISE’10
Proceedings of the 11th international conference on Web
information systems engineering, 2010, pp. 630–638.

576Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

