
Using Automatic Code Generation Methods for Reusable Software Component

Development: Experience Report

Elif Kamer Karataş, Barış İyidir

Defense System Technologies Division

Aselsan

Ankara, Turkey

{ekkaratas, biyidir}@aselsan.com.tr

Abstract— Quality of reused components becomes one of the

dominating factors on the overall quality of the software when

the component-based approach is adopted for development. In

cases where reusable components are developed to be

compatible with reference architecture, the contracts of the

components are predefined. Nevertheless, the detailed design

and implementation of the component depends mostly on the

experience of the developers. The quality and the productivity

of component development process can be improved by

systematic sharing of domain knowledge and experiences. In

this paper, automatic code generation is adopted in order to

achieve systematic distribution of this knowledge throughout

developers. Also, the experiences gained during the application

of automatic code generation approach for the development of

components that communicate via serial channel protocols are

shared.

Keywords-code generation; domain specific languages;

domain knowledge

I. INTRODUCTION

The proposed automation method is aimed to be used in
Embedded Real-time Control Software (ERCS), which is
mission critical software that collects data from its sensor
environment and processes them with control algorithms to
give the proper commands to its actuation environment. The
quality of software in such systems is of great importance
since the cost of any failure is very high.

Project Specific Components
(System specific algorithms, User interface, etc)

Reusable

Software

Component-1

Reusable

Software

Component-1

Reusable

Software

Component-1

Reusable

Software

Component-1

Sensor-1 Sensor-2 Actuator-1 Actuator-2

Real Time Control System Software

Figure 1. Real-Time Control System & Software Architecture.

The real-time control system architecture and the
corresponding layered software architecture are given in
Figure 1. The reusable software components, which are the
main candidates for automation in this study, are responsible
for the communication with the surrounding sensors and

actuators to receive data and to give commands. These
components are developed according to Interface Control
Documents (ICDs) delivered together with the sensor or
actuator hardware.

In ERCS software, the analysis of defects showed that the
average ratio of errors originating from reusable components
is 23.48%, which is the primary motivation of quality
improvement studies on these components. Difficulties in
sharing domain rules and experiences with developers and
also the difficulties in proving the conformance to such rules
are regarded as significant obstacles on the way to improve
the quality and productivity.

Generative programming is defined as a class of tool
technology that captures knowledge about how to generate
code by enabling automation [1]. Generators are usually
based on domain specific notations and they close the gap
between high-level system description and executable [2].
Since auto generated codes enforce domain rules and best
practices, they provide an effective way for uniformly
sharing of domain knowledge among development teams.
This study aims the systematic distribution of domain
knowledge and expertise using automatic code generation
methods.

The paper is organized as follows: Section 2 gives a brief
literature review. The proposed method for automatic code
generation is described in Section 3. Case studies and the
results obtained are given in section 4. Section 5 discusses
the results and proposes future works. Starting from section 3
of this text the term “component” will refer to mention
reusable components in ERCS.

II. LITERATURE

Software development began with the employment of
low level binary machine language and went along with the
introduction of assembly language, high-level languages,
modeling languages and Domain Specific Languages (DSLs)
for providing increased abstraction for developers while
performing the generation of source-code automatically [3].
Although code generation without modifications by
developer seems impossible, developers are exempted from
writing large amounts of repetitive or trivial code sections
and have more time to focus on their core engineering
problems [3][4].

 The advantages of automatic code generation mentioned
by Cullum [5] are:

566Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 Code generation enables enhanced consistency since
it serves as a repository of reuse. Also, each
application developed by automatic code generation
will have the same structure independent of the
developer.

 Quality will be improved since the amount of
manually written code –which is a source of quality
variations-, is decreased.

 Productivity is increased since code generators can
produce thousand lines of code very fast and these
codes are correct by construction.

III. PROPOSED METHOD

For the systematic distribution of domain knowledge and
best practices throughout the component development
process, we propose automatic code generation as a plug-in
to the model-based IDE (i.e., Rhapsody [6]) used for
software component development in our projects. The
reusable components given in Figure 1 are targeted for
automation since the quality of these components affects all
the projects they have been used.

The proposed automation process has two main phases,
as given in Figure 2, namely, (i) ICD transcription, which is
the process of transforming natural language message
definitions to machine readable XML (Extensible Markup
Language) format, and (ii) model-based code generation.

- Natural Language

ICD

-ICD XML Template

-UML Based IDE

Implementation

Artifacts

1. ICD Transcription

- Developer

- XML Editor

-ICD XML Instance

2. Model Based Code

Generation

-Code Generation

Plug-in

-Architecture Contracts

Figure 2. Proposed Automatic Code Generation Method.

One major obstacle on the automatic implementation of
component-device communication protocol defined in ICDs
is that the ICDs are prepared in natural language, and
requires human interpretation. In order to accomplish
automatic code generation, representation of the device ICDs
in a machine readable format is mandatory. Another
important problem is the variability of message structure
defined in device ICDs. In the scope of this study,
commonality & variability analysis is performed and device
ICDs are modeled as an XML template, as given in Figure 3.
The XML template given in Figure 3 will be described in
detail in the following subsections.

A natural language ICD is the input to the ICD
transcription phase where the proposed XML template given
in Figure 3 is used as a guideline. The transcription activities
are performed manually by the developer with the help of an
XML editor. The output of this phase is an ICD XML
instance, which is conformant with our domain model and
includes the information content of a natural language
document (such as communication parameters, message
definitions, etc.) in a machine readable format.

Figure 3. Proposed ICD XML Template.

A cross section of a sample XML instance, that models a
“Sensor State” message with the message identifier “0x24”
and contains payload fields for oil tank temperature and
pump pressure is given in Figure 4. The oil tank temperature
is expressed with 8 bit data which is mapped to a float
variable in code generation phase. The mapping algorithm is
described with the value of most significant bit (i.e. -100)
and the precision value (i.e. 0.78125).

Figure 4. A section from XML instance (Sensor State Message).

XML instance is the input to the code generation phase
together with the architecture-based component contracts.
Automatic code generation is performed by invoking the
code generation rules embedded into a tool that is developed
as a plug-in to our current development environment. At the
end of code generation, the outputs are various
implementation artifacts such as attributes, operations,
events, type definitions, state chart diagram elements, etc.
Some of the artifacts after code generation phase are given in
Figure 5.

Figure 5. Snapshot of auto-generated model elements.

567Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The detailed information on the construction of the XML
template and the code generation activities are given in the
following subsections.

A. ICD XML Template Structure

According to the model given in Figure 3, not every
interface definition has a header checksum part, and in case
of its existence the size and algorithm for its computation is
variable. Also, data bytes in the payload part of messages can
be converted to float or double values with some processing.

Although the structure of the messages defined in ICDs
does not display variation depending on the direction of
messages (transmit and receive directions), due to their
semantics and behavioral differences our model
distinguishes transmit and receive messages. From the
components point of view, in addition to the content of a
received message the information of to which transmit
message it is a response to, is also important for the
behavior.

Another variation point in message contents is how to
decode the values encoded within byte sequences. Decoding
methods extracted from the ICDs can be grouped as;

 Bit field definitions

 Float/double value transformation from discrete byte
sequences with a given resolution

 Direct casting of byte sequences to short, integer,
float, double, etc. values.

B. Implementation of Component Device Communication

Protocol

For each component, there is a device (sensor, actuator,
etc.) that it communicates over physical channels (serial,
CAN, Ethernet, etc.) with conformance to an ICD. Since
message parsing functionality is common for components in
this study, this functionality is seen as the most suitable
candidate for automation. Also, automatic implementation of
enlisted messages, enumerated values, and numerical
constants in the ICD are in the scope of this study.

TABLE I. XML TO IMPLEMENTATION MAPPING RULES

XML Element Implementation Artifacts

Interface Settings Serial port parameters (baud rate, parity,
etc) and structure of messages (header, id,

size, crc, etc.)

Type definitions and
message payload

Enumerations and structures

Receive message names Message specific parser function

declarations

Receive message
payload

Message specific parser function
implementation

Decoding algorithm type Converting byte sequences to target

language types(float, int, etc.)

Checksum algorithm and
data length

Checksum function implemention

Basic transformation rules can be applied after translation

of ICD into XML file. The mapping rules from XML
elements to implementation artifacts are described in Table I.

Figure 6. Code generated from XML instance.

Using the transformation rules and sample XML instance
given in figure 4 automatic code generation is done. The
automatically generated code for parsing oil temperature is
given in Figure 6.

C. Implementation of Component Interfaces

Apart from the physical interface with devices, reusable
software components also have contracts with the internal
project specific components. While realizing these contracts
different design alternatives can be adopted and different
assumptions can be made by the developers. Also, it is
difficult to prevent and diagnose the cases where different
components have conflicting design decisions. In the scope
of this study, critical interfaces and their expected design
decisions are identified to provide a common behavior
through the contracts. Our intention is to embed this
common behavior into the component automatically by state
chart design and reaction implementation.

TABLE II. CONTRACT TO IMPLEMENTATION MAPPING RULES

Contract Element Implementation Artifacts

Component mode information States

Component mode change indication state transitions

Component activation request state reception and response to

activation request

Component setting request State reception and response to

component setting request

Component deactivation request State reception and response to

component deactivation request

Basic transformation rules from contract elements to

implementation artifacts are given in Table II. Also a sample
auto generated statechart implementation with the given
rules is shown in Figure 7. The main states of the
component, transitions between common states and common
reactions are auto generated.

Figure 7. Example statechart implementation.

568Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

IV. CASE STUDY

In order to evaluate the effectiveness of the proposed
method, a group of software components which are
previously implemented with traditional methods are re-
generated by the proposed method. Since these traditionally
developed software components are already being used in
the system, these components are seen as golden units. In
order to provide the same functionality with golden units,
automatically generated software components need to have
approximately the same number of source lines. This
assumption is based on the fact that automatic code
generation process aims to generate the same code as
traditional development. Under the given assumption, the
effectiveness of proposed can be measured by comparing the
source code line counts of automatically generated
component and traditionally developed components.

TABLE III. CASE STUDY METRICS

Metric Name SC1 SC2 SC3

Number of messages received 5 8 13

Number of data typed needed 4 12 21

Number of data fields transmitted 34 27 96

Total code line count for traditionally

developed component

3524 3663 6378

Total code line count with proposed
approach

1339 1357 2071

Auto-generated code rate(%) 37.9 37.04 32.42

The proposed automation method is applied to 3 different

software components (SC1, SC2, and SC3), which are
already available in our component repository. The source
line count measurements related to traditionally and
automatically developed components are given in Table III.
In order to give information about the size and complexity of
the interfaces, the number of messages in the receive
direction, the number of distinct data types required to
implement the content of the receive messages, and the
number of data fields carried within receive messages are
also shown in Table III.

The results indicate that proposed method is applicable to
devices that have different interface complexities, since the
automatically generated code ratio remains approximately
the same for different components with different interfaces.

V. CONCLUSION AND FUTURE WORK

Based on our case studies, we can state that with the
current scope of our proposed method, it is possible to
achieve over 32% automatic code generation. It is estimated
that this rate can be increased up to 50% with the addition of
potential functionalities and behaviors that are scoped out in
the first phase of our study. Considering that the automated
code section handles most of the low level parsing operations
and establishes a basis for the infrastructure of the
components, we assess 30% as an effective automation rate
for our domain. Another advantage of the automation is that

it removed some mechanical actions during manual
development, such as several type and function definitions
and implementing predetermined reactions to requests in
known states.

By enabling automatic code generation in one of the most
error prone sections of component development, namely the
“parser codes”, we estimate that quality costs will be
decreased in the long run and unit integration process can be
completed more efficiently.

In addition to its direct effects to the component
development, XML template based approach establishes a
guideline for developers while inspecting the ICDs provided
to them since it makes explicit the information content
required for the accurate implementation of a component-
unit interface. Although in scope of this study, the
transformation of ICDs written in natural language to XML
format is performed manually in order to increase the
efficiency and usability of the proposed approach we plan to
develop a wizard to guide the user during the ICD XML
instance creation process. In the long run, we hope that
software developers will not need to transcript ICD XML
from the natural language document, but instead unit vendors
will design their communication protocol on this wizard,
thus its output will be ready to use by the code generation
tools.

The current scope of the proposed method includes the
message parsers, common states, transitions between
common states, default reactions in the common states and
the required attributes, types, and events to implement them.
In the later phases of the study, the code generation
capability will be extended to include the message sending
functions and the realization of unit type specific interfaces.

REFERENCES

[1] R. Slaghi, and A. Strohmeier, “Better Generative Programming with
Generic Aspects,” Technical Report, Software Engineering
Laboratory, Swiss Federal Institue of Technology, Switzerland,
2003.

[2] K. Czarnecki, “Generative Programming: Principles and Techniques
of Software Engineering Based on Automated Configuration and
Fragment-Based Component Models,” Ph.D. dissertation, Department
of Computer Science and Automation, Technical University of
Ilmenau, Germany, Oct. 1998.

[3] D. P. Gluch, A. J. Kornecki, and I. N. Sneddon, “Automated Code
Generation for Safety-Related Applications: A Case Study,” Proc.
International Multiconference on Computer Science and Information
Technology, pp. 383–391, 2006.

[4] K. Fertalj and M. Brcic, “A Source Code Generator Based on UML
Specification”, International Journal of Computers and
Communications, Issue 1, vol. 2, 2008.

[5] S. Cullum, “The Effect of Automatic Code Generation on Developer
Job Satisfaction,” Technical Report No:2007/19, Open University,
U.K., Sept. 2007

[6] E. Gery, D. Harel, and E. Palachi, “A Complete Life-Cycle Model-
Based Development System,” In Proceedings of the Third
International Conference on Integrated Formal Methods, 2002, pp. 1-
10.

569Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

