
Enhanced Design Pattern Definition Language

Salman Khwaja and Mohammad Alshayeb
Information and Computer Science Department
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia
e-mail: {khwaja & alshayeb} @kfupm.edu.sa

Abstract—Design patterns are abstract descriptions of object-
oriented designs, which appear repeatedly for a possible high-
quality solution. Many design pattern description languages
have been proposed. These languages use a combination of a
natural language, UML-style diagrams, complex mathematical
or logic based formalisms, or eXtensible Markup Language
(XML). In this paper, we propose an extension to the Design
Pattern Description Language (DPDL), which is based on XML
to support composite design patterns. A composite pattern is a
special type of design patterns that is formed from a composition
of other patterns. Composite patterns capture the synergy
arising from the different roles an object plays in the overall
composition structure. The enhanced Design Pattern
Description Language (eDPDL) is found to be effective in
capturing the composite design pattern while representing the
whole composite design pattern in a single description.

Keywords—design pattern language; composite design
patterns; UML; XML; DPDL

I. INTRODUCTION

A composite design pattern (also called as composite
pattern) is a special type of design pattern that represents a
design theme, which keeps recurring in specific contexts.
Composite design patterns are the composition of other simple
design patterns. The main purpose of the composite design
pattern is not to join multiple design patterns but it is to
capture synergy in the overall structure of the system.
Therefore, composite patterns are more than just the sum of
the constituting patterns [1].

One of the purposes of the composite design patterns is to
enable a higher level of reuse than individual design patterns
and objects [2][3][4]. The modeling of the structure and
behavior of the composite design patterns is usually done on
object-oriented modeling techniques that use graphical
notations such as the Unified Modeling Language (UML)
[5][6]. UML has become one of the most widely used general-
purpose languages for specifying, constructing, visualizing,
and documenting artifacts of software-intensive systems. It
provides a collection of notations to capture different aspects
of the system and sub-systems under development [7].

The objective of this paper is to propose an extension to
the Design Pattern Definition Language (DPDL) [8], which is
called extended Design Pattern Definition Language
(eDPDL), to be able to express the composite design patterns
in a reusable fashion. DPDL was originally created to share
design pattern implementation details. DPDL already covers
the structural and behavioral aspects of the design pattern and
is also flexible. However, DPDL is restricted to specify only

the structural and behavioral aspects of a single design pattern.
DPDL does not provide any means to specify that a particular
component or action is originally part of some simple design
pattern. Therefore, the composite design pattern description in
DPDL becomes a description of one big complex design
pattern instead of the aggregation of few simple design
patterns.

This motivated us to propose enhancement to DPDL in
order to handle composite design patterns. This will enable us
to distinguish the components of individual design patterns
and their behavior, which makes the composite design pattern
less complex and more understandable.

The paper is organized as follows: Section 2 contains the
literature review, in Section 3, the proposed enhancement is
presented in Section 4. In Section 5, we present an example to
validate the proposed enhancement and finally the conclusion
is presented in Section 6.

II. LITERATURE REVIEW

In our literature survey, we could identify only three
composite design patterns. These are: Active Bridge,
Bureaucracy and Model View Controller (MVC) design
patterns.

Active Bridge is usually used in recurring types of
frameworks, where the application is needed to be connected
with a resource like widget or inter-process communication
channel. At the heart of the Active Bridge pattern is Bridge
Pattern. Other than that proxy, Observer, Abstract Factory and
Factory method design patterns are also used for different
components of Active Bridge [9][10].

The second commonly mentioned composite design
pattern is Bureaucracy. Bureaucracy design pattern is created
using Chain of Responsibility, Composite, Mediator and
Observer design patterns. Bureaucracy is also considered as a
complex design pattern since it is used in the resource
management and interaction of the complex objects. This
pattern is highly efficient in developing large application
where consistency is important [11]. This design pattern is
used in many frameworks including ET++ [10], InterViews
[12] and SmallTalk Framework [13].

The most commonly used composite design pattern is
Model View Controller (MVC). MVC is also used in
designing 3-tier or n-tier architecture frameworks. It is used to
handle multiple user interfaces based on the user information
or interaction. MVC allows modifying a user interface
independent of the application logic or data associated with it
[14]. It is usually based on Observer and Strategy design
patterns. There are many variations of this design pattern used

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

in the industry like Model View Presenter (MVP) [15] and
Model View ViewModel [16].

Although many researchers have tackled the problem of
design pattern description or definition languages but very few
worked on the language for the composite design pattern
definition or description.

Vlissides proposed a visual notations called Pattern: Role
annotation that adds scalability and readability over the Venn
Diagram notation [17]. This notation focused on static
properties of the design pattern compositions. The notation
failed to capture the behavioral aspect of the operations in a
design pattern.

Dong et al. [18] used First Order Logic (FOL) theories to
specify the structural aspect of patterns and Temporal Logic
of Action (TLA) of specify their behavioral aspect. The same
techniques were used to specify pattern composition. The
specification of the structural aspect of a pattern used
predicates for describing classes, state variables, methods and
their relations.

Dong et al. also investigated the commutability of pattern
instantiation with pattern integration (composition). A pattern
instantiation was defined as a mapping from names of various
kinds of elements in the pattern to classes, attributes, methods,
etc. in the instance. An integration of two patterns was defined
as a mapping from the set union of the names of elements in
the two patterns into the names of the elements in the resulting
pattern. This formal definition of integration is
mathematically equivalent to the multiple name mapping
approach [18].

Taibi and Ngo [19] also took an approach very similar to
the one by Dong et al. Instead of defining mappings for pattern
compositions and instantiations, they used substitution to
directly rename the variables that represents pattern elements.
For instantiation, the variables are renamed to constants,
whereas for composition, they are renamed to new variables.
The composition of two patterns is then the logical
conjunction of the predicates that specify the structural and
behavioral properties of the patterns after substitution.

Helm et al. [20] used notion of contracts for describing the
behavioral composition of the objects. However, his approach
was much broad and not specific to composite design patterns.
In addition, it only emphasized on the functional or behavioral
aspect of the system and the interactions of the objects in the
system.

All of these approaches could be used for composite
design patterns but they were not specifically designed for the
composite design patterns but were for general composition of
design patterns in the system.

Riehle [21] investigated the composite design patterns as
a recurring framework. In his technique, he used role-based
analysis and described the design patterns composition using
role-diagrams. Role-diagrams were supplemented with
composition constraints, which specify the set of roles an
object may, have to, or must not play.

Dong [22] studied the composite patterns in formal
settings. He called composition of two or more patterns as
name mapping. He defined name mapping as “classes and
objects declared in a pattern with the classes and objects
declared in the composition of this pattern and other patterns"

[22]. Dong used formal mathematical specification for the
structural and behavioral properties of the instance of the
composite design pattern.

III. DESIGN PATTERN DESCRIPTION LANGUAGE

DPDL a design pattern description language that provides
a flexible and a simple way to express patterns [8]. DPDL
covers the maximum possible characteristics of the design
pattern in a simple way. Figure 1 shows the high level schema
for the DPDL language. At the left most in the diagram is the
DesignPattern element; for each design pattern there is a
DesignPattern element.

Figure 1. DPDL High Level Schema

As can be seen from Figure 1, the design pattern element
has three sub elements; (a) structuralAttributes, (b)
behavioralAttributes and, (c) ForFuture. The Structural
attribute covers the structural properties of the design pattern.
The behavioral attribute defines the behavioral aspect of the
design pattern. Finally, ForFuture element is for extending
DPDL to add other elements to cover new features of the
design pattern in the future.

IV. THE PROPOSED ENHANCEMENTS

Enhancements are made on the original DPDL schema in
order to handle the composite design patterns. This section
covers these changes. The changes made on the DPDL to
handle composite patterns are done on the attributes; no new
elements were introduced. Therefore, eDPDL schema is
backward compatible; thus, all the existing design pattern
instances created using DPDL are still valid on eDPDL.

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Two new attributes: isComposite and ConstituentPatterns
have been added to DesignPattern element, as shown in Figure
2. isComposite attribute is of Yes/No type; if this attribute is
Yes that means the description is for a composite pattern thus
the designer of the pattern needs to put the design patterns
involved in the composite pattern in the ConstituentPatterns
attribute. ConstituentPatterns attribute is of a list type, which
means that this attribute can have a list of values delimited by
a space.

Figure 2. Changes in Attributes of DesignPattern element of DPDL

A. Changes in StructuralAttribute’s Elements

In the StructuralAttributes element, there are four
elements. These elements are Classes, Objects, Operations
and Relationships. Each of these elements has a subgroup
element. The changes made in StructuralAttributes element
are restricted to the changes in the subgroup element of the
four main elements of the StructuralAttribute’s element. The
changes are shown in Figure 3.

Figure 3. Structural Attributes of DPDL and changes made for eDPDL

As can be seen from Figure 3, AssociatedPatterns attribute
(highlighted with a thick rectangle) has been added, hence,
each element of class, operation, object or relationship is
linked to one or more pattern of the composite design pattern.
Therefore, an operation belonging to a particular design
pattern in a composite design pattern is mentioned by giving
the name of that particular design pattern in the
AssociatedPatterns attribute for that particular subgroup
element of the operation.

It is also important to mention that attribute name
(“AssociatedPatterns”) is used in the plural form. This means
that multiple design patterns can be listed in this attribute.
These patterns can be listed using space delimited. This is
done because in some cases a class in a composite pattern
might be represent two different patterns in a single composite
design pattern.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 4. Behavioral Attributes of DPDL and changes made for eDPDL

B. Changes in BehavioralAttribute’s Elements

The second part of DPDL language is the Behavioral
Attributes element. This element has five sub elements
describing the behavioral aspect of the design pattern. In all
elements related to the behavioral attributes of the design
pattern an AssociatedPatterns attribute is added. The changes
made for the eDPDL in the DPDL are shown in the Figure 4.

V. EDPDL VALIDATION

Model View Controller (MVC) is a software architecture
pattern, which separates the representation of information
from the users’ interaction with it. There are three types of
objects in MVC. Application data is represented by Model,
the View is the output or the screen shown to the user, and the
Controller handles all the reaction to the input. The Publish-
Subscribe protocol is used between model and view - when

Model data is changed it will update the View. It also allows
attaching multiple Views to the same Model. This is achieved
by using the Observer design pattern [23]. Controller
implements a particular Strategy for the View, which is
similar to the Strategy design pattern. Therefore, this makes
MVC a composite design pattern with two design patterns
Observer and Strategy. There are different variations of the
Model View Controller (MVC) design pattern. Below is one
of them [2].

Figure 5. Model View Controller Class Diagram

As can be seen in Figure 5 the shown version of the Model
View Controller (MVC) design pattern is composed of
Observer and Strategy patterns. The Observer pattern is
shown on the left side and the Strategy pattern is on the right
side. The view class performs the role of both Strategy design
pattern and observer design pattern.

This example shows that there can be a component in the
composite design pattern, which acts for more than one design
pattern. The update operation in the View class of Model
View Controller design pattern is acting in a role of Observer
and the contextInterface operation is acting in a role of
Strategy design pattern.

We can see in Classes Node that Model Class is defined as
part of Observer design pattern and similarly Controller class
is defined as link to the Strategy design pattern. However,
View Class is shown as part of both Observer and Strategy
design group.

Similarly, in Operations group, different operations are
also linked with their respective design pattern by listing the
pattern in the AssociatedPattern element of the particular
operation subgroup. Similarly, same approach is used in the
Objects and Relationships Nodes.

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

<StructuralAttributes>
 <Classes>
 <SubGroup groupID="ModelClassGroup" noOfClasses="1" >
 <Class className="Model" isAbstract="Yes" isParent="Yes"
hasConstructor="Yes" classModifier="public" isDerived="No"/>
 </SubGroup>
 <SubGroup groupID="ConcenteModelClassGroup"
noOfClasses="1" >
 <Class className="ConcreteModel" isAbstract="No"
isParent="No" hasConstructor="Yes" classModifier="public"
isDerived="Yes" parentId="Model"/>
 </SubGroup>
 <SubGroup groupID="ViewClassGroup" noOfClasses="1">
 <Class className="View" isAbstract="Yes" isParent="Yes"
hasConstructor="Yes" classModifier="public" isDerived="No" />
 </SubGroup>
 </Classes>
 <Operations>
 <SubGroupOp>
 <Function returnType="Null" containingClassId="Model"
functionName="Attach" functionModifier="public"
inputVariablesType="View" />
 </SubGroupOp>
 </Operations>
 <Objects>
 <SubgroupOb>
 <Object objectName="Views" objectClass="ICollection"
containingClass="Model" objectModifier="private" isList="Yes"
ListType="ICollections"/>
 </Objects>
 <RelationShips>
 <SubgroupR>
 <Relation endClass="View" initiatingClass="ConcreteView"
relationName="Generalization" />
 </SubgroupR> </RelationShips>
</StructuralAttributes>

Figure 6. Example of Structure Attributes of MVC Design Pattern written
in DPDL

<StructuralAttributes>
 <Classes>
 <SubGroup groupID="ModelClassGroup"
noOfClasses="1" AssociatedPatterns="Observer">
 <Class className="Model" isAbstract="Yes"
isParent="Yes" hasConstructor="Yes" classModifier="public"
isDerived="No"/>
 </SubGroup>
 <SubGroup groupID="ViewClassGroup"
noOfClasses="1" AssociatedPatterns="Observer Strategy">
 <Class className="View" isAbstract="Yes"
isParent="Yes" hasConstructor="Yes" classModifier="public"
isDerived="No" />
 </SubGroup>
 <SubGroup groupID="ControllerClassGroup"
noOfClasses="1" AssociatedPatterns="Strategy">
 <Class className="Controller" isAbstract="Yes"
isParent="Yes" hasConstructor="No" classModifier="public"
isDerived="No"/>
 </SubGroup>
 </Classes>
 <Operations>
 <SubGroupOp AssociatedPatterns="Strategy">
 <Function returnType="Null"
containingClassId="View" functionName="ContextInterface"
functionModifier="public" inputVariablesType="Null" />
 </SubGroupOp>
 </Operations>
 <Objects>

 <SubgroupOb AssociatedPatterns="Observer">
 <Object objectName="Model"
objectClass="ConcreteModel" containingClass="ConcreteModel"
objectModifier="private"/>
 </SubgroupOb>
 </Objects>
 <RelationShips>
 <SubgroupR AssociatedPatterns="Observer">
 <Relation endClass="Model"
initiatingClass="ConcreteModel"
relationName="Generalization"></Relation>
 </SubgroupR>
 </RelationShips>
</StructuralAttributes>

Figure 7. Example of Structure Attributes of MVC Design Pattern Written
in eDPDL

 <BehavioralAttributes>
 <create ObjectId="views" callingClass="Model"
returns="null" Collection="Yes" objectClass="ICollection"
createType="ReadOnly" AssociatedPatterns="Observer"/>
 <call callingClass="Model" returns="null"
CallFrom="function" variableType="{Views}" calledClass="View"
variables="{v}" Callerfunction="Attach" Calledfunction="Add"
AssociatedPatterns="Observer" />
 <call callingClass="Model" returns="null"
CallFrom="function" variableType="{Views}" calledClass="View"
variables="{v}" Callerfunction="Detach" Calledfunction="Remove"
AssociatedPatterns="Observer" />
 <call callingClass="Model" returns="null"
CallFrom="function" variableType="{Views}" calledClass="View"
variables="{v}" Callerfunction="Notify" Calledfunction="Update"
AssociatedPatterns="Observer" />
 <create ObjectId="Controller" callingClass="View"
returns="null" Collection="null" objectClass="Controller"
createType="Readonly" AssociatedPatterns="Observer" />
 <SetObject CallingClass="View" ObjectId="controller"
ObjectClass="Controller" SetTo="Controller"
AssociatedPatterns="Observer" />
 <call callingClass="View" returns="null"
CallFrom="Function" variableType="null"
calledClass="ConcreteController" variables="null"
Calledfunction="AlgorithmInterface" calledThrough="Controller"
Callerfunction="ContextInterface" AssociatedPatterns="Observer" />
 <create ObjectId="ViewState" callingClass="object"
returns="null" Collection="No" objectClass="object"
createType="null" AssociatedPatterns="Observer" />
 <SetObject CallingClass="ConcreteView" ObjectId="Model"
ObjectClass="ConcreteModel" SetTo="Model.ModelState"
AssociatedPatterns="Observer" />
 </BehavioralAttributes>

Figure 8. Example of Behavioral Attributes of Model View Controller
Design Pattern

Figure 6 shows the structural view of the MVC design
pattern written using the original definition of DPDL. Figure
7 and Figure 8 show the structural and the behavioural views
of the MVC Design Pattern written in eDPDL respectively.
As can be seen, the structural view of the original DPDP does
not have AssociatedPatterns tag. Without having this tage, it
will be impossible to recognize if the described design pattern
is a one large design pattern or the sum of two or more design
patterns.

The eDPDL is an extension of DPDL, which not only
handles describing the regular single design patterns in a
singular fashion but can also describe composite design

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

pattern as a combination of two or more design patterns. This
makes it clear if the design pattern is a composite design
pattern or not. The original DPDL description cannot
differentiate between composite design patterns and single
design pattern. eDPDL is also backward compatible, that is all
design pattern which were described based on DPDL schema
will work on the schema of eDPDL without any change.

VI. CONCLUSION AND FUTURE WORK

Composite design patterns are usually handled through
UML or formal mathematical notations, which are either too
complicated or they do not cover the roles and operations
comprehensively for the composite design patterns. Thus, the
roles that the classes, operations, and attributes play in the
pattern get lost. To accomplish the goals of the design pattern,
pattern related information becomes important. If this
information is not explicitly, the designers are forced to
communicate at the class and object level, instead of the
pattern level [24].

In this paper, we proposed an extension to DPDL to handle
the composite design patterns. The proposed extension,
eDPDL, adds attribute to DPDL to handle composite patterns
in an easy and efficient way. An example was provided and
we found that eDPDL is effective in handling composite
design patterns and is also easily understandable as it is built
on XML.

Our future research includes extending eDPDL to include
other design patterns such as security. We also plan to provide
an automated tool to fully support eDPDL.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support
provided by the Deanship of Scientific Research at King Fahd
University of Petroleum and Minerals, Saudi Arabia.

REFERENCES
[1] D. Riehle and H. Züllighoven, “Understanding and using patterns in

software development,” Theor. Pract. Object Syst., vol. 2, 1996, pp. 3-
13.

[2] A. Shelest. Model View Controller, Model View Presenter, and Model
View ViewModel Design Patterns. Available:
http://www.codeproject.com/Articles/42830/Model-View-Controller-
Model-View-Presenter-and-Mod. [Retrieved 2014: 18 August 2014].

[3] P. Alencar, D. Cowan, J. Dong, and C. Lucena, “A pattern-based
approach to structural design composition,” in Computer Software and
Applications Conference, 1999. COMPSAC'99. Proceedings. The
Twenty-Third Annual International, 1999, pp. 160-165.

[4] J. Dong, “Design component contracts: model and analysis of pattern-
based composition,” Ph. D. Thesis, Computer Science Department,
University of Waterloo, 2002.

[5] J. Rumbaugh, I. Jacobson, and G. Booch, "The Unified Modeling
Language User Guide," ed: Addison-Wesley, 1999.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual vol. 2: Addison-Wesley, 2005.

[7] L. Fuentes-Fernahndez and A. Vallecillo-Moreno, “An Introduction to
UML Profiles,” in The European Journal for the Informatics
Professional, 2004, pp. 5–13.

[8] S. Khwaja and M. Alshayeb, “Towards design pattern definition
language,” Software: Practice and Experience, vol. 43, 2013, pp. 747–
757.

[9] P. M. Yelland, “Creating host compliance in a portable framework: a
study in the reuse of design patterns,” ACM SIGPLAN Notices, vol.
31, 1996, pp. 18-29.

[10] A. Weinand and E. Gamma, “ET++–a portable, homogenous class
library and application framework,” Computer Science Research at
UBILAB, 1994, pp. 66-92.

[11] D. Riehle, “Bureaucracy,” 1997,
[12] M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing user

interfaces with InterViews,” Computer, vol. 22, 1989, pp. 8-22.
[13] D. Riehle, B. Schäffer, and M. Schnyder, “Design of a Smalltalk

Framework for the Tools and Materials Metaphor,”
Informatik/Informatique, vol. 3, 1996, pp. 20-22.

[14] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern Oriented
Software Architecture: On Patterns and Pattern Languages vol. 6:
Wiley, 2007.

[15] M. Potel, “MVP: Model-View-Presenter The Taligent Programming
Model for C++ and Java,” Taligent Inc, 1996,

[16] J. Smith, “WPF apps with the model-view-ViewModel design pattern,”
MSDN magazine, 2009,

[17] J. Vlissides, "Notation, Notation, Notation. C++ Report," 1998.
[18] J. Dong, T. Peng, and Y. Zhao, “On Instantiation and Integration

Commutability of Design Pattern,” The Computer Journal, vol. 54,
2011, pp. 164-184.

[19] T. Taibi and D. C. Ngo, “Formal specification of design pattern
combination using BPSL,” Information and Software Technology, vol.
45, March 2003, pp. 157-170.

[20] R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: specifying
behavioral compositions in object-oriented systems,” in European
conference on object-oriented programming on Object-oriented
programming systems, languages, and applications, 1990, pp. 169-180

[21] D. Riehle, “Composite design patterns,” 1997, pp. 218-228.
[22] J. Dong, P. S. Alencar, and D. D. Cowan, “Ensuring structure and

behavior correctness in design composition,” in Engineering of
Computer Based Systems, 2000.(ECBS 2000) Proceedings. Seventh
IEEE International Conference and Workshopon the, 2000, pp. 279-
287.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software: Addison Wesley,
1994.

[24] J. Dong, “UML Extensions for Design Pattern Compositions,” Journal
of Object Technology, vol. 1, 2002, pp. 151-163.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

