
Unified Conceptual Model for Joinpoints in Distributed Transactions

Anas M. R. AlSobeh, Stephen W. Clyde

Computer Science Department

Utah State University

Logan, Utah, USA

aalsobeh@aggiemail.usu.edu, Stephen.Clyde@usu.edu

Abstract—Distributed transaction processing systems can be

unnecessarily complex when crosscutting concerns, e.g., logging,

concurrency controls, transaction management, and access

controls, are scattered throughout the transaction processing

logic or tangled into otherwise cohesive modules. Aspect

orientation has the potential of reducing this kind of complexity;

however, currently, aspect-oriented programming languages

and frameworks only allow weaving of advice into contexts

derived from traditional executable structures. This paper lays

a foundation for weaving advice into distributed transactions,

which are high-level runtime abstractions. To establish this

foundation, we capture key transaction events and context

information in a conceptual model, called Unified Model for

Joinpoints Distributed Transactions (UMJDT). This model

defines interesting joinpoints relative to transaction execution

and context data for woven advice. A brief discussion of advice

weaving and the potential for reducing complexity with

transaction-specific aspects is provided, but the details of the

actual weaving are left for another paper. Also, this paper

suggest further research for studying the modularity and reuse

achieved through the ability to weave crosscutting concern into

transaction directly.

Keywords-complexity; modularity; distributed transaction;

joinpoint; operation; context; advice; aspect; crosscutting

concerns.

I. INTRODUCTION

 Frederick Brooks characterizes software complexity as

either essential or accidental, where essential complexity

stems from the very nature of the problem being solved by

the software and accidental complexity comes from the way

that the problem is being solved [1]. A Distributed

Transaction Processing System (DTPS) may have essential

complexity in the nature of the data, operations on the data,

or the volume of data. However, issues such as logging,

persistence, resource location, and even distribution itself are

more likely to be sources of accidental complexity, because

they are not usually inherent parts of the problem. When these

issues are secondary to the primary purposes of a DTPS, it is

common to find logic for them scattered throughout the

software and tangled into core application logic. For

example, concurrency-control operations, like locking and

unlocking, may be spread throughout the system and be

implemented with similar snippets of code.

 Aspect Orientation (AO), an extension to Object

Orientation (OO), can help manage both essential and

accidental complexity by localizing and encapsulating

crosscutting concerns in first-class software components,

called aspects [2]. An aspect is very much like a class in OO

and an aspect instance is like an object, except that an aspect

defines special methods, called advices, which are

automatically woven into the core application according to

specifications, called pointcuts. However, existing AO

Programming Languages (AOPLs) and frameworks only

allow the weaving of advice into the execution of code-based

contexts, such as methods, constructors, and exceptions.

They do not directly allow behaviors to be woven into more

abstract contexts, such as transactions.

 One could argue that a good programmer can do the same

thing in OO by defining classes for the crosscutting concerns

and hard coding calls to methods of those classes in all the

right places. However, the issue is not whether it can be done;

rather, it is the difference in abstractions. AO offers better

abstractions for separating crosscutting concerns from core

functionality that do require core functionality to dependent

on crosscutting concerns in any way. An AO developer

should be able to add/remove aspects to/from a project

without changes to any other code. Some authors refer to this

as a principle, called obliviousness [3].

 A transaction is a set of operations on shared resources,

such that its execution results in either the successful

completion of all operations or the completion of no

operation. Besides this all-or-nothing property, called

atomicity, transactions are consistent, isolated, and durable,

meaning that persistent data will only change from one valid

state to another, other concurrent transactions cannot see the

effects of a transaction until it completes, and that effects of

a transaction become persistent after completion even if there

is system failure. Together, atomicity, consistency, isolation,

and durability are often referred to as the ACID

properties [3][5].

 Distributed transactions are transactions, but their

operations are executed on multiple host machines, ideally

with improved throughput. From a logical perspective, a

distributed transaction can be a flat sequence of operations or

a hierarchy of sub-transactions, also known as nested

transactions. In the latter case, nested transactions may

execute concurrently and still observe the ACID properties.

 Regardless of whether a distributed transaction is a flat

sequence of operations or comprised of nested transactions,

it is an ephemeral concept that spans multiple execution

threads and operations using distributed resources. Therefore,

from an execution perspective, it may seem non-contiguous

and unevenly spread over time and space. A transaction’s

context is not tied to code constructs, like constructors and

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:aalsobeh@aggiemail.usu.edu

methods, in a single thread of execution; rather, it consists of

loosely-coupled abstractions like dynamically generated

identifiers, timestamps, and tentative value sets for

distributed resources. This makes its very difficult for AO

developers to localize and encapsulate crosscutting concerns

that apply to transactions as execution units.

 This paper takes a preliminary step in enabling AO

developers to treat transactions as first-class concepts into

which compilers or frameworks can weave crossing

concerns. Specifically, it unifies DTPS concepts related to a)

transactions in general, b) the kinds of information that

comprise their context, and c) events that represent

interesting time points/places for when/where the

crosscutting concerns might augment an application’s core

functional or the underlying transaction processing system.

 Section II provides more detail about aspect-oriented

programming concepts and background about common

transaction concepts. Section III proposes possible joinpoints

in the execution of distributed transactions and relevant the

context information for each. Section IV presents a sample of

transaction-related crosscutting concerns. Section V presents

the UMJDT model and discusses two key areas, namely a

transaction context and joinpoints. Although the technical

details of advice weaving are beyond the scope of this paper,

Section VI provides an outline of the process and highlights

some of the key issues. Section VII summarizes the

contributions on this paper and discusses next steps.

II. BACKGROUND

A. Overview of Aspect Orientation

 As mentioned above, AO is an extension to OO that allows

developers to extract and untangle secondary concerns from

the primary features of an application. It is difficult to define

what constitutes a secondary concern in general because it

depends on the purpose of the software being built. However,

secondary concerns often show up in less-than-expertly-

designed OO software as similar snippets of code scattered

across multiple modules or tangled into methods that

primarily serve other purposes. A common example is tracing

or logging in a data processing application, where the

developers want a chronology of the execution for either

system verification, audit-trail, or performance-monitoring

measurement reasons. To do this, they might insert logic

throughout the code that writes various messages or statistics

to a file. Eventually, these log-writing code snippets become

scattered across the software and tangled in otherwise

cohesive methods.

 An AOPL, like AspectJ [6], would allow a developer to

remove all of the log-writing code from the main application

and place that logic in an aspect, which is a class-like abstract

data type. An aspect can include data members, methods,

nested types and everything else a class can include.

However, they can also include advices and pointcuts. An

advice is like a method because it implements some specific

behavior; however, it is not invoked like a method. Instead,

the AOPL’s compiler or runtime environment weaves the

advice into the system so it is executed at specific places and

time defined by pointcuts. A pointcut is a pattern that

identifies a set of joinpoints, which are best characterized as

intervals within program’s execution flow. Examples of

joinpoints in typical AOPL’s include the execution of a

method or the setting of a property. Consequently, their start

and end points map to specific elements of the code, called

shadows, which correspond to places where those intervals

may start or end. The weaving of advice into the shadows is

an automated process, and understanding it in depth is not

necessary to appreciate the contributions of this paper. We

refer readers interested in learning more about weaving of

advice to the overview of AspectJ by Kiczales, et al. [6].

 When advice executes, it can access context information

about the joinpoint at which it was invoked. This context

includes the location of the joinpoint (i.e., the shadow) and

runtime information about the objects involved. Some on the

context information is static and therefore can be computed

during weaving; other context is dynamic and depends on the

objects involved in the joinpoint.

B. Transaction Concepts

 As mentioned, the objective of this paper is to lay the

foundation for weaving crosscutting concerns into

transactions in DTPS’s. This requires identifying the logical

places, i.e., joinpoints, in transaction execution where a

developer might want to weave advice, as well as the kinds

of information that should be available in joinpoint context.

 There are many different DTPS’s in use today and they

vary in terms of features and implementations. However, they

share commonalities in their underlying concepts of

transaction distribution, management, execution, and

concurrency control. It is on these basic concepts that we will

focus our attention and lay a foundation for identifying

transaction joinpoints and context.

 As with transactions in centralized systems, a distributed

transaction is a sequence of operations on shared resources

that observe the ACID properties [7][8]. The difference is

that the operations of a distributed transaction execute on

more than one host machine, which opens up the possibility

of subsequences of those operations executing concurrently,

without shared memory to help with concurrency controls.

 In general, a distributed transaction can be thought of as a

tree of operations, instead of strict sequence. To visualize

this, consider a simple example of a transaction-based

manufacturing system that builds Widgets from Goo and

Gadgets from Widgets. See Figure 1. The Goo, Widget, and

Gadgets are all stored in “piles”. The individual objects and

the piles of objects are all shared resources. This system also

includes processing components, i.e., shared resources, that

handle the manufacturing. Specifically, there are Builders

that create Raw Widgets from Goo, Bakers that turn Raw

Widgets into Rough Widgets and Polishers that refine Rough

Widgets into Polished Widgets. Finally, there are Assemblers

that create Gadgets from Widgets and Labelers that tag the

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Gadgets with serial numbers. Figure 2 lists two simple

transactions that represent a) the construction of a Polished

Widget and b) the construction of a Gadget from two Widgets.

 Now assume that piles of Goo, Widgets, and Gadgets are

distributed across many locations (hosts) and that Builders

are at the same location as Goo Piles; Bakers and Polishers

are at the same location as Widget Piles; and Assemblers and

Labelers are close to Gadget Piles, but not necessarily at the

same location. With this distribution of resources, transaction

T2 could execute in a distributed manner by having Op2.1

execute in a sub-transaction, ST2.1, Op2.2 execute in another

sub-transaction, ST2.2, both on the same host as the desired

Widget Pile, and Op2.3-Op2.5 in a sub-transaction, ST2.3, on

the same host as the desired Gadget Pile. Figure 3 represents

this distributed transaction as a simple tree with T2 as the root

and the operations as the leaves.

 T1 and T2 are just two concrete transactions, but this

system could have hundreds of similar transactions running

at the same time. As in all DTPS, each transaction receives a

unique identity, i.e., Transaction Identifier (TID), when it

starts. All references to a transaction will be via this

identifier. Typically, in a DTPS, a Transaction Manager

(TM), is responsible for assigning TID’s and keeping track of

parent/sub-transactions relationships.

 Beside TID assignment, TM’s are also typically

responsible for starting transactions (and sub-transactions),

and ending transactions by either committing or aborting the

results. A TM may also oversee the execution of transaction

operations on resources and any necessary concurrency

controls, such as locking, for those resources. Some DTPS

delegate these responsibilities to separate components such

as Resource Managers and Lock Managers, but such

architectural differences are not important here. For the

purpose of exploring possible transaction-related joinpoints

and context information, it is important to just recognize that

operation execution and concurrency control take place with

respect to individual resources.

 Finally, a TM can also track information about its

execution environment, including information about threads

of execution, processes, host machines, secondary storage,

and even network connections. It may do this for a variety of

reasons, including performance management, audit trails, and

recovery in case of failure.

 A transaction is typically broken up into two basic phases:

an execution phase and a commit phase [8]. The execution

phase is considered tentative, because the changes are not

made permanent until the commit phase. During the

execution phase, the TM performs the operations in the body

within its own context. Logically, the operations may result

in the tentative changes to shared resources. In a commit

phase, the TM will either finalize all of the tentative changes

or abort the transaction.

 Three common approaches to concurrency controls are

optimistic, timestamp-based, and pessimistic. Optimistic

approaches to concurrency control allow conflicts to occur

during the tentative phases of concurrent transactions, then

leave it up to the TM to detect conflicts and abort one or more

transactions when they occur, using either forward or

backward validation [9][10]. Timestamp-based approaches

guarantee serial equivalence [11] by imposing an ordering on

the execution of the operations in the tentative phase.

Pessimistic approaches use locks to prevent conflicts from

occurring in the tentative phase of execution. They do this by

delaying operation execution or by trigging an abort (in the

case of deadlock [12]). Locking schemes vary, but are all

based on premise that a transaction must hold a particular

kind of lock before performing an operation.

 A common and simple locking scheme consists of two

types of locks: one for read operations and one write for

operations [12]. The pseudo-code in Figure 4 includes

requests for the appropriate read and writes locks, following

this simple scheme.

Figure 1 - Resources in a Widget and Gadget Manufacturing System.

a) Transaction T1

Op1.1: Get Goo from Goo Pile

Op1.2: Give Goo to a Builder and get back a Raw Widget
Op1.3: Give Raw Widget to a Baker and get a Rough Widget

Op1.4: Give Rough Widget to a Polisher and get a Polished

Widget

Op1.5: Put Polish Widget in a Widget Pile

b) Transaction T2

Op2.1: Get Widget (W1) from Widget Pile 1

Op2.2: Get Widget (W2) from Widget Pile 2

Op2.3: Give W1 and W2 to Assembler and get a Gadget, G
Op2.4: Put Gadget G in a Gadget Pile

Op2.5: Have Labeler put a tag on G

Figure 2 - Two Sample Transactions for Constructing Widgets and

Gadgets.

Figure 3 - Possible Distribution of Transaction T2.

T2

ST2.1 ST2.3

Op2.1 Op2.2 Op2.3 Op2.4 Op2.5

Runs on host

with Widget

Pile #1

Runs on

host with

Gadget PileST2.2

Runs on host

with Widget

Pile #2

Concurrently

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 A transaction’s context information includes those pieces

of data and metadata that the transaction needs to be self-

contained, guarantee the ACID properties, and support

correct execution of both the tentative and commit phases of

execution. Supporting correct execution of the commit phase

means that the context needs to include sufficient information

for the TM to decide whether the transaction conflicts with

other concurrent transactions. However, the details of this

context data depend heavily on the implementation of the

DTPS, the types of concurrency control in use, and the

commit algorithm. The only data that are common to virtually

all DTPS are the TID and a reference (direct or indirect) to

the responsible TM. Beyond these two items, a transaction’s

context may include many different kinds of implementation

specific data, e.g., sets of tentative values, rollback logs,

snapshots, lock information, timestamps, and other kinds of

metadata. Therefore, any system that aims to support aspects

for transaction must allow for context information to contain

data that specific to a DTPS’s implementation.

III. POTENTIAL JOINPOINTS AND THE SCOPE OF THE

CONTEXT

 From an advise-weaving perspective, joinpoints map to

places where weaving takes place – hence the user of “point”

in the name. However, from an execution perspective, a

joinpoint represents a logical interval of time in a flow of

execution. It has a beginning and an end, and advice can be

woven into the flow of execution before, after, or around it.

This section presents Figure 4 as a pseudo-code for an

implementation of T2 annotations that illustrate five new

types of joinpoints for DTPS’s: outer transaction, inner

transaction, resource locked, locking, and operation. Each

type of joinpoint is in a different color. This section also

discusses interesting metadata that advice might want to use,

and therefore should be part of joinpoint contexts.

 An Outer Transaction Joinpoint represents an interval that

spans the complete execution of a transaction, starting just

before the tentative phase and ending after the completion on

the commit phase. This kind of joinpoint would allow a

programmer to introduce advice before, after or around an

entire transaction. However, because it starts before the

beginning of the tentative phase, any “before” advice would

not have access to the target transaction’s context

information. However, it would have access to a parent

transaction’s context, which would be particularly important

for advice before or around sub-transactions.

 An Inner Transaction Joinpoint is similar to an Outer

Transaction Joinpoint, except that it starts just after the

tentative phase begins and ends just before the commit phase

ends. Advice woven before this kind of joinpoint would have

access to the target transaction’s context.

 Resource Locked Joinpoint represents an interval that

spans the time when a lock is held, starting after acquiring of

the lock and ending just before its release. Advice woven

before, after or around this type of joinpoint would have

Figure 4 - Pseudo Code for Distributed Version of T2 and the Potential Transaction Joinpoints within the Scope of the T2’s Context.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

access to metadata about the lock, the associated resources

and, of course, the transaction.

 Locking Joinpoint represents an interval that spans a lock

request. In other words, it begins as a request is made and

ends when the request is granted or denied. Advice woven

before, after, or around a Locking Joinpoint can access

metadata about the type of lock being requested or the

resource.

 Operation Joinpoint is an interval that spans one operation

in the execution of the tentative phase of a transaction. Such

advice would have to access to metadata about the operation

and the affected resources, as well as the transaction as large.

IV. SAMPLE CROSSCUTTING CONCERNS

 The number and variety of crosscutting concerns in a

DTPS are perhaps infinite. However, for illustrative

purposes, we will consider just one here. Imagine that we

would like to optimize the Gadget manufacturing system

such that Widgets were created just in time, by making sure

there are always some Widgets in a pile, but never an excess.

 Such flow-control or timing issues could be considered a

secondary crosscutting concern to the basic Gadget assembly

problem. By talking with the domain experts, we would

probably discover a couple of basic rules that govern when

the Widget product needs to be speed up or slowed down. An

OO programmer could embedded the logic for these rules

into the implement of the Builder, Baker, Polisher, or some

other set of components. With some skill, it is possible that

the OO programmer might even be able to do this in a

modular and reusable way.

 With transaction aspects, an AOP programmer, however,

would have a much similar option. Basically, the programmer

would encapsulate the logic for speeding up or slowing down

widget production into an aspect, maybe called something

like WidgetProductionSpeedControl. This aspect would

include advice that could be woven before (or around) any

operation that accesses a widget pile. The advice’s logic

would speed up Widget product if the pile was getting too

small or slow it down if the pile was getting too large. The

aspect would also include a simple pointcut that defined a

pattern for all relevant joinpoints. The original application

code would not need to be aware of the new production-speed

control logic. In fact, because of this obliviousness, it could

be tested with or without the speed control functionality

without any reprogramming of the system.

V. THE UNIFIED MODEL FOR JOINPOINTS IN

DISTRIBUTED TRANSACTIONS

 Figure 5 shows part of the UML model, called the Unified

Model for Joinpoints in Distributed Transactions (UMJDT),

which captures the key ideas for the new transaction

joinpoints and related context information. The class labeled

TransJP is a generalization of the joinpoints discussed in

Section III. By definition, each is associated with a

StartEvent, but may not have an EndEvent if the interval is

still in process. Every TransJP can also reference a context

that holds all the relevant statics and runtime information for

the joinpoint. Aspect advice will use this context to access a

wide variety of information such as operations in progress,

resources, and current execution environments.

 However, there are three special kinds of contexts, and the

actually kind of context that a TransJP directly accesses

depends on the TransJP specialization. For example, a

LockingJP directly accesses a LockContext.

 Contexts can be composited into a hierarchy of objects, as

indicated by the recursive aggregation relationship connected

to the Context class. Although Figure 5 does not show all the

possibilities and constraints, a LockContext can be part of a

TransactionContext, which could in turn be part of another

TransactionContext (i.e., for a parent transaction.)

 Contexts may also be extensible or customizable objects.

In other words, the base system that makes transaction aspect

possible, will provide classes for Context and its three

immediate specializations. It also projects hooks for

extending those classes, either through specialization, plugs-

in, or even other kinds of aspects, so programmers can use

context details that are specific to a particular DTPS or

DTPS-based applications.

VI. ADVICE WEAVING

Kizcales, et al. introduced the idea of weaving logic for

crosscutting concerns into core applications over 15 years

ago [2]. Their work stems from even earlier research with

inheritance, aggregation, and mix-ins [13]. Like all great

ideas, the heart of the weaving solution is relatively straight

forward – modularize concerns into first-class constructs,

find the right place(s) to introduce appropriate logic from

those constructs, and the either insert code that executes the

new logic unconditional (because it can be determined to

always be needed) or insert code that makes a final decision

about executing the new code at runtime.

The challenge for transaction-related aspects is not so

much the basic weaving process as it is pulling together all of

the relevant data that needs to make up a transaction’s

Figure 5 – Part of the Unified Model for Joinpoints in Distributed

Transactions

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

context. Remember, that in a DTPS, the execution of a single

transaction is an abstraction that might span many different

hosts and be interleaved with the execution of many other

concurrent transactions.

So to solve this problem, we propose to build a runtime

extension to AspectJ that tracks the start and end events of

the TransJP’s using low-level distributed aspects. We believe

this to be feasible because it is similar to the technique used

by CommJ to add communication-related aspects to

AspectJ [14].

Although our approach will re-use many of the ideas first

prototyped and refined in CommJ, our implementation for the

weaving of transaction aspects will have to solve some

additional problems not addressed by CommJ. Some of these

problems include data-sharing optimizations, like the sharing

of context information sharing across hosts only when

necessary. Our future work will include research into both

static and dynamic analysis techniques for solving these

problems.

For the moment, solving the basic weaving and context

management problems are sufficiently interesting and

potentially beneficial to dominate our immediate attention.

VII. SUMMARY AND FUTURE WORK

 This paper presented a foundation for extending AspectJ to

support transaction aspects, using joinpoints and context

information that is both interesting and relevant to DTPS’s.

In doing so, it paves the way for the weaving of crossing

cutting concerns into high-level program abstractions that

span multiple threads of execution and may be interleaved

with concurrent execution of similar abstraction.

 The main contribution of this paper is simply to identify

the set of joinpoints and context information that make the

most sense for DTPS’s. We have captured this knowledge in

a formal model called, Unified Model for Joinpoints in

Distributed Transactions (UMJDT), as presented its essential

parts here.

 Our next steps are to a) complete the implementation of the

an extension to AspectJ that performs the expected weaving

and tracking of context information, and b) perform an

preliminary experiment that we hope will provide evidence

of improvement in modularization and reuse. To measure the

modularity and reuse, we will define an extension to an

existing quality model with following new factors:

correctness, separation of concerns, understandability,

obliviousness, throughput, transaction volume, transaction

velocity, and transaction size. Each factor can be measured

using metrics, such as diffusion of application, concern

diffusion over operations, the number of inter-type

declarations, the number of committed transactions, the

number of aborted transactions, a rate of data flow during

transaction executions, and the length of a transaction design

and code, such as the lines of code, the number of operations,

the number of components, i.e., classes and aspects, into the

transaction, and the weighted operations per component. We

also hope to create a toolkit consisting of reusable transaction

aspects for common concerns, like performance measuring,

logging, exception handling, audit trails, and tracing.

REFERENCES

[1] F. P. Jr. Brooks, “No silver bullet, essence and accidents of

software engineering”, Computer, vol. 20, no. 4, 1987, pp.10 -

19.

[2] G. Kiczales, et al. “Aspect-Oriented Programming,”

Proceedings of ECOOP '97, Springer Verlag, 1997, pp. 220–

242.

[3] C. Clifton and G. T. Leavens, “Obliviousness, Modular

Reasoning, and the Behavior Subtyping Analogy”, In

Proceedings of the Workshop on Software Engineering

Properties of Languages for Aspect Technologies (SPLAT),

Workshop at AOSD, December 2003.

[4] J. Gray and A. Reuter, Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Mateo, CA, 1993.

[5] G. Kohad, S. Gupta, T. Gangakhedkar, U. Ahirwar, and A.

Kumar, “Concept and techniques of transaction processing of

Distributed Database management system,” International

Journal of Computer Architecture and Mobility. (ISSN 2319-

9229) Volume 1-Issue 8, June 2013.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and

W. Griswold, “An Overview of AspectJ”. 15th ECOOP 01,

June 2001, pp. 327 – 357.

[7] G. Alkhatib and R. S. Labban, “Transaction Management in

Distributed Database Systems: the Case of Oracle's Two-Phase

Commit,” The Journal of Information Systems Education,

vol.13:2, 1995, pp. 95-103.

[8] J. Gray, “The Transaction Concept: Virtues and limitations”,

In Proceedings of the 7th International Conference on VLDB

Systems (Cannes, France). ACM, New York, 1981, pp. 144-

154.

[9] T. Härder and K. Rothermel, “Concurrency Control Issues in

Nested Transactions,” Journal of VLDB 2 (1), Jan. 1993, pp.

39-74.

[10] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction

Management in the R*· Distributed Database Management

System,” ACM Trans. on Database Systems, vol. 11, no. 4,

December. 1986, pp. 378-396.

[11] G. Colouris, J. Dollimore, and T. Kindberg, “Distributed

systems, concepts and design,” Addison-Wesley. Fourth

edition 2005. ISBN-10: 9780321263544, 2005.

[12] P. A. Bernstein and N. Goodman, “Concurrency Control in

Distributed Database Systems,” ACM Computing Surveys

Vol. 13 No 2, June, 1981, pp. 185-221.

[13] A. Przybyłek, "Systems Evolution and Software Reuse in

Object-Oriented Programming and Aspect-Oriented

Programming," J. Bishop and A. Vallecillo (Eds.): TOOLS

2011, LNCS 6705, 2011, pp. 163–178.

[14] A. Raza and S. Clyde, “Weaving Crosscutting Concerns into

Inter-process Communications (IPC) in AspectJ,” ICSEA

2013. Nov. 2013, pp. 234-240. ISBN: 978-1-61208-304-9.

Venice, Italy.

[15] A. Hastings, “Distributed Lock Management in a Transaction

Processing Environment,” In Proceedings of IEEE 9th

Symposium on Reliable Distributed Systems, Oct. 1990, pp.

22-31.

[16] B. Gallina, N. Guelfi, and A. Romanovsky, “Coordinated

Atomic Actions for dependable distributed systems: the current

state in concepts, semantics and verification means,” In Proc.

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

18th IEEE Int. Symposium on Software Reliability (Sweden).

Nov. 2007, pp. 29-38.

[17] E. Bodden, “Closure joinpoints: Block Joinpoints without

Surprises,” In Proceedings of the 10th international conference

on AOSD, New York, NY, USA, ACM, 2011, pp. 117-128.

[18] F. F. Rezende and T. Härder, “Concurrency Control in Nested

Transactions with Enhanced Lock Modes for KBMSs,” In:

Proc. 6th DEXA, London, UK, Sept. 1995, pp. 604-613.

[19] H. Kung and J. Robinson, “On optimistic methods for

concurrency control,” ACM Transactions on Database

Systems, Vol. 6, No 2, June 1981, pp. 213-226.

[20] I. Mejía, “Towards a Proper Aspect-oriented Model for

Distributed Systems,” AOSD '11. ACM New York, NY, USA,

March. 2011, pp. 83-84.

[21] J. Eliot and B. Moss, “Nested transactions: and approach to

reliable distributed computing Tech,” Report MIT/LCS/TR-

260, Massachusetts Institute of Technology, 1981.

[22] J. Kienzle, R. Jiménez-Peris, A. Romanovsky, and M. Patiño-

Martinez, “Transaction Support for Ada,” In Reliable Software

Technologies - Ada-Europe, Springer Verlag, 2001, pp. 290 –

304.

[23] K. Donnelly and M. Fluet, “Transactional events,” Journal of

Functional Programming, v.18 n.5-6, September 2008, pp.

649-706. [doi>10.1017/S0956796808006916]

[24] M. Atif, “Analysis and verification of two-phase commit &

three-phase commit protocols,” In Proceedings of the 5th

ICET, IEEE, Oct. 2009, pp. 326 -331.

[25] N. Dhamir, D. N. Mannai, and A. Elmagarmid, “Design and

implementation of a distributed transaction processing

system", COMPCON '88, IEEE, New York, Mar. 4, 1988, pp.

185-188.

[26] P. Ram and P. Drew, “Distributed transactions in practice,”

ACM SIGMOD Record, v.28 n.3, Sept. 1999, pp. 49-

55. [doi>10.1145/333607.333613]

[27] R. Banks, P. Furniss, K. Heien, and H. R. Wiehle, “OSI

Distributed Transaction Processing Commitment

Optimizations,” ACM SIGCOMM Comput Commun Rev ,

Vol. 28, No. 5. ACM, New York, Oct. 1998, pp. 61–75. ISSN:

0146-4833.

[28] R. J. Walker and G. C. Murphy, “Joinpoints as ordered events:

towards applying implicit context to aspect-orientation,”

Workshop on Advanced Separation of Concerns at the 23nd

ICSE, 2001.

[29] T. Haerder and A. Reuter, “Principles of transaction-oriented

database recovery,” ACM Computing Surveys, v.15 n.4,

December. 1983, pp. 287-317. [doi>10.1145/289.291].

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://dl.acm.org/citation.cfm?id=333613&CFID=349435589&CFTOKEN=24096933
http://dl.acm.org/citation.cfm?id=333613&CFID=349435589&CFTOKEN=24096933
http://dl.acm.org/citation.cfm?id=333613&CFID=349435589&CFTOKEN=24096933
http://doi.acm.org/10.1145/333607.333613

