
Predicting Change Proneness using Object-Oriented Metrics and Machine Learning
Algorithms

Abdullah Al-Senayen, Abdurhman Al-Sahood
Computer Science, College of Computer Science & IT

King Faisal University
Al-Ahsa, Saudi Arabia

{aoaams, bo.dahm.99)@gmail.com

Mohammed Misbhauddin
Information Systems, College of Computer Science & IT

King Faisal University
Al-Ahsa, Saudi Arabia

mmisbhauddin@kfu.edu.sa

Abstract— Open Source Software (OSS) has become a huge
part of today’s software market and a good source for
investments. The establishment of the “National Program for
Free & Open Source Software Technology” by the top
research center (KACST) in Saudi Arabia to encourage the use
of OSS within the community is a major motivation to our
work. OSS comes with numerous challenges, one of which is
constant change. Being able to identify and measure the
change proneness in open source software will ensure saving
resources like time and effort. In this paper, we measure the
capability of classes of machine learning algorithms to predict
change proneness in OSS by using object-oriented metrics.
Four classes of machine learning algorithms were considered:
Probability-based, Function-based, Instance-based and Tree-
based. One complete version of the OSS was used as a training
set and tested on the subsequent version to predict the change.
The machine learning algorithms were compared based on
accuracy, specificity, sensitivity and root mean squared error.
We found that nearest neighbor algorithm performed better
than the other algorithms in terms of sensitivity and specificity.
In the future, we plan to test with different parameters to find
a better prediction model for software change proneness.

Keywords-open source software; object-oriented; change
proneness; maintainability; prediction.

I. INTRODUCTION
The concept of change is well-known in Software

Engineering and the series of changes made to a software
system is termed as Software Evolution [1]. The need for
evolving software comes because of incorporating new
functionality, modifying existing functionality or adapting to
new environment conditions etc. However, the impact of this
change on the whole system is based on the manner in which
the project was developed. According to Güneş Koru and
Liu [2], software development can either be closed source or
open source. On one hand, closed source projects are well
planned and executed. Hence, changes to such systems are
localized and can be dealt with in a less haphazard manner.
On the other hand, open source projects are developed in an
evolutionary manner [3] as a result of which the changes are
not restricted and scattered consistently throughout the
classes in the project.

OSS has come a long way since the start of its movement
in the 1970s. The vision of OSS has changed technology and
its market forever. It was the cause of a huge number of

breakthroughs. It gave us Google Android, Mozilla Firefox,
Linux, Apache, and many more. As OSS changed the world,
Saudi Arabia was not an exception. Although the OSS
ecosystem in Saudi Arabia is young and developing, it is
growing at a fast pace. One aspect of its growth is the huge
efforts done by King Abdul-Aziz City for Science and
Technology (KACST) actively working to promote the use
of OSS in Saudi Arabia. It is running a number of
international workshops on the uses of OSS and they are
helping in developing standards, awarding innovations, and
support academic research on the subject [4].

As OSS development grows in the kingdom and all
around the world, we need to consider the characteristics of a
good OSS [5]. Extensive research has been conducted over
the years to study the relationship between software metrics
and various software quality attributes like fault proneness
and maintainability [2], [6]-[20]. Around 40-70% of entire
cost of a software project is spent on maintenance [17]. The
probability that part of software might change is usually
referred to as change-proneness. Determining change-prone
classes helps in software maintenance, ensuring corrective
actions are initiated beforehand. Identifying these classes and
the factors that cause these changes is major issue faced
during software development. The factors that cause these
changes as characterized by Arisholm and Briand [21] as:

1. Structural characteristics of classes (e.g., their

coupling).
2. Coding quality of classes.
3. Factors that are captured by the defect history of

the classes in the previous release.
4. Change Management team skill and expertise.

In order to identify the causes of change-proneness, we

need to identify a rich set of metrics that cover the above-
mentioned factors, and hence, help in identifying the exact
factors that influence change. In this paper, we are going to
look into measures that link the structural characteristics of
the classes with their change proneness capability during
development. In order to obtain empirical evidence, we
analyzed a set of structural metrics and change data that
belonged to an open-source project, Heretrix [22]. The
change data was extracted comparing classes between
consecutive releases of the object-oriented project and the
object-oriented metrics from these releases. Metrics were

522Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

collected using tools such as ckjm (Chidamber and Kemerer
Java Metrics Suite) [23], Dependency Finder [24] and the
metric 1.3.6 plug-in in Eclipse [25]. Structural properties of
classes, as measured by these metrics, are then associated
with change-proneness. In this paper, we are going to treat
the aspect of predicting change proneness. Our aim is to
measure the capability of certain machine learning
algorithms, to predict change proneness in open source
software using object-oriented metrics. By being able to
predict these classes, we will ensure saving resources like
time, money and effort.

The rest of this paper is organized as follows. Section 2

comprises of a detailed literature survey of the various
studies done in the past that relate structural properties of
classes to their problem source such as change and defect
proneness. Section 3 provides the pre-requisite used for the
experiment including information on the open source project
and the various object-oriented metrics and machine learning
algorithms used. The Experimental Setup, Hypotheses and
Results are provided in Section 4 and 5, respectively. Results
from the experiment are then analyzed with respect to the
stated hypotheses in Section 6. Threats that may have
affected the validity of the results are highlighted in Section
7. Section 8 concludes the paper and emphasizes on scope
for future work based on our findings.

II. RELATED WORK
Gyimothy et al. [6] used open-source software and

object-oriented metrics to predict software faults comparing
linear and logistic regression models against machine
learning algorithms such as decision trees and neural
networks. Van koten and Gray [7] used Bayesian Networks
as the model to predict maintainability, which is quantified in
their approach as the number of lines of changed during a 3-
year period. They concluded that by using Bayesian
Networks, the model could predict maintainability more
accurately than regression-based models. Koru and Liu [2]
constructed a tree-based model to predict change-proneness
in two large open source projects. They suggested that
practitioners should start collecting static metrics and change
data to aid their maintenance effort. Zhou and Leung [8]
used Multivariate Adaptive Regression Spline (MARS) to
predict maintainability.

Eski and Buzluca [9] also used OO metrics to predict
change-proneness and its effect on testing effort. Unlike our
approach, they used data values from a single version of the
software and concluded that change-proneness can be
estimated correctly by selecting some optimal set of metrics.
Khomh et al. [10] and Romano et al. [11] also proposed a
change and fault prediction model but with assessing the
impact of anti-patterns rather than OO metrics. Anti-patterns
are code patterns with poor design choices.

Lu et al. [12] used statistical meta-analysis techniques to
investigate the relationships between OO metrics and
change-proneness. Elish and Khiaty [13] also used metrics to
predict change-prone classes. In their work, multiple
multivariate logistic regression models were built using
different sets of dependent and independent variables. They

concluded that prediction of change proneness is accurate
when product metrics are combined with evolutionary
metrics.

Peer and Malhotra [14] used Adaptive Neuro-fuzzy
Inference System (ANFIS) to predict change-proneness and
compared it against other approaches such as Bagging,
Random Forest and Logistic Regression. Malviya and Yadav
[15] used k-means clustering and used Chi-Test to decide the
cluster with goodness of fit among other clusters.

Research works that compared other machine learning
algorithms for their prediction capability like our work
recently gained a lot of momentum. Zhu et al. [16] also used
OO metrics to predict change-proneness using multiple
classification algorithms such as Naive Bayes, C4.5, k -NN,
SVM, and an associative classification method. Malhotra and
Khanna [17] investigated the effectiveness of logistic
regression models against other machine learning algorithms
such as Bagging, Random Forest and Multi-layer Perceptron.

Sun et al. [18] go a step forward by assessing a change
proposal and the ripple effects caused by it. They used
formal concept analysis to assess this effect of change and
then proposed a new metric to indicate systems ability to
absorb the change. Similarly, Giger et al. [19] went ahead in
predicting the type of code change rather than just locating
the change-prone parts of a system. While most researchers
used software code for change-prediction, Han et al. [20]
used design models and defined measures to predict
changeability at an earlier stage of software development.

It can be seen from literature that the use of object-
oriented metrics to predict change-proneness in open source
software is a very active area of research. In this paper, we
plan to measure the capability of certain machine learning
algorithms, to predict change proneness in open source
software using object-oriented metrics. Nevertheless, our
research work is different from others in many dimensions:

1. We used a complete version as the training set and

then used it over the subsequent version as the
testing set to predict the accuracy of the considered
algorithms whereas others simply use a single
version to build the prediction model [13]-[17].

2. We used classes of machine learning algorithms
rather than using a random set of algorithms for
comparison.

3. We used baseline prediction models (ZeroR and
OneR) to benchmark the evaluation criteria when
comparing multiple algorithms.

III. EXPERIMENT SETUP

A. Experiment Subject - Heretrix
We are focusing our research efforts on one particular

open-source project, the Heritrix Project [22]. Heritrix is an
open-source WebCrawler project started by the Internet
Archive in 2003. The software is open source to encourage
collaboration and joint development across institutions with
similar needs. The Heritrix project almost matches the
description of open-source projects: it includes a complete

523Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

history of code base, public mailing lists for open discussion,
a web site with documentation, and provides release notes
for bug tracking. Table 1 provides information regarding the
number of releases of the project, the total number of classes
and the percentage of classes that changed when compared to
its consecutive release. We limited the releases considered in
this work until version 2.

TABLE I. CHANGE DISTRIBUTION IN THE RELEASES OF HERITRIX

Version Number Total No. of Classes %
changed

0.2.0 120 60.83%
0.4.0 164 58.54%

0.6.0 201 35.82%
0.8.0 223 60.54%

0.10.0 246 30.49%
1.0.0 263 45.25%
1.2.0 301 56.81%

1.4.0 369 59.62%
1.6.0 411 17.52%

1.8.0 417 29.50%

B. Object-Oriented Metrics
In this subsection, we present the seventeen metrics that

we used to construct the prediction model. Chidamber and
Kemerer [26] proposed six of these metrics. We also
included some well-known size metrics and number of
dependency metrics available from [2]. The definitions of
these metrics are shown in Table 2, Table 3, Table 4, Table 5
and Table 6.

TABLE II. SIZE METRICS

Metrics Description
SLOC Source lines of code – nonempty and non-comment
NOA Number of attributes for a class
NOM Number of methods for a class
NPM Number of public methods for a class

WMC Weighted methods per class - sum of the complexities
of class’s methods.

TABLE III. COHESION METRICS

Metrics Description

LCOM
Lack of Cohesion in Methods. It counts the sets of
methods in a class that are not related through the
sharing of some of the class’s fields

TABLE IV. INHERITANCE METRICS

Metrics Description

DIT Depth of Inheritance – inheritance level from the object
hierarchy top

NOC Number of children – number of immediate descendants
of a class

TABLE V. COUPLING METRICS

Metrics Description

CBO
Coupling between Object Classes – number of classes
coupled to a class – can occur through inheritance,
function call, return and exceptions.

RFC
Response for a Class - number of different methods that
can be executed when an object of that class receives a
message

CA Afferent Coupling - how many other classes use the
specific class

TABLE VI. DEPENDENCY METRICS

Metrics Description

IIP
Inbound Intra-Package Dependencies - number of
classes within the same package that depend on this
class

IEP Inbound Extra-Package Dependencies - number of
classes in other packages that depend on this class

OIP
Outbound Intra-Package Dependencies Afferent
Coupling - number of classes of the same package that
this class depends on

OEP Outbound Extra-Package Dependencies - number of
classes of other packages that this class depends on

IIPM
Inbound Intra-Package Method Dependencies - number
of methods and fields in other classes of the same
package that depend on this class

IEPM Inbound Extra-Package Method Dependencies - number
of methods in other packages that depend on this class

C. Machine Learning Algorithms
In this subsection, we present the six machine learning

algorithms that we used to determine the change proneness
in the open source software. Of the machine learning
algorithms, we used two of them to establish baseline
accuracy: ZeroR and OneR algorithms. We selected one
machine learning algorithms from four different classes such
as Probability-based, Function-based, Instance-based, and
Tree-based algorithms.

Baseline Algorithms

• ZeroR algorithm [28] is a simple algorithm useful
for getting base line performance, in our case
accuracy. It ignores all predictors and relies on the
target. We used this algorithm to establish baseline
accuracy.

• OneR [28] creates a rule for each predictor in the
data. It then selects the rule with the smallest total
error as its one single rule. It constructs a frequency
table for each predictor against the target to create a
rule for a predictor. We used this algorithm to
establish baseline accuracy.

NaiveBayes (Probability-based ML Algorithm)

NaiveBayes algorithm [29] is a probability-based
algorithm. It requires only small amount of training set to
estimate the variables necessary for explanation. It assumes
that the presence or absence of a certain feature is unrelated
to the presence or absence of other features. It should be
stated that NaiveBayes is based on Bayes theorem.

524Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Multilayer perceptron (Function-based ML Algorithm)
Multilayer perceptron [30] is a function-based algorithm.

It maps input data sets into appropriate output data set. It is
made up of multiple layer nodes in a directed graph that are
fully connected to each other. The network allows signals to
travel from the input to the output setting the weights as they
propagate through. These weights are tuned for each iteration
reducing the overall error for the training set.

Nearest Neighbor (Instance-based ML Algorithm)

Nearest Neighbor (Ibk) [31] is an Instance-based
algorithm also known as lazy learning algorithm. It does not
do any actual training or learning at first. It populate a
sample of the search space with instances whose class is
known. When an instance whose class is unknown is
presented for evaluation, the algorithm computes its k closest
neighbors, and the class is assigned by voting among those
neighbors. To prevent ties we use an odd number of k.

J48 (Tree-based ML Algorithm)

J48 is a tree-based algorithm [32] is a class of algorithm
that generates a pruned or unpruned C4.5 decision tree and
using a divide and conquers strategy to growing the decision
tree for each instance. A new unseen instance then traverses
the tree until a proper classification is reached.

IV. EXPERIMENT DESIGN
This section describes the design of the experiment. In

here, we define the goal of the experiment, the dependent
variables and the independent variable and how they were
calculated and the tools used in the experiment. This section
also gives the procedure of how the experiment was carried
out.

A. Goal of the Experiment
• Object of Study: Identify and Characterize change-

prone classes
• Purpose: Investigate the correlation between change

proneness of a class and the set of structural metrics
used in this experiment

• Perspective: From the viewpoint of the researcher
and practitioner

• Context: The experiment is conducted with open-
source projects and certain measurement tools that
are used to calculate the metrics

B. Experimental Variables
The dependent variables in this study are a Boolean

variable (Changed) that indicates whether a class changed
from one version to another. Any change made to a class
during the evolution of a new version from a previous
version reflects the change-proneness of that class.

The independent variables are the metrics used to
measure the structural properties of the classes. These
metrics are presented in section 3-B of this paper.

C. Experiment Hypotheses
Our major objective is to test whether we can predict

future changes to a class based on a set of structural metrics.
We want to demonstrate that the machine learning
algorithms were able to predict change-proneness when
compared to baseline algorithms.

We tested the following hypotheses on the case study:
H1: Probability-based algorithms perform better, in

terms of Accuracy, Specificity. Sensitivity and Error, than
baseline algorithms.

H2: Function-based algorithms perform better, in terms
of Accuracy, Specificity. Sensitivity and Error, than baseline
algorithms.

H3: Instance-based algorithms perform better, in terms
of Accuracy, Specificity. Sensitivity and Error, than baseline
algorithms.

H4: Tree-based algorithms perform better, in terms of
Accuracy, Specificity. Sensitivity and Error, than baseline
algorithms.

We tested the above-mentioned hypotheses by analyzing
the relationship between structural metrics of a class from an
early version of the system and whether any change occurred
to the class during the transition from the early version to a
later version.

D. Tools
In order to collect the change data from the system, we

used the Beyond Compare 2 [27] tool as a code comparison
tool. This tool provided us with information as to whether
the code changed from one version to another. Apart from
this, we used three measurement tools to obtain the OO
metrics. These tools are ckjm [23], Dependency Finder [24]
and the metrics 1.3.6 plug-in available for Eclipse IDE [25].

We then used Weka [33] for application of the different
machine learning algorithms. Weka is Java-based tool and
runs on any platform. The algorithms can either be applied
directly to a dataset or called from your own Java code. We
applied the stated algorithms in Section 3-C on the Heritrix
[22] project metric data collected as the test subject.

E. Experiment Procedure
In our study, we used an OSS to get the classes and run

different algorithms through them to get the number of
changes in the code compared to different versions of the
same class. We uploaded each version of the metrics from
Heritrix to Weka and performed different types of algorithms
with default settings for each algorithm provided by the tool.
We took the number of changes most of the classes were
affected with. The steps performed are as follows:

1. Step1: All the classes in version n are compared
with the corresponding classes in version n+1 to
detect changes. This detection is done using a class
comparison tool. Based on this information, we
populate the Class-change matrix with YES’s and
NO’s depending on whether the class changed from
the previous release or not.

2. Step 2: All the classes in a version for all the
versions are used as an input to a metric calculation
tool to calculate all the metrics used as independent

525Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

variable in the project. The results from this are
then used to populate the Class-metric matrix with
appropriate values.

3. Step 3: The input and output is then imported in the
data-mining tool Weka for application of the chosen
machine learning algorithms. A complete version is
used as a training set and the subsequent version as
the testing set. This process is repeated for all the
versions.

4. Step 4: The results of the algorithms in terms of
accuracy, root-mean squared errors, sensitivity, and
specificity are recorded and compared as shown in
the next section.

V. RESULTS
In this work, we collected four result values and used

them for comparing the various machine learning algorithms.

A. Accuracy
Accuracy is the percentage of how accurate the algorithm

is in predicting the change-proneness of a class based on the
OO metrics input. The accuracy of all the selected algorithms
across all versions and their average accuracy is shown in
Table 7.

TABLE VII. ACCURACY OF THE MACHINE LEARNING APPROACHES

 a. Values are percentages

B. Specificity
Specificity is the percentage of the values that were

originally “No” and also predicted as “No” as obtained from
the confusion matrix. After applying the algorithms, the
result was that the baseline specificity has a fair specificity
better than the other algorithms specificity. ZeroR algorithm
was the best giving perfect specificity for five times, as
shown in Table 8.

TABLE VIII. SPECIFICITY OF THE MACHINE LEARNING APPROACHES

 a. Values are percentages

C. Sensitivity
Sensitivity is the percentage of values, which were “yes”

and also predicted as “yes” as obtained from the confusion
matrix. After applying the algorithms, the result was that the
baseline sensitivity has a fair sensitivity better than the other
algorithms sensitivity. ZeroR algorithm was the best giving
perfect sensitivity for five times. Table 9 shows the
sensitivity result of all the algorithms on the given versions.

TABLE IX. SENSITIVITY OF THE MACHINE LEARNING APPROACHES

a. Values are percentages

D. Root Mean Squared Error (RMSE)
RMSE is the difference between values predicted by a

model and the values actually observed. After applying the
algorithms, the result was that the Multilayer Perceptron

 ACCURACY

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 58.5 69.5 80.0 71.3 64.6 71.3

v0.4-
v0.6 35.8 60.7 69.7 72.6 67.2 67.2

v0.6-
v0.8 39.5 62.3 57.4 59.2 62.3 62.0

v0.8-
v0.10 30.5 57.0 74.0 63.0 61.0 57.3

v0.10-
v1.0 54.8 63.5 64.3 66.9 70.3 68.4

v1.0-
v1.2 43.2 62.1 57.8 58.5 61.8 66.1

v1.2-
v1.4 59.6 62.0 53.1 62.0 61.8 62.6

v1.4-
v1.6 17.5 52.6 77.6 59.1 55.5 57.9

v1.6-
v1.8 70.5 74.0 75.5 74.6 76.0 75.3

45.5 62.6 67.7 65.2 64.5 65.3

 SPECIFICITY

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 100 54.4 33.8 44.1 39.7 33.8

v0.4-
v0.6 100 44.2 18.6 24.8 43.4 39.5

v0.6-
v0.8 0 13.6 4.5 14.8 9.1 14.8

v0.8-
v0.10 100 56.1 17.5 44.4 45.6 50.9

v0.10-
v1.0 0 11.8 7.6 7.6 11.8 9.7

v1.0-
v1.2 0 16.9 10.0 10.8 24.6 20.0

v1.2-
v1.4 100 47.0 13.4 37.6 36.2 38.9

v1.4-
v1.6 100 54.9 15.6 43.4 49.6 45.7

v1.6-
v1.8 0 2.0 5.1 1.7 7.5 3.1

55.6 33.4 14.0 25.5 29.7 28.5

 SENSITIVITY

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 100 86.5 89.6 82.3 67.7 75.0

v0.4-
v0.6 100 69.4 48.6 68.1 86.1 79.2

v0.6-
v0.8 0 46.7 32.6 42.2 43.7 46.7

v0.8-
v0.10 100 86.7 54.7 80.0 76.0 76.0

v0.10-
v1.0 0 33.6 30.3 36.1 48.7 42.0

v1.0-
v1.2 0 46.2 33.3 35.1 51.5 55.6

v1.2-
v1.4 100 68.2 30.5 61.8 60.5 63.6

v1.4-
v1.6 100 87.5 45.8 70.8 79.2 75.0

v1.6-
v1.8 0 16.3 29.3 17.9 36.6 23.6

55.6 60.1 43.8 54.93 61.1 59.6

526Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

algorithm had the lowest RMSE. Table 10 shows the RMSE
result of all the algorithms on the given versions.

TABLE X. RMSE OF THE MACHINE LEARNING APPROACHES

VI. DISCUSSION
 In this section, we will discuss our four comparison

criteria used. First, we have accuracy. After applying the
algorithms, the result was that all of the machines learning
algorithms have a fair accuracy better than the baseline
accuracy. Naive Bayes and Nearest Neighbor are better
considering both have given the comparatively better results
than the most and Naïve Bayes gave the highest percentage
with 68% as shown in Table 7. Then, there is specificity.
After applying the algorithms, the result was that the baseline
specificity has a fair specificity better than the other
algorithm’s specificity. ZeroR algorithm was the best giving
perfect specificity for five times as shown in Table 8. Next is
Sensitivity. After applying the algorithms, the result was that
the nearest neighbor algorithm was the only one with a better
average sensitivity percentage compared to the baseline
algorithm as shown in Table 9. Finally, we have RMSE.
After applying the algorithms, the result was that the
Multilayer Perceptron algorithm had the lowest RMSE,
which was better than the baseline algorithm as shown in
Table 10. Based on this analysis, we reject all the hypotheses
H1, H2, H3 and H4 as no class of machine learning
algorithm performs better than the baseline algorithms in
terms of all considered comparison factors: accuracy,
sensitivity, specificity and error.

VII. THREATS TO VALIDITY
This section discusses the threats to validity in this study

and the way they were treated throughout the experiment.

A. Construct Validity
Construct Validity is the degree to which the independent

variables and dependent variables accurately measure the
concepts they purport to measure. The dependent variables
we used in our study were change, which is a Boolean

variable as to whether the class changed or not. As the way
they are computed is straightforward, we consider them
constructively valid. If any, the way the size was calculated
can pose a slight threat if there is a better way for it.

B. External Validity
External Validity is the degree to which the results of the

research can be generalized to the population under study
and other research settings. A crucial threat lies with the size
of the case study considered. Only a single project releases
are considered in this study with 10 releases. This may affect
the generalization of the identified conclusions. On the same
lines, another valid threat that cannot be excluded until
extensive empirical results are collected is that the case study
will reflect the characteristics from a specific domain. In
addition, the data collected from the open source project was
by analyzing the code. Poor documentation can affect the
results of the analysis significantly.

C. Internal Validity
Internal Validity is the degree to which conclusions can

be drawn about the casual effect of independent variables on
the dependent variables. Apart from the variables considered,
our approach might have omitted other important variables
that can serve as predictors. In addition, the size of the open
source project can be considered as a potential threat as our
project was not very big, but significantly large.

VIII. CONCLUSION AND FUTUREWORK
This paper reported findings of an empirical study

conducted to investigate the measures that affect the change-
proneness of classes in an open source project. The goal was
to use a case study from the open source community in order
to explore the relationship between the structural
characteristics of the project and the change proneness of
classes within that project from one version to the other. The
study concluded a lot of interesting results that conform to
previous studies, such as size-related metrics and coupling
metrics are correlated with change proneness. In conclusion
to the experiment, we believe that using machine learning
algorithms to predict change proneness in open source
software using object-oriented metrics is an excellent field
for research and needs to be further investigated. In many
cases, we were able to identify that the baseline accuracy
performed better than the machine learning algorithms
considered. This result calls for more research for better
algorithms that can be used for prediction of change-
proneness.

It should be noted that we used the default setting of
Weka for all the machine-learning algorithms used.
Moreover, as a future step, we plan to change the settings of
certain parameters in these algorithms to find a better
prediction model for software change proneness. In addition,
we plan to make use of correlation and principal component
analysis to select only those metrics that seem to affect the
change-proneness. In addition, the study provided some
useful information regarding dependency relationships and
their association. Based on our findings, we suggest

 ROOT MEAN SQUARED ERROR

 ZeroR OneR Naïve
Bayes MLP IBk j48

v0.2-
v0.4 0.49 0.55 0.45 0.47 0.59 0.51

v0.4-
v0.6 0.53 0.63 0.54 0.48 0.57 0.55

v0.6-
v0.8 0.55 0.61 0.65 0.59 0.61 0.59

v0.8-
v0.10 0.55 0.66 0.50 0.56 0.62 0.61

v0.10-
v1.0 0.52 0.60 0.58 0.48 0.54 0.54

v1.0-
v1.2 0.51 0.62 0.64 0.51 0.61 0.53

v1.2-
v1.4 0.49 0.62 0.68 0.48 0.62 0.53

v1.4-
v1.6 0.57 0.69 0.46 0.55 0.66 0.61

v1.6-
v1.8 0.47 0.51 0.49 0.44 0.49 0.46

0.52 0.61 0.55 0.51 0.59 0.55

527Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

practitioners dealing with open source projects to collect
static metrics and change data as part of their development
effort. This data can be used to prioritize preventive action
on the classes that are still under development.

ACKNOWLEDGMENT
The authors acknowledge the support of King Faisal

University in the development of this work.

REFERENCES
[1] M. M. Lehman and L. A. Belady, Program evolution: processes of

software change. CA: Academic Press Professional, Inc., 1985.
[2] A. Güneş Koru and H. Liu, "Identifying and characterizing change-

prone classes in two large-scale open-source products," Journal of
Systems and Software, vol. 80, Jan. 2007, pp. 63-73, doi:
10.1016/j.jss.2006.05.017.

[3] E. S. Raymond, The Cathedral & the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. CA: O'Reilly Media,
Inc., 2001.

[4] King Abdulaziz City for Science and Technology, National Program
for Free & Open Source Software Technology. Available:
http://www.motah.org.sa. Retrieved: August, 2014.

[5] C. Årdal, A. Alstadsæter, and J.-A. Røttingen, "Common
characteristics of open source software development and applicability
for drug discovery: a systematic review," Health Research Policy and
Systems, vol. 9, Sept. 2011, pp. 1-16, doi:10.1186/1478-4505-9-36.

[6] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction," IEEE Trans. Softw. Eng., vol. 31, Oct. 2005, pp. 897-
910, doi: 10.1109/tse.2005.112.

[7] C. van Koten and A. R. Gray, "An application of Bayesian
network for predicting object-oriented software
maintainability," Inf. Softw. Technol., vol. 48, Jan. 2006, pp.
59-67, doi: 10.1016/j.infsof.2005.03.002.

[8] Y. Zhou and H. Leung, "Predicting object-oriented software
maintainability using multivariate adaptive regression splines,"
Journal of Systems and Software, vol. 80, Aug. 2007, pp. 1349-1361,
doi: 10.1016/j.jss.2006.10.049.

[9] S. Eski and F. Buzluca, "An Empirical Study on Object-Oriented
Metrics and Software Evolution in Order to Reduce Testing Costs by
Predicting Change-Prone Classes," Proc. IEEE Fourth International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW 11), IEEE, Mar 2011, pp. 566 – 571, doi:
10.1109/icstw.2011.43.

[10] F. Khomh, M. Penta, Y.-G. Guéhéneuc, and G. Antoniol, "An
exploratory study of the impact of antipatterns on class change- and
fault-proneness," Empirical Software Engineering, vol. 17, June 2012,
pp. 243-275,doi: 10.1007/s10664-011-9171-y.

[11] D. Romano, P. Raila, M. Pinzger, and F. Khomh, "Analyzing
the Impact of Antipatterns on Change-Proneness Using Fine-
Grained Source Code Changes," Proc.19th Working
Conference on Reverse Engineering (WCRE 12), IEEE
Computer Society,Oct. 2012, pp. 437-446, doi:
10.1109/WCRE.2012.53.

[12] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, "The ability of object-
oriented metrics to predict change-proneness: a meta-analysis,"
Empirical Software Engineering, vol. 17, June 2012, pp. 200-242,doi:
10.1007/s10664-011-9170-z.

[13] M. O. Elish and M. Al-Rahman Al-Khiaty, "A suite of metrics for
quantifying historical changes to predict future change-prone classes
in object-oriented software," J. Softw. Evol. and Proc., vol. 25, May
2013, pp. 407-437,doi: 0.1002/smr.1549.

[14] A. Peer and R. Malhotra, "Application of adaptive neuro-fuzzy
inference system for predicting software change proneness," Proc.
Advances in Computing, Communications and Informatics (ICACCI

13), IEEE, Aug. 2013, pp. 2026-2031, doi:
10.1109/ICACCI.2013.6637493.

[15] A. K. Malviya and V. K. Yadav, "Maintenance activities in object
oriented software systems using K-means clustering technique: A
review," Proc. CSI Sixth International Conference on Software
Engineering (CONSEG 12), IEEE, Sept. 2012, pp. 1-5, doi:
10.1109/CONSEG.2012.6349490.

[16] X. Zhu, Q. Song, and Z. Sun, "Automated Identification of Change-
Prone Classes in Open Source Software Projects," Journal of
Software, vol. 8, Feb. 2013, pp. 361-366, doi: 10.4304/jsw.8.2.361-
366.

[17] R. Malhotra and M. Khanna, "Investigation of relationship between
object-oriented metrics and change proneness," International Journal
of Machine Learning and Cybernetics, vol. 4, Aug. 2013, pp. 273-
286, doi: 10.1007/s13042-012-0095-7.

[18] X. Sun, B. Li, and Q. Zhang, "A Change Proposal Driven
Approach for Changeability Assessment Using FCA-Based
Impact Analysis," Proc. IEEE 36th Annual Computer Software
and Applications Conference (COMPSAC 12), IEEE, Jul.
2012, pp. 328 – 333, doi: 10.1109/COMPSAC.2012.44.

[19] E. Giger, M. Pinzger, and H. C. Gall, "Can we predict types of code
changes? An empirical analysis," Proc. 9th IEEE Working
Conference on Mining Software Repositories (MSR 12), IEEE, Jun.
2012, pp. 217-226, doi: 10.1109/MSR.2012.6224284.

[20] A.-R. Han, S.-U. Jeon, D.-H. Bae, and J.-E. Hong, "Measuring
behavioral dependency for improving change-proneness prediction in
UML-based design models," Journal of Systems and Software, vol.
83, Feb. 2010, pp. 222-234, doi: 10.1016/j.jss.2009.09.038.

[21] E. Arisholm and L. C. Briand, "Predicting fault-prone components in
a java legacy system," Proc. ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE 06), ACM, 2006, pp. 8-17,
doi: 10.1145/1159733.1159738.

[22] P. Jack. Heritrix. Available:
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix, Retrieved:
Sept. 2014.

[23] D. D. Spinellis. (2008). ckjm — Chidamber and Kemerer Java
Metrics. Available: http://www.spinellis.gr/sw/ckjm/, Retrieved: Sept.
2014.

[24] J. Tessier. Dependency Finder. Available:
http://depfind.sourceforge.net/, Retrieved: Sept. 2014.

[25] F. Sauer, Metrics 1.3.6. Available: http://metrics.sourceforge.net/,
Retrieved: Sept. 2014.

[26] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol. 20, Jun. 1994, pp.
476-493, doi: 10.1109/32.295895.

[27] Scooter Software. Beyond Compare 2. Available:
http://www.scootersoftware.com/, Retrieved: Sept. 2014.

[28] I. H. Witten, E. Frank, M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, MA: Morgan Kauffman Publishers,
2011.

[29] D. Heckerman, D. Geiger, D. M. Chickering, "Learning Bayesian
networks: The combination of knowledge and statistical data,"
Machine Learning, vol. 20(3), Sept. 1995, pp. 197–243, doi:
10.1007/BF00994016.

[30] C. M. Bishop, Neural networks for pattern recognition, New York:
Oxford University Press, 1995.

[31] D. Aha, "Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms," International Journal of Man-Machine
Studies, vol. 36(2), Feb. 1992, pp. 267–287, doi: 10.1016/0020-
7373(92)90018-G.

[32] J. Quinlan, C4.5: Programs for Machine Learning. CA: Morgan
Kaufmann, 1993.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, "The WEKA Data Mining Software: An Update," SIGKDD
Explorations, vol. 11, Jun. 2009, pp. 10-18, doi:
0.1145/1656274.1656278.

528Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

	I. Introduction
	II. Related Work
	III. Experiment Setup
	A. Experiment Subject - Heretrix
	B. Object-Oriented Metrics
	C. Machine Learning Algorithms

	IV. Experiment Design
	A. Goal of the Experiment
	B. Experimental Variables
	C. Experiment Hypotheses
	D. Tools
	E. Experiment Procedure

	V. Results
	A. Accuracy
	B. Specificity
	C. Sensitivity
	D. Root Mean Squared Error (RMSE)

	VI. Discussion
	VII. THreats to Validity
	A. Construct Validity
	B. External Validity
	C. Internal Validity

	VIII. Conclusion and FutureWork
	Acknowledgment
	References

