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Abstract— The increasing dynamicity of ubiquitous 

environments and the rapid penetration of many sensors in our 

day life are causes of concern for application designers and 

developers. Indeed, they have to implement reliable 

applications in a context in which the managed entities have a 

very low level of abstraction; they are autonomous, 

heterogeneous, and change in unpredictable ways. To simplify 

developers work, there is a clear need to define a higher level 

of abstraction in which these entities can be represented 

homogeneously and managed systematically, irrespective of the 

many technical details. To be used safely, this representation 

must be causally related to the represented entities. Providing 

a high level causal representation is very challenging, because 

its implementation depends on the nature of the managed 

entities, and because in ubiquitous systems the representation 

and the system are evolving simultaneously and independently, 

sometimes in incompatible ways. The paper describes a 

systematic and extensible way to define and implement 

causality, and presents the experience with the Apam system in 

the domain of service platforms. 

Keywords- component; model; services; platform; causality; 

operational; OSGi. 

I.  INTRODUCTION 

Almost every piece of information managed by a 
program is a representation of something, either abstract 
concepts (integers, strings), or real entities (persons, cars). 
An important part of computing sciences has been devoted to 
representations. In the 2000s, modelling proposed to make 
more formal the relationship between a representation (a 
model) and the system being represented, the System Under 
Study (SUS). 

When a part of the SUS is not directly accessible to the 
machine (e.g., a part of the “real world”), building a 
representation is a preliminary step before writing a program 
that works on the SUS. A fundamental property of a model is 
to provide a convenient representation of the SUS: it should 
only represent what is needed at the right level of 
abstraction, making the understanding easier, and making the 
programs simpler. Therefore, even when the SUS is itself 
abstract, it is often convenient to build “on top” of it, a 
representation that fits better the needs. 

Note that the SUS itself can be a representation of a 
lower level system, making SUS and representation relative 
concepts. Indeed, computer sciences make heavy use of 
chains of representations, like abstraction layers in an 
operating system.  

The intuition often makes a distinction between SUS that 
are part of the real world (e.g., cars and houses represented in 

a database), and SUS that are electronic entities (files and 
ports in an operating system). This intuition is often 
misleading, machine world and real world are not two 
separate worlds; after all, the machine too pertains to the real 
world, and the SUS can include entities pertaining to the 
machine. 

However, what is relevant is that for electronic entities 
changing the representation can be translated automatically, 
and almost instantaneously, into corresponding changes on 
the represented entity (e.g., closing a port or changing the 
value of an integer Java variable). We say that the 
representation is operational. It is of course not the case for 
real world entities (changing the color of a car registered in a 
data base does not actually change the color of the car itself).  

For electronic entities, system changes can be directly 
observed and translated into the corresponding 
representation. We say that the representation is sensitive to 
its SUS. For real world entities, it is a program, or an 
administrator, that keeps the representation up to date, not 
the entity itself. 

A representation that is both operational and sensitive (as 
illustrated in Figure 1) is said to be causally related to its 
SUS, and causality is the relationship between a 
representation and its SUS. Operationality and sensitivity are 
reciprocal properties, making causality symmetric, and 
making relative the concepts of SUS and representation. 

 
Figure 1.  Causality. 

With the advent of modeling as a discipline, the 
representation has become more formal and higher level, 
often based on Object-Oriented concepts, making program 
and representation pretty close, blurring even more the 
boundary between system and representation. 

With the recent irruption of many sensors and actioners 
(ubiquitous computing, home automation, games, and so on) 
the machine and the real world became intertwined, because 
electronic devices have the property to be both in the 
machine world and in the real world; we call it the shared 
world. 
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Unfortunately, the electronic side of devices being very 
low level, the need for an abstract and convenient 
representation does not disappear (we still need to hide 
heterogeneity, and many technical details like 
communication and discovery protocols). Such a 
representation of the shared world can be operational, i.e., 
changes on the representation can be automatically translated 
into the corresponding actions on the associated device(s). 

Conversely, devices being part of the real world, their 
state can be changed by the real world itself (a temperature 
sensor, for example). Being in the shared world, this (real) 
change can be translated into the corresponding change into 
its abstract representation, making the representation 
sensitive to its SUS. 

Causality is transitive allowing the definition of chains of 
representation, of increasing abstraction, each layer being 
still causally related to the “lowest” one. This property is 
well known for operationality (the usual abstraction layers), 
with causality it allows, for example, to represent and 
manage sensor networks at the relevant abstraction level. 
Therefore, causality allows program to work on the 
representation as if working on the SUS itself, even for 
dynamic and autonomous SUS. This is an important property 
that simplifies dramatically the writing of program. 
However, causality is a relationship that is very difficult to 
enforce in practice, which explains why it is so uncommon. 

We have experimented how causality can be defined and 
managed in a systematic way in the case where the 
representation is a model, close to Extended Entity-
Relationship (EER), and the SUS is a software services 
platform (like OSGi [1]) both running on same computer. 
However, this simplification does not reduce significantly 
the generality because, in our system, everything is 
represented as a service: the shared world entities (sensor 
drivers are services), remote entities (their proxy are 
services), and so on. 

This paper is structured as follows: Section II describes 
the representation layer (a component model), the execution 
platform (the SUS) and how causality is defined. Section III 
describes how the representation and the execution platform 
are synchronized; Sections IV and V show how this 
representation can be extended to handle provisioning and 
how it can cope with failure; finally, we conclude with a 
discussion of our validation and experience, the related work, 
and perspectives. 

II. THE APAM REPRESENTATION LAYER 

The Application Abstract Machine (Apam) platform 
proposes to its users (program and administrators) the 
mechanisms to build models that are causally related to their 
SUS. All representations in Apam conform to the meta-
model depicted in Figure 2.  

Apam proposes a generic Entity-Relationship meta-
model (left part of the figure) that can be used to build any 
abstract representation, particularly for real-world entities. 
This generic meta-model has been specialized into a 
component meta-model (center of the figure) that is used 
specifically to represent services and running applications 
(the machine-world) of a service platform like OSGi. 

Figure 2.  Apam Metamodel (simplified view). 

Apam maintains a causality relationship between the 
abstract representation of the application and its concrete 
code artifacts (Java code in our case), both at development 
and runtime. 

At development time, causality is enforced by the Apam 
compiler. The compiler ensures that the abstract relationships 
defined by the component model are actually implemented at 
the code level. For example, in the meta-model the relation 
implements means that the resources provided and required 
by the associated specification must be provided and 
required by its implementations; the compiler checks that the 
associated class really provides (implements, in the Java 
sense) and requires (imports, in Java code) the interfaces 
associated to the resources. The complete component model, 
and its Java mapping, is fully presented in [2]. The Apam 
compiler also performs byte code instrumentation to enable 
monitoring and management at execution. 

The causal relationship established at development-time 
between the component representation and the actual code 
allows reasoning about the application completely in 
architectural terms. It also enables to control the execution of 
the application by manipulating the model at runtime, as 
presented in the following section. 

III. CAUSALITY CONTROL 

The component model and the causality control in Apam 
have been primarily intended to monitor (sensitivity) and 
drive (operationality), at high level, the execution of 
applications on top of a service platform. The represented 
SUS is the execution of application services. Those services 
in turn can represent the state of devices, the sensed activity 
or actions provided by actuators. 

The service execution layer is based on the OSGi [1] and 
iPOJO [3] platforms. OSGi provides the basic mechanisms 
for deployment, live update and dynamic service discovery. 
iPOJO provides the component container and dependency 
injection mechanisms. In the execution platform, an 
application is, at any given point in time, a particular 
assembly of concrete OSGi service instances. The execution 
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platform handles the deployment and instantiation of the 
actual Java code of services, and service binding is 
automatically performed by the iPOJO container, using 
injected fields in the class of the client service. 

At the representation level, the application is represented 
as a dynamic and reconfigurable architecture, composed of 
component instances linked by wires. The APAM platform 
controls the execution by continuously resolving the required 
dependencies and changing the model. 

To effectively drive the execution of the application, this 
layer must be causally related to the actual service execution 
layer, as illustrated in Figure 3. Each change of the 
architecture, like creating components and wires is 
transformed into actions in the execution platform. For 
example, creating a wire from source instance s to target 
instance t at the architectural level produces the injection of 
the address of t into the fields of s in the Java code of the s 
implementation. In this regard, the Apam representation is a 
virtual machine executing the architectural application 
description, on top of the underlying OSGi execution 
platform. 

Figure 3.  Causality Managers. 

However, in a dynamic and ubiquitous context there are a 
number of external and uncontrolled events that may affect 
the application execution; for instance, new devices can be 
discovered / removed that need to be integrated / removed in 
the application, legacy components can be installed in the 
platform offering services required by the application, other 
applications can be installed that may interfere with the 
application. The execution platform automatically detects 
three kinds of changes: 

• Components that appear and disappear 
• Property changes of a component 
• Service binding request from a component 
The representation also manages components, properties 

and wires; indeed, in some cases, context changes, detected 
by the execution platform must be transformed into the 
corresponding change in the representation. For example, the 
apparition of a new device is important for the application 
architecture since it may trigger application adaptation to this 
new context (like making use of such a device). This requires 
bidirectional synchronization between the two platforms; that 
is the responsibility of the causality managers. 

A. Causality Managers 

In a top-down view of the execution, the application 
description presented in Section II is a specification that 
must be enforced in the execution platform. In a bottom-up 
view, the context changes detected by the execution platform 

must be represented in the architectural layer, in order to 
trigger the appropriate adaptations. There is thus a need to 
enforce a causal relationship between the two platforms. 

Both platforms share the concept of components having 
properties and wires; at different levels of abstraction. For 
the architecture platform, a component is a description (its 
metadata), and wires are relationships between these 
descriptions; while for the execution platform, components 
are classes and objects, and wires are addresses into Java 
fields. Properties are similar in both platforms. 

Causality managers are in charge of keeping the two 
platforms synchronized. Each causality manager is driven by 
a model (illustrated in the middle part of Figure 3) 
expressing its synchronization strategy along three axes: 

1) What to change: as expressed above, the three shared 
concepts to synchronize are components, properties 
and wires (labeled C, P, W respectively in the 
figure). 

2) Direction to change: a causal manager may be 
operational, propagating changes from the 
architectural platform to the execution platform, 
(labeled D for Downwards); or sensitive, 
propagating changes from the execution platform to 
the representation (labeled U for Upwards). In some 
cases, both platforms collaborate to take a decision; 
(labelled S for Symbiotic). 

3) When to change: propagation can be Eager (labeled 
E), meaning that it happens as soon as the change 
occurs, or it can be Lazy (labeled L), meaning that 
the propagation will be done only on demand by the 
other platform. 

For components directly specified using the APAM 
component model, at development time, the Apam compiler 
automatically includes the metadata described in Section II. 
The Apam causal manager extracts this metadata from the 
packaged component, and builds the corresponding 
component in the architecture platform. 

For other legacy component technologies, a causal 
manager is in charge to extract the available information and 
to build the corresponding architectural object. However this 
requires a deep knowledge of each technology, hence a 
specific manager (for instance, the legacy OSGi and iPOJO 
managers in the figure). 

B. The Apam Causal Manager 

The strategy used by the native Apam component is an 
immediate causality for components: CUE and CDE, i.e., as 
soon as an Apam component appears (C for component), 
whether in the architecture or execution platform (Upward, 
and Downwards), it is immediately (Eager) synchronized on 
the other platform. 

The code of Apam native components is injected to 
intercept all references to the fields of the required 
dependencies. The need to resolve a wire (Wire) is detected 
by the execution platform which decides, in symbiosis with 
the architecture platform (Symbiotic) to immediately (Eager) 
resolve the wire in both platforms, hence WSE 
synchronization. Properties are not synchronized since they 
are only known and used by the architecture platform. 
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C. Legacy Causal Managers 

For the OSGi causal manager, the available information 
is limited to the properties published in the OSGi registry; 
and properties can be modified in both the architecture and 
execution platforms, hence the PUE, PDE synchronization: 
Properties are synchronized Upward and Downward Eagerly. 
OSGi component can be created only by third parties in the 
execution platform (they do not have factories), hence the 
CUE synchronization. 

iPOJO causal manager is still another case: iPOJO 
factories can be used to create and instantiate components at 
the architecture and at the execution platform layers. 
Components created by the architecture platform must 
immediately affect execution, hence the CDE 
synchronization. Conversely, legacy iPOJO components are 
synchronized up only when required: CUL synchronization. 
Wires are Symbiotically, Eagerly synchronized (WSE). 
Properties are only visible and used in the architecture 
platform, and thus are not synchronized. 

IV. PROVISIONING EXTENDED CAUSALITY 

Thanks to the sensitivity property, in our case, the 
representation allows monitoring the services currently 
running in the execution platform and deployed by third 
parties, using platform specific mechanisms. The 
operationality property requires the capability to 
add/remove/create entities (components and instances) at the 
representation level, not only to manage those already 
existing in the execution platform. 

To satisfy this requirement, Apam includes the capability 
to perform component provisioning. At the representation 
level, this provisioning capability is used to satisfy the 
dependencies of the application, when a resource is required. 
In practice, to find the needed component(s) and resources 
the Apam kernel looks into a number of search spaces. 

Search spaces in turn are mapped to concrete service 
repositories, of diverse and open-ended nature: it may 
include components repositories, existing cloud services, 
networked devices, or even remote platforms. 

 
Figure 4.  Provisioning managers. 

Apam proposes provisioning managers as an extensible 
mechanism to control the search spaces. Figure 4 shows the 
currently defined provisioning managers, with their behavior. 

A. Provisioning managers 

We qualify as provisioning managers the managers in 
charge of synchronizing the execution machine with other 
platforms. We call platform any repository containing 
services that provisioning managers can access from the 
execution platform; directly by deployment, or indirectly 
through a proxy. Provisioning managers synchronize an 
“external” platform with the execution platform. We 
distinguish Lazy vs. Eager and Dynamic vs. Static behaviors 
for provisioning managers. Lazy and Eager have been 
already discussed; Dynamic means that changes in the 
external platform are “immediately” synchronized with the 
execution platform; Static means that changes, if any, are not 
synchronized. 

B. Causal provisionning managers 

Eager and Dynamic provisioning managers are those that 
define what constitutes the execution context of the 
application, since each change in their platform is 
immediately perceived by the execution platform, which, 
depending on its causality, the manager transfers its 
perception to the architecture platform. Here, the context is 
made of Apam and all the devices controlled by the device 
manager. Other context managers can be defined and added 
(dynamically or not) to the Apam system. 

C. Lazy managers: an extended search space 

The Lazy managers define the search space in the 
following way: when Apam tries to resolve a wire, it looks 
for a satisfactory target in the architecture machine. If the 
target is not found Apam delegates resolution to available 
Lazy managers, because lazy managers may know 
components in their platform that are not (yet) present in the 
architecture machine. These managers must implement the 
method resolve (Dependency d, Composite context) which 
returns if found an instance in the execution machine 
satisfying the dependency d in the provided context. 

The architecture machine invokes each lazy manager in 
their priority order until one returns an instance t’. Apam 
invokes the relevant causality manager to reify t’ as a t 
instance in the architecture machine, and return t as the 
resolution solution. If no manager finds a solution, the 
resolution fails. 

Many Lazy managers can be defined, Apam provides 
with the standard distribution the OBR manager that can 
deploy components from a list of bundle repositories; the 
Distribution manager that looks for a component in another 
remote Apam machine and returns a proxy towards the 
selected remote component. The Cloud manager, based on 
the Rose framework [4], returns a proxy toward a remote 
service (WS, etc.). Other managers can be defined; they will 
be called if registered as a dependency manager. 

V. FAILURE HANDLING 

Even with different search spaces, it is possible that the 
execution platform fails to find a suitable service to satisfy 
the dependencies of an application component. 

In Apam, the failure reaction is specified at the 
architecture level, in the component model. A dependency 

515Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



declaration can express what should be the policy in case of 
failure. The currently supported policies are: 

• Optional dependency: nothing is done; the field 
(wire source) will contain “NULL” as target value. 

• Wait (duration): the current thread for which a wire 
could not be resolved is halted until a valid target is found, or 
until the time limit is reached. 

• Exception (name): throws the exception specified 
by the component. 

• Hide: the source component is hidden for all 
subsequent resolution; all its incoming wires are broken, 
which may hide its clients and so on. 

The hide strategy allows to backtrack the current 
architecture (as long as dependencies are in the hidden 
mode) and thus to explore automatically a wide range of 
possibilities. But since all current architectures must be valid, 
it is not allowed to remove (hide) components that are 
explicitly part of the Application architecture. 

VI. VALIDATION AND EXPERIENCE 

Owing to its flexibility, adaptability and reliability, Apam 
has been experimented, by academic and industrial teams, as 
the central layer (often referred as the “dynamic 
middleware”) of two large projects for home automation. 

In OpenTheBox project, Apam is mostly used as the 
central manager for set top boxes, in charge of providing 
isolation, controlled collaboration between applications[5], 
including the conflicting accesses to the shared devices [6]. 
In this case, each application is modeled as a composite, and 
the contextual properties described in Section IV allow 
specific policies for each application to be applied. 

In the AppsGate project, the set top box is powerful 
enough to support high level services, advanced 
functionalities and innovative user interactions. In this 
project, Apam builds an abstract “model of the world” based 
on sensors and devices. The high level services are defined 
as applications at specification and implementation levels, 
and the execution automatically links the service to the 
relevant devices. 

VII. RELATED WORK 

The use of models to represent a system at an appropriate 
level of abstraction is generalized in software engineering. 
However, as systems become more dynamic and directly 
related to the physical world, there is a need to carefully 
consider the representation relationship, as discussed in [7]. 

Our approach can be regarded as an example of the 
general principle of models at runtime [8]: the Apam 
architectural description is a model of the underlying 
physical execution. As explained, this model is both an 
abstract representation (sensitivity) and a prescriptive 
specification (operationality) of the reality [9]. 

The abstract Apam application description is a model of 
the valid space of application’s configurations, which 
evolves by changes at both the execution and component 
level. Thus, Apam model can be characterized as a 
“Configuration space and variability model”, according to 
the classification by Vogel et al.[10]. 

Apam uses architectural models as enabling technology 
for runtime adaptability. As such, it can be related to many 
works in dynamic architectures [11][12]. The main idea that 
we borrowed is that runtime reconfiguration must be 
reasoned and performed at the architectural level. 

If we consider a top-down approach, based exclusively 
on operationality, the application model is a prescription of 
the execution, and, the Apam component meta-model can be 
regarded as an Architecture Description Language. Our 
meta-model combines the classical concepts of Software 
Component Models [13] with the intrinsic evolution typical 
of Service-Oriented Computing [14], in which the concrete 
architecture is incrementally built as new services are 
required or made available and bound at execution. In this 
respect, our proposition can be related to other structural 
service composition approaches, like SCA [15] or CALM 
[16], however, these approaches do not define any runtime 
reconfiguration mechanisms. 

We can also think of the Apam runtime platform as a 
middleware that manages the application execution. Our 
approach shares then similar goals with reflective 
middleware platforms [17] that propose an introspection 
layer that reifies in a causal model the execution elements. 

Similarly, some component models propose a reflective 
runtime to allow introspection and reconfiguration [18][19]. 
The main difference is that these approaches make the 
implicit assumption that architecture evolution is an 
exogenous process, performed by external agents, like 
administrators or autonomic managers. In our vision, 
architecture evolution is a continuous, endogenous process, 
intrinsic to the execution of each application. 

Other experimental platforms have been designed 
specifically for ubiquitous computing. For example, DiaSuite 
[20] proposes a domain-specific component model to 
describe the architecture and properties of 
Sense/Compute/Control applications. The specialized model 
enables static analysis and verification, beyond what is 
proposed in Apam, however it doesn’t manage runtime 
dynamicity. 

Without surprise, it was the double synchronization 
(upward and downward) that raised the most difficult 
technical issues, and the trickiest bugs. Indeed, conflicting 
changes on the “same” entity can happen “simultaneously” 
in the model and in the platform. A large fraction of the code 
is dedicated to solve (reconcile, choose, merge, prevent, 
notify, etc.) these special cases. It also explains that full 
causality is difficult to provide, and indeed, is not often 
provided. 

VIII. CONCLUSION 

Best practice in software engineering emphasizes the need 
to work with representations that are simple, homogeneous 
and at the relevant abstraction level. For that reason, many 
techniques like levels of abstraction or modeling have been 
developed. In all case, there is the need to closely control the 
relationship between the representation and the system 
represented. Most often, this relationship is operational only: 
the changes performed on the representation are propagated 
to the underlying system, supposed to be passive. 
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The ever increasing interpenetration of the numeric world 
and our life (smart phones, ubiquitous computing, home 
automation, etc.) makes abstract representations even more 
needed, but in the same time the represented system is 
dynamic, autonomous and its changes are unpredictable. In 
this case, both the system and its representation are active 
and both are subject to unpredictable changes, possibly 
simultaneous and incompatible. Therefore, the representation 
must be both operational and sensitive, i.e., causal. The 
realization of a causal representation is very challenging, but 
at the same time, it is almost needed if reliable applications 
are to be developed in such a context. The issue we have 
addressed is a general approach to the development of a 
causal representation. 

In our work, the representation is similar to a traditional 
model but metaclasses can be explicitly associated with the 
kind of entities they represent. This association is extensible 
in the sense that it is implemented in the form of plug-ins: 
Maven plug-in at development time and Apam causality 
managers at run time. The platform knows the association 
and dynamically delegates the causality management to 
currently plugged-in managers. 

In our experimentation, the system represented is an 
OSGi service platform. It is a limitation because the entities 
represented are 1) only services, and 2) only those service 
currently running in OSGi. We have overcome these two 
limitations by making “everything” a service (proxies, 
sensors, applications, etc.) and extending the OSGi platform 
by an extensible provisioning layer, also made of plug-in 
managers very similar to causal managers. An entity required 
in the representation layer is automatically deployed in the 
system (OSGi), and by causality it is created into the 
representation. The different extensibility mechanisms 
(causal metaclasses, causal managers, provisioning 
managers) provide a fairly general framework for the 
development and management of a causal representation. 

The experience shows that causality can be provided 
systematically and efficiently making much more feasible 
the reliable development of the new kind of applications like 
ubiquitous computing.  

The Apam platform is available in open source, see [21]. 
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