
Towards Implementation and Design of Multi-tenant SaaS Based on Variabiliy

Management Mechanisms

Houda Kriouile, Bouchra El Asri, M'barek El Haloui and Asmae Benali
IMS Team, SIME Laboratory

ENSIAS, Mohammed V University

Rabat, Morocco

Email: [houda.kriouile, mbarek.haloui, asmae.benali]@um5s.net.ma,
elasri@ensias.ma

Abstract—Software as a Service (SaaS) is a form of Cloud

Computing that involves offering software services on-line and

on-demand via Internet deemed a main delivery support. Multi-

tenancy is a tool to exploit economies of scale widely promoted by

SaaS model. Even so, the ability of a SaaS application to be

adapted to individual tenant’s needs seem to be a major

requirement. Thus, in this paper we introduce an approach

proposing a more flexible and reusable SaaS system for Multi-

tenant SaaS application. The approach introduced is based on

integrating a deployment variability that enables the customers

to choose with which others tenants they want or do not want to

share instances with a functional variability using Rich-Variant

Components.

Keywords-SaaS; Rich-Variant Component; Functional

Variability; Deployment Variability; Multi-tenancy.

I. INTRODUCTION

With the age of Cloud Computing, several forms of Cloud
services have emerged thanks to the Internet services
development and the customers' needs evolution, in particularly
the Software as a Service (SaaS) form. The latter refers to
software distribution model in which applications are hosted by
a service provider and made availability to customers over a
network, typically the Internet. A key enabler in Cloud
Computing to exploit economies of scale is the multi-tenancy,
a notion of sharing resources among a large group of customer
organizations, called tenants. But, the multi-tenant application
responds only to needs that are common to all tenants. So, a
plethora of work research has been performed to facilitate SaaS
applications customization according to the tenant-specific
requirements by exploiting benefits of both variability
management and multi-tenancy [1][2][3]. In the same vein, we
aim to create a flexible and reusable environment enabling
greater flexibility and suppleness for customers while
leveraging the economies of scale. For this purpose, we
propose a solution integrating a functional variability at
application components level and a deployment variability at
multi-tenants level as well.

This paper is divided into five main sections along with this
introduction. Section II provides an overview on variability
management mechanisms, Cloud Computing and Multi-
tenancy as a background concepts for our work research, then
deals with the incentives and motivations for the proposed
approach. Section III presents several approaches studied as
related work and positions our contribution. Section IV initiates

our contribution which consists on integrating functional and
deployment variabilities for SaaS applications. Section V
provides some outstanding of our approach and future works.
Finally, Section VI is a conclusion of the paper.

II. BACKGOUND AND MOTIVATION

In the following subsection, some variability management
mechanisms are presented, followed by a short introduction to
the Cloud Computing and the Multi-tenancy notions as a
background for our work. Finally, the motivation of our
contribution consisting on the need of managing variability for
Cloud environment is discussed.

A. Variability managment mechanisms

Variability is the ability of a software artifact to be adapted
for a specific context [4]. For example, it could be the ability to
be extended, configured, customized or modified. A request for
change requires the evolution of systems. Therefore, the
variability of the system or the software must be managed
during all lifecycle's phases (e.g., the specification phase, the
conception phase, the testing phase, the implementation phase,
etc.).

A variety of mechanisms and approaches are proposed for
the management of system's variability. These mechanisms
intervene at the level of the different lifecycle's phases.
Examples are cited bellow:

 Specification phase: Iqbal, Zaidi and Murtaza propose
a model for requirement prioritization using Analytical
Hierarchical Process (AHP) [5].

 Conception phase: Several approaches were proposed
in this phase to model software product lines by using
feature models as the Feature Oriented Domain
Analysis (FODA) approach [6], which aims to capture
the commonalities and the points of difference at
requirement level. Many other approaches provided
extensions to the FODA approach. Such as the
Feature-Oriented Reuse Method (FORM) [7], whose
main contribution is the decomposition of the feature
model layers to describe different perspectives
(capacity, environment, technology).

 Testing phase: Erwing and Walkingshaw propose
organizing the space of all variations by dimensions,
which provides scoping and structuring choices [8].
They consider the concept of ”variation programming”
for a flexible construction and transformation of all
kinds of variation structures [8].

468Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 Implementation phase: Trummer proposed a
corresponding data model [9] that is based upon the
Composite Application Framework (Cafe) model [1].
Applications are composed out of components that
may be provisioned separately.

From the cited works above, the interest of variability
management mechanisms is evident. Particularly, these
mechanisms are useful for managing the functional variability
and the deployment variability into Cloud environment,
specially for Multi-tenant SaaS applications.

B. The Cloud Computing and Multi-tenancy

Cloud Computing as defined by the National Institute of
Standards and Technology (NIST) is the access via a
telecommunications network, on demand and self-service, to a
shared pool of configurable computing resources [10]. Cloud
Computing is the use of computing resources - hardware and
software - that are provided as a service over a network,
usually the Internet. Cloud Computing entrusts remote services
with a user's data, software and computation [10].

Our work focuses on Cloud Computing Services from the
kind of Software as a Service (SaaS). In this type of service,
applications are made available to consumers. Applications can
be manipulated using a web browser. As a tool to exploit
economies of scale, SaaS promotes Multi-tenancy [3].

Multi-tenancy is the notion of sharing resources among a
large group of customer organizations, called tenants. That is, a
single application instance serves multiple customers. But,
even though multiple customers use the same instance that
each of which has the impression that the instance is designated
only to them. This is achieved by isolating the tenants’ data
from each other. Compared to single-tenancy, Multi-tenancy
has the advantage that infrastructure may be used most
efficiently as it is feasible to host as many tenants as possible
on the same instance. Thus, maintenance and operational cost
of the application decreases [3]. In Multi-tenant SaaS
applications, the variability may have fundamentally different
sources (evolution, maintenance, tenant’s requirements, etc.),
but is naturally present [2].

C. Motivation: On the need of managing variability for the

Cloud Environment

The emergence of Cloud Computing has necessitated more
and more variability in the form of types of services, types of
deployment, and the different roles of Cloud participant. Thus,
variability modeling is required to manage the inherent
complexity of Cloud systems.

SaaS application are consumed by many customers that
have different requirements. Thus, customers that consume the
same application usually exhibit varying requirements needs.
Varying requirements usually necessitate varying software
architectures. In other words, when applications’ requirements
are changed, the software architectures of these applications are
modified to satisfy the changed requirements. Therefore, both
requirements and architectures have intrinsic variability
characteristics.

Moreover, other concerns are raised by Multi-tenancy. For
example the need to ensure the correctness of all possible
configuration of the application. It is not sufficient to guarantee
the correctness of a single application's configuration.

On the other hand, in Multi-tenant SaaS application, the
consumer does not have to worry about making updates and
upgrades, adding security and system patches and ensuring
service availability and performance. In addition to that, the
rapid elasticity and the resource pooling are essential Cloud
characteristics [10], which promote variability for Cloud
Computing environment and particularly for Multi-tenant
contexts.

III. RELATED WORK

Several research works have been performed in the context
of architectural patterns for developing and deploying
customizable Multi-tenant applications for Cloud environment.
Fehling and Mietzner propose the Composite-as-a-Service
(CaaS) model [11]. They show how applications built of
components, using different Cloud service models, can be
composed to form new applications that can be offered as a
new service. These applications have been designed in the
spirit of customization, thus their variability was modeled using
the application model and variability model from the Cafe
Framework [1], which allows exploiting economies of scale by
the use of highly flexible templates enabling increasing
customers base. Our work aims to exploit economies of scale
from two sides by the use of Multi-tenancy and the
introduction of the new concept of Multiview, that has not been
used in any of the related work studied.

In the context of the Late Binding Service - which enables
service loose coupling by allowing service consumers to
dynamically identify services at runtime - Zaremba, Vitvar,
Bhiri, Derguech and Gao present models of Expressive Search
Requests and Service Offer Descriptions allowing
matchmaking of highly configurable services that are dynamic
and depend on request [12]. This approach can be applied to
several types of services. In the remainder of their work,
Zaremba, Bhiri, Vitvar and Hauswirth apply their approach
[12] on the domain of Cloud Computing, more exactly on the
IaaS services that are highly configurable, change dynamically
and depend on requests [13]. This approach deals with a
different area of cloud application which is IaaS services.
Moreover, this approach does not propose a solution to exploit
economies of scale and only deals with one type of variability,
which is the deployment variability.

Ruehl, Wache and Verclas address the deployment
variability based on the SaaS tenants requirements about
sharing infrastructure, application codes or data with other
tenants [3]. They propose a hybrid solution between Multi-
tenancy and simple tenancy, called the mixed tenancy. The
purpose of this approach is to allow the exploitation of
economies of scale while avoiding the problem of customers
hesitation to share with other tenants [3]. Authors focus on the
deployment variability and neglect the functional variability
management.

In [2], an integrated service engineering method, called
service line engineering, is presented. This method supports co-
existing tenant-specific configurations and that facilitates the
development and management of customizable, Multi-tenant
SaaS applications without compromising scalability [2]. In
contrast to our approach, this method - as well as the other
approaches cited - does not address to the accessibility by roles,
which is allowed in our work by the use of Multiview concept.

469Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

<< RVC >> << RVC >> << RVC >> << RVC >>

<< RVC >> << RVC >> << RVC >>

Execution Engine Web

server

(...)

<<executes>>

(...)

2

n

1

(...)

Catalog of RVC based applications

Configuration Template

Rich-Variant Configurations

Multi-

Tenants

<<uses>>

The Multiview notion allows applications to dynamically
change the behavior according to the enabled user's role or
viewpoint.

 The next section deals with the initiation and the
explanation of the approach subject of our contribution,
consists of integrating the functional variability with the
deployment variability for Multi-tenant SaaS applications.

IV. TOWARDS THE IMPLEMENTATION AND THE DESIGN OF

MULTI-TENANCY SAAS

One of the main focuses of our team research is to work on
complex systems variability according to functional areas that
have initiated the concept of Multiview Component [14]. The
Multiview Component concept is a component model for
viewpoint in the perspective of View-based Unified Modeling
Language (VUML) approach [15].

Our work aims to define a way to design and descript
capabilities and variability of Rich-Variant services. In this
intention, our contribution is to establish a flexible and reusable
SaaS environment while exploiting economies of scale. That is,
our work in progress consists of providing Multi-tenant
applications based on Rich-Variant Components (RVC), which
allow customers to choose among other tenants who they want
or do not want to share the deployment with. This implies that
these composite SaaS applications are made up of a number of
RVC components; each one of which provides an atomic
functionality and modifies their behavior dynamically
depending on the Multi-tenant variability.

A glimpse of our architectural vision for the approach is
provided in Figure 1. All tenants use the same execution engine
that executes tenants' specific configurations by
communicating with a Web server. A tenant is a customer who
pays to use the application. It could be an enterprise, a
company or any kind of organization wishing to rent the
application.

Figure 1. The architectural vision

Each tenant has several users who are actually their
employees. These end-users will be categorized according to
their business and needs to form different roles or viewpoints.
So, applications which are based on RVC components behave
differently and this is according to the enabled role or
viewpoint thereof, as it was mentioned earlier.

The catalog is a formal description of all the applications
offered by a provider. It describes the functional variability of
each application and specifies the variability points of an
application to show how it could be customized.

For each application, the configuration template describes
the different RVC components that must be linked to create the
specific application. The configuration template contains
instantiations of the catalog related to the application. Thus, the
variability points of each RVC component that require specific
tenants information are not configured yet at this level.

Based on a particular configuration template, the Rich-
Variant configuration describes a specific application tailored
for a specific tenant with a dynamic behavior changing during
the execution according to the end-users' enabled role or
viewpoint. In addition, the parameters or variability points
provided by each RVC component are defined at the Rich-
Variant configuration level.

From the catalog, the Multi-tenants choose the features and
functionalities they need and specify the necessary parameters
to obtain their specific Rich-Variant configuration. This fact
enables the functional variability. Besides, the use of RVC
components allows more flexibility according to end-users
business.

In a further work, we plan to define a number of
deployment models. Namely a Public deployment model to
enable sharing deployment with all other tenants. A Private
deployment model to not enable sharing deployment with any
other tenant. And a Hybrid deployment model to enable
specifying with who share and who do not share the
component's instance. For each RVC component, the tenant
chooses one deployment model. Thus, we intend to allow the
variability of deployment by permitting customers to choose
with whom they want to share an instance of a particular RVC
component based on the aforementioned deployment models.

Our work has been implemented on a case study to
demonstrate the value and feasibility of the approach. The case
study consists of a SaaS application for managing private
schools, accessible from a web browser. Schools which are
tenants of the application benefit, undoubtedly, from
deployment variability and functional variability in a flexible,
reusable and dynamic environment according to the different
needs of the end-users (e.g., administrator, professor, student,
etc.).

V. OUTSTANDING AND FUTURE WORKS

In our research work, we seek to integrate both functional
and deployment variability. Also, we look to improve
reusability by the use of RVC components. In addition, our
approach enables flexibility according to the tenants'
requirements and the viewpoint or role activated, too. In our
approach, we aim to exploit economies of scale by the use of
Multi-tenancy concept as the most of approaches cited as
related work do. But, we also rely on the use of Multiview

470Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

notion predicating on the RVC components to exploit more and
more economies of scale.

As future works, we will define an new artifact based on
Rich-Variant Component enabling customers to choose to
share or not to share with other customers. The next step will
be devoted to the implementation of our approach by applying
it to the case study consisting of SaaS application for managing
private school so as to show its interest and improve it by tests
evaluation.

VI. CONCLUSION

The variability management, the RVC component notion
and the Multi-tenancy rationalization are key enablers for the
accomplishment of flexibility, reusability and exploiting
economies of scale in customizable SaaS applications. For this
objective, we have initiated in this paper our approach which is
primarily based on integrating two types of variability to create
a more flexible and reusable SaaS environment while
exploiting economies of scale. For this purpose, we introduced
the background knowledge of our work: variability
management mechanisms, Cloud Computing and Multi-
tenancy. Then, we showed the need of managing variability for
Cloud environments. Finally, we presented the Multiview
component concept to introduce our contribution. Our present
work is devoted to the implementation of our approach by
applying it to a case study showing its interest.

REFERENCES

[1] R. Mietzner, “A method and implementation to Define and Provision

Variable Composite Applications, and its Usage in Cloud Computing,”
Dissertation, University of Stuttgart, August 2010.

[2] S. Walraven, D. V. Landuyt, E. Truyen, K. Handekyn, and W.
Joosen, “Efficient customization of multi-tenant Software-as-a-Service
applications with service lines,” Journal of Systems and Software vol.
91, Jan. 2014, pp. 48-62.

[3] S. T. Ruehl, H. Wache, and S. A. W. Verclas, “Capturing Customers'
Requirements towards Mixed-Tenancy Deployments of SaaS-
Applications,” IEEE CLOUD, 2013, pp. 462-469.

[4] M. Aiello, P. Bulanov, and H. Groefsema, “Requirements and tools for
variability management,” Proc. the 2010 IEEE 34th Annual Computer
Software and Applications Conference Workshops (COMPSACW '10),
Washington, DC, USA, 2010, pp. 245-250,
doi:10.1109/COMPSACW.2010.50.

[5] M. A. Iqbal, A. M. Zaidi, and S. Murtaza, “A new requirement
prioritization model for market driven products using analytical
hierarchical process,” Proc. DSDE’10, IEEE, Feb. 2010, pp. 142-149.

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Technical
report, CMU/SEI TR-21, USA, Nov. 1990.

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin, “FORM: A
feature-oriented reuse method with domain-specific reference
architectures,” Annals of Software Engineering, vol. 5, 1998, pp. 143–
168.

[8] M. Erwig and E. Walkingshaw, “Variation programming with the choice
calculus,” Generative and Transformational Techniques in Software
Engineering, Springer-Verlag Berlin Heidelberg, 2012, pp. 55-100,
doi:10.1007/978-3-642-35992-7_2.

[9] I. Trummer, “Cost-Optimal Provisioning of Cloud Applications,”
Diploma thesis, University of Stuttgart, Faculty of computer sciene, Feb.
2010.

[10] NIST. Definitoon of Cloud Computing - National Institute of Standards
and Technology, Gaithersburg, MD, 2009.

[11] C. Fehling and R. Mietzner, “Composite as a Service: Cloud Application
Structures, Provisioning, and Management,” it - Information Technology
Special Issue: Cloud Computing, April 2011, pp. 188-194.

[12] M. Zaremba, T. Vitvar, S. Bhiri, W. Derguech, and F. Gao, “Service
Offer Descriptions and Expressive Search Requests - Key Enablers of
Late Service Binding,” Proc. 13th International Conference on E-
Commerce and Web Technologies (EC-Web), Vienna, Austria, Sept.
2012, pp. 50-62, doi: 10.1007/978-3-642-32273-0_5.

[13] M. Zaremba, S. Bhiri, T. Vitvar, and M. Hauswirth, “Matchmaking of
IaaS cloud computing offers leveraging linked data,” Proc. 28th Annual
ACM Symposium on Applied Computing (SAC) , New York, NY, USA,
2013, pp. 383-388, doi:10.1145/2480362.2480440.

[14] B. El Asri, “A model of multiview components for VUML,” National
dissertation, Engineering School of Information Technology and System
Analysis (ENSIAS), Rabat, Oct. 2005.

[15] M. Nassar, “ VUML: a viewpoint oriented UML extension,” Proc. 18th
IEEE International Conference on Automated Software Engineering,
Oct. 2003, pp. 373-376, doi: 10.1109/ASE.2003.1240341.

471Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://www.informatik.uni-trier.de/~ley/pers/hd/l/Landuyt:Dimitri_Van.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Truyen:Eddy.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Handekyn:Koen.html
http://www.informatik.uni-trier.de/~ley/pers/hd/j/Joosen:Wouter.html
http://www.informatik.uni-trier.de/~ley/pers/hd/j/Joosen:Wouter.html
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss91.html#WalravenLTHJ14
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss91.html#WalravenLTHJ14
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wache:Holger.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Verclas:Stephan_A=_W=.html
http://www.informatik.uni-trier.de/~ley/db/conf/IEEEcloud/IEEEcloud2013.html#RuehlWV13
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mietzner:Ralph.html
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zaremba:Maciej.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vitvar:Tomas.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Derguech:Wassim.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gao:Feng.html
http://www.informatik.uni-trier.de/~ley/db/conf/ecweb/ecweb2012.html#ZarembaVBDG12
http://www.informatik.uni-trier.de/~ley/db/conf/ecweb/ecweb2012.html#ZarembaVBDG12
http://www.informatik.uni-trier.de/~ley/db/conf/ecweb/ecweb2012.html#ZarembaVBDG12
http://www.informatik.uni-trier.de/~ley/db/conf/ecweb/ecweb2012.html#ZarembaVBDG12
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zaremba:Maciej.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vitvar:Tomas.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hauswirth:Manfred.html
http://www.informatik.uni-trier.de/~ley/db/conf/sac/sac2013.html#ZarembaBVH13
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8780
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8780
http://dx.doi.org/10.1109/ASE.2003.1240341

