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Abstract—Data Warehouse has the capacity to integrate data 

from different data sources for analyses purpose. Despite their 

importance, many data warehouse projects fail. As cause, we 

can mention, the poor communication between the 

developer/designer and the stakeholders, and the bad design 

that does not respond appropriately to the user requirements. 

Our work is set in the context of Enterprise Data Warehouse, 

and we propose a new methodology, Assistant System for the 

Design of Data Warehouse Schema (ASDeDaWaS). It ensures 

the design of the schema of the data warehouse taking into 

consideration the users’ requirements and the available data 

sources, minimizing the computer-scientists intervention.  
 

Keywords-Data Warehouse Schema; Data Mart Schema; 

Schema Design; Schema  Integration. 
 

I. INTRODUCTION 

Data Warehouse (DW) is the “heart of architecture 

environment and is the foundation of all decision support 

system processing” [7], since it provides an infrastructure 

that allows businesses to extract, clean and store vast 

amount of data. It is defined as “a subject-oriented, 

integrated, non-volatile, and time-variant collection of 

data in support of management’s decisions” [17]. 

Concerning the warehousing projects, they are often 

characterized by their complexity and their huge costs [1] 

and they may fail during their achievements. According to 

[1][4][8][9][15], the causes of failure can be summarized 

as following: 

 The nature of those projects requires long periods of 

development. 

 The users’ needs are generally poorly expressed by 

either designers or developers and they are not based 

on a common terminology. 

 The absence of a good design that responds 

appropriately to the users’ requirements. 

 The users are, in many cases, not experienced 

with the technologies of DWs. 

 The immaturity and complexity of the design 

methods and the lack of software tools that support 

these methods. 

 The nonexistence of the right design that ensures the 

performance today and the scalability tomorrow. 

The above difficulties lead to various problems such as 

the stopping of projects during their implementation, the 

exceeding of time and/or budget, and the rest.  

 

 

In order to overcome the previous problems, we propose 

a new methodology, namely, Assistant System for the 

Design of Data Warehouse Schema (ASDeDaWaS).  It 

ensures the construction of the schema of the DW 

incrementally taking into consideration both the users’ 

requirements and the available data sources. It focuses on 

each department separately, which facilitates the detection 

and the correction of possible problems and conflicts earlier. 

It reduces, also, the computer-scientists intervention through 

the automation of some tasks. 

As working hypothesis, it is proposed to present the user 

requirement as a star schema because it is widely supported 

by a large number of business intelligence tools; also it has a 

simple structure, so it is easy to understand the schema. 

Concerning the data sources, it is proposed to deal with 

Entity-Relationship (ER) [14] database because it adopts 

the more natural view that the real world consists of entities 

and relationships; it incorporates some of the important 

semantic information and it can achieve a high degree of 

data independence [14]. 

As contributions, we propose in this work: 

 Using an assistant system to facilitate the collection 

of users’ requirements by exploiting the previous 

experiences. 

 Using a new algorithm to cluster the schemas taking 

into consideration their semantic aspect. 

 Automating the schema integration technique to 

merge the schemas to generate the logical schemas 

of the data mart (DM), and the final schema of the 

DW. 

The outline of this work is as following: 

 In the second section, we present the state of the 

art. We summarize some methods that use the mixed 

approach to design the DW.  

 In the third section, we describe our proposed 

solution and we resume every step. 

 In the fourth section, we start by detailing the 

first step that consists of collecting the users’ 

requirements using an assistant system. The 

different requirements are modeled as star schemas. 

 In the fifth section, the generated schemas are 

clustered using a new algorithm ak-mode which is 

an extension of k-mode. It takes into consideration 

the semantic aspect when clustering the schemas.  

 In the sixth section, we propose the application of 

schema integration technique to ensure the 
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merging of different schemas existing within every 

cluster.  The proposed technique is composed by 

schema matching and schema mapping. 

 In the seventh section, we propose generating 

multidimensional schemas from Entity-Relationship 

(ER) databases. 

 In the eighth section, we transform the conceptual 

schemas that were generated from the users’ 

requirements to logical ones by adding the necessary 

information extracted from the multidimensional 

schemas. Using the logical DM schemas, we apply 

the schema integration technique to build the final 

schema of the DW. 

 We finish this paper with a conclusion and future 

work.  

 

II. RELATED WORK 

Three main approaches have been proposed in the 

literature to conceive the DW: top-down, bottom-up and 

mixed.  

Top-down starts from the description of the needs of all 

the users to construct the schema corresponding to the 

entire DW [5]. According to Ballard et al. [3], this approach 

has some disadvantages: it is a time-consuming process, it 

is difficult to collect the different agreement on the data 

definitions and business rules among all the different 

workgroups, departments, and lines of business 

participating. It can delay actual implementation, benefits 

and return-on-investment and it is length task.  

Concerning the bottom-up, the construction of the 

global schema of DW starts from the different schemas of 

DMs that are built taking into consideration the 

requirements of the decision-making users responsible for 

the corresponding specific business area or process [5]. The 

problem with this approach is the redundancy and the 

inconsistency of the data between the DMs [3].  

The mixed approach takes advantages of the two 

previous approaches [5]. It has the speed and the user-

orientation of the bottom-up and the integration enforced 

by a DW in a top-down approach. 

In the following, we present some work using the 

mixed approach to generate the DW and we start by 

“SelfStar” [6]. The proposed methodology is composed by 

four steps. It requires human intervention to validate the 

proposed schema until building the final DW schema. In 

what follows, we briefly present each step: 

 First step: Extracting from the data source, that is 

expressed using the UML language, the candidate facts 

and showing them in the intermediate schema. Since 

the schema of the data source is not easy to be 

understood by a no-computer scientist user, the system 

presents a simplified representation automatically 

extracted from the schema of the source. The user 

selects the facts and the measures that correspond to his 

needs. He selects also the operations that will be 

applied on the measures. 

 Second step: Generating the second schema by 

proposing the different dimensions that can be used 

with the extracted facts. The extraction of the 

dimensions is done using: a source described by an 

exploited schema containing classes and links, and an 

incomplete decisional base containing one or many 

facts. 

 Third step: Generating a constellation schema (facts, 

dimensions, and all possible hierarchies). This step 

generates   the   candidate   hierarchies   for   each   

chosen dimension. They are extracted from the classes 

that are related directly to the dimension using “1..N” 

link type, and from the attributes of the dimension 

excluding  the  attributes  having  distinct  values.  The 

temporal dimension is associated with a standard 

hierarchy: year, month, date. 

 Fourth step: Generating the schema of the DW. In 

this step the decision makers choose the relevant 

parameters to their analysis. Then, the system generates 

the final schema and stores customization metadata for 

each user to reuse them later by attributing weights to 

the used classes of the source. 

Romero and Abelló [10] propose an approach that uses 

the end-user information requirements which are expressed 

as SQL queries and the logical model of the data sources. 

The final result is a constellation schema. The automatic 

process is divided into four different stages: 

 Concept labeling: It serves to build the 

multidimensional (MD) graph by applying the 

labeling standards. For each query, it extracts the 

MD knowledge.  

 Multidimensional graph validation: Each MD-graph 

that has been generated in the previous step is 

validated in this stage by generating its 

multidimensional normal forms.  

 Finding representative result: From the previous 

steps, more than one MD schema can be produced 

for a given query. Besides, the dimensional data 

could be considered as an alternative factless fact, 

although in most cases it will not be relevant to the 

end-user. This step serves to determine the 

representativeness of new alternatives and this is 

done according to some rules. Two sibling graphs 

differ only in the labeling of one node. Therefore, 

they have exactly the same labels except for one 

node, which is considered a factless fact that plays a 

role in one graph and a strict dimensional role in the 

other. In short, sibling graphs do not provide new 

interesting analytical perspectives. They are used to 

analyze the potential factual data that a dimension 

may contain. However, in most cases, the end-user 

would not be interested in this type of analysis. 

 Conciliation: It validates each input requirement and 

generates a potential set of MD schemas for each 

query. Then, it normalizes MD graphs  
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Giorgini et al. [13] propose a mixed approach to build 

the DW. It starts with the requirement analysis that will be 

mapped next to conceptual level.   This step requires the 

following tasks: 

 Organizational modeling: It is centered on 

stakeholders. It identifies the facts. It is composed by 

three steps: 

o Goal analysis: Analyzing each goal of each 

actor in more details. 

o Fact analysis: Determining all the relevant facts 

and associating goals with facts. 

o Attribute analysis: Determining all the attributes 

that give a value when facts are recorded. 

 Decisional modeling:  It focuses on decision makers 

to extract their information needs. It is composed 

by four steps: 

o Goal analysis:  Identifying the decision makers 

and establishing the dependencies between them. 

o Fact analysis: Identifying the facts that 

correspond to different objects of analysis and 

associating the goals. 

o Dimension analysis: Linking the fact to the 

dimensions according to the decisional goals of 

the decision makers. 

o Measure analysis: Associating the measures to 

each fact previously identified. 

Once, they get diagrams that connect enterprise goals 

to facts, dimensions and measures, they move to the 

conceptual level by mapping the different elements 

determined previously. They use two types of frameworks: 

mixed design framework and demand-driven design 

framework. 

 Mixed design framework: The requirements derived 

during organizational and decisional modeling are 

matched with the schema of the operational database 

in order to generate the conceptual schema for the 

DW.  This is done by performing the requirement 

mapping, hierarchy construction and refinement. 

 Demand-Driven Design Framework: The generation 

of hierarchies cannot be automatic; here we need   

the intervention of the designer. Indeed, through his 

skills and experiences,  he  can  fruitfully  interact  

with  the  domain experts  to  capture  the  existing  

dependencies  between attributes. 

Compared to the previous solutions, ASDeDaWaS 

follows all the necessary steps to generate the schema of the 

DW. It combines the mixed approach, which generates the 

logical schemas of the DM from the requirements and the 

available data sources, and the bottom up approach, which 

generates the DW schema from the DM logical schemas. 

Moreover, it offers help using an assistant system to facilitate 

the collection of the needs reducing the computer-scientists 

intervention. It can be applied to different departments 

having different information systems and different needs.  

  

 

III. OVERVIEW OF ASDeDaWaS 

In this section, we describe ASDeDaWaS briefly (Figure 

1).  

 
 

Figure 1. ASDeDaWaS steps.  

 

It starts by collecting the requirements of the different 

users. It uses an assistant system DwADS (Data warehouse 

Assistant Design System) to facilitate the specification of 

the elements basing on the stored traces of the previous 

users. It defines, then, the possible facts, their measures, 

and the dimensions with their attributes. From the collected 

users’ requirements, it generates the corresponding schemas 

that are represented as star. 

In the second step, it clusters the different schemas using 

a new algorithm ak-mode in order to get within one cluster 

the closest schemas. The new algorithm is an extension of k-

mode. It takes into consideration the semantic aspect when 

making the comparison. Next, for each cluster, it generates 

the global schema. To achieve this goal, it uses the schema 

integration technique that is composed by schema matching 

and schema mapping. The schema matching extracts the 

semantically closest elements as well as the conflicts and 

presents them as mapping rules. Using the schema mapping 

it merges the different schemas to get at the end the global 

schema. This step allows the generation of conceptual 

schemas of the DM from the users’ requirements. Then, the 

conceptual schemas are mapped to logical ones. This is 

done in two steps. In the first one, it extracts all possible 

multidimensional schemas from the databases. In the second 

step, it generates the logical schemas. Indeed, it updates 

the conceptual schemas by adding the necessary 

information extracted from the multidimensional schemas. 

Finally, by merging the logical schemas, it builds the final 

schema of the DW. 

 

IV. COLLECTING OLAP REQUIREMENTS 

In order to ensure a good design of DW, it is crucial to 

start by the requirements that specify “what data should be 

available and how it should be organized as well as what 

queries are of interest” [5]. In our case, we need to move 

460Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



through this step to extract the important objects of the 

multidimensional schemas (facts, measures, dimensions, and 

attributes). Despite its importance, not much attention has 

been paid to this phase causing the failure of 85% of the 

DW projects to meet business objects, and the no-

development of 40% of the DW projects [12].  

 

A. The collection of requirements  

To collect the requirements, we give the freedom to the 

user to express his needs using an easy interface (Figure 2) 

where he specifies the different objects composing a star 

schema. This interface uses an assistant system DwADS 

that helps the user to choose the appropriate objects because 

the end users may find difficulties to specify their objects 

[5].  

 

 

Figure 2. The proposed interface to specify the users’ requirements. 

 

Once the user validates his schema, the set of the 

manipulated objects and the performed actions (add fact, 

create dimension, and the rest) are stored respecting their 

order over the time as a trace.  

 

B. The Proposed Assistant System 

Our assistant is based mainly on traces. Indeed, it starts 

by storing the traces of each user during his session,   then,   

it   suggests   the   useful   elements   after   a comparison 

phase. The system extracts from the trace the objects 

through the use model and the actions through the 

observation model. Concerning the comparison step, it uses 

the episodes to detect the exact position of the user in order 

to extract next possible objects. This system occurs during 

the specification of requirements by suggesting to the user 

the possible elements used to build a first schema basing on 

the previous experiences. 

DwADS performs two main tasks, as presented in Figure 

3. The first one corresponds to the building of traces using 

the use model and the observation model. The second task is 

about exploiting the previous experiences using the episodes 

as a method of comparison. This task includes, also, 

suggestion of the possible next objects to manipulate.  

 

 
 

Figure 3. The DwADS composition. 

The Use Model (Figure 4): It is used to isolate the objects 

from the current trace. The objects belong to the following 

categories (C): “C: Domain”, ‘C: Model”, “C: FactTable”, 

“C: Measure”, “C: DimensionTable”, “C: 

DimensionAttribute”, and “C: Link”. These various 

categories are linked into single schema through 

“Contextualization” link. The latter does not present the 

temporal aspect of the organization of different categories. 

It, only, shows them connected. 

 
 

Figure 4. The structure of the use model. 

 

For each requirement specification, the categories are 

instantiated which gives rise to many possible scenarios. 

For example the instantiation of “domain” can be 

“Commerce”, “factTable” can be “Transaction”, and the 

rest.  

The observation Model (Figure 5): It encapsulates all the 

actions (||A: ||) handled by a single user during his session. 

It gives a vision on the use of the application and more 

precisely on how to deal with the existing objects extracted 

from the use model.   
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Figure 5. The observation model. 

 

The observation model is instanced once the application 

is used. It gives different scenarios corresponding to the use 

of different objects. The scenarios present the actions used 

to instantiate the objects of the use model.  

 

The trace is a succession of objects and actions over the 

time. It is built using the use model and the observation 

model. As example, in Figure 6 we have the trace 

corresponding to the creation of a star schema having one 

fact table “Transaction”, one measure “Gain” and three 

dimensions “Customer”, “Product” and “Seller”, with their 

attributes over the time. 

  

 
Figure 6. Example of trace corresponding to the construction of star schema. 

 

Exploiting the previous experiences. Each new trace is 

stored. The set of existing traces in the database are 

exploited in order to assist the current user by extracting the 

useful objects. This exploitation is done through performing 

two tasks. The first one consists of comparing the trace of 

the current user with the previous traces in order to locate 

him. The second task is about making the necessary 

intervention by proposing the possible objects to use.      

The comparison: To well exploit the previous traces, it is 

important to start by locate the user e.g., defining his last 

manipulated object to be able to predict the next possible 

objects. The location is done using the episodes that are 

extracted from the instantiation of the use model. For 

example, Figure 7 corresponds to three possible 

instantiation of the category “FactTable” that are 

“Transactions”, “Patient” and “Product”. 

 

 

 

 
 

Figure 7. Example of episodes corresponding to the instantiation of the 

category “FactTable”. 

 

Concerning the comparison, there are two cases: 

 The system takes into consideration only the last 

manipulated object, example: “Transaction” (Figure 

8).  

 

 
 

Figure 8. Example of comparing the last manipulated object. 

 

 The system takes the whole trace into consideration, 

example: “Commerce, StarSchema, Transaction” 

(Figure 9).  

 

 
 

Figure 9. Example of comparing the whole trace respecting the order of 

objects over the time 

. 

The intervention: Once the system locates the user, it 

extracts from the database the set of traces containing the 

selected object or the set of ordered objects. The 
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intervention can be done in two different ways: 

 The system can intervene by suggesting one next 

object, example: “Seller”, “Country” and “Product” 

(Figure 10).  

 

 
 

Figure 10. Example of intervention by suggesting one possible object. 

 

 The system can intervene by suggesting the rest of the 

trace respecting the order of the objects, example: 

“Seller, Name”, “Country, City” and “Product, Name” 

(Figure 11).   

 

 
 

Figure 11.  Example of intervention by suggestion the rest of trace. 

 

C. The structure of the generated schema 

At the end of this step, we get a set of schemas 

corresponding to the users’ requirements as example Figure 

12.  

 
 

Figure 12. Example of user requirement presented as a star schema. 

 

Each one is represented as star schema having the 

following structure: 

 The fact table corresponds to the subject of analysis. 

It is defined by a tuple: FN and MF { } with: 

o FN: represents the name of the fact. e.g., “Sales” 

o MF {m1, m2, m3, m4, …}: corresponds to the 

set of measures related to the fact F, e.g., 

“Quantity, Price and Gain”. 

 The dimension tables represent the axis of analysis. 

Each one is composed by: DN and A{ } with: 

o DN: corresponds to the dimension name, e.g., 

“Customer, Seller and Product”. 

o A {a1, a2, a3, a4, …}: presents the set of 

attributes describing the current dimension D, 

e.g., for the dimension “Customer” the attributes 

are “FirstName, LastName and Phone”.  

 

V. CLUSTERING       OLAP       REQUIREMENTS 

SCHEMAS 

At the end of the previous step, we get a set of 

schemas corresponding to the different requirements. In 

order to exploit them, we propose their clustering 

according to their domain using a new algorithm ak-

mode that takes the semantics aspect into consideration.  

Clustering is the unsupervised classification of 

patterns into groups called Clusters [2]. It involves 

dividing a set of data points into non-overlapping groups, 

or cluster of points [16], and   this   is   exactly   what   we   

aim   to   do   with   OLAP Requirement Schemas (ORSs), 

i.e., grouping them with maximizing their similarity within 

one cluster and minimizing it between clusters. 

The clustering proposes different algorithms. To choose 

the appropriate one, we compare them in term of “time 

complexity”, as presented in Table I. 

 
TABLE I. CLUSTER ALGORITHMS FOR CATEGORICAL DATA. 

 

Algorithm Complexity Coefficient 

K-MODE O (n) Simple Matching 

ROCK O(kn
2

) Links 

QROCK O(n
2

) Threshold 

COOLCAT O (n
2

) Entropy 

LIMBO O (nLogn) Information Bottleneck 

MULIC O (n
2

) Hamming measure 

 

We can notice that the k-mode has O (n), which is the 

lowest complexity, cannot deal with our schemas because it 

does not take into consideration the semantic aspect of the 

elements; so, we extend it and we propose aK-Mode. 

 

A. The  Extension  of  Simple  Matching Dissimilarity 

Measure 

Let Sch1 and Sch2 be two schemas belonging to the 

same cluster. 

Let Ci be the categories of elements existing in the 

schema with Ci = {fact, dimension, measure, attribute}. 

When we calculate the similarity between the elements of 

the two schemas, we should take into consideration the 

following points: 
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 The identical: We use the same elements name in 

the two schemas. 

 DeId (ei, ej) = 1 if ei and ej are identical and 0 if not. 

 The synonymous: We use two different names that 

have the same meaning. 

 DeSy (ei, ej) = 1 if ei and ej are synonymous, 

and 0 if not. 

 The typos: We make mistakes when writing the 

name of the element. In this case, we calculate the 

degree of error. If it is low, we are in the case of 

typing error. If it is high we are in the case of two 

different words. In the following we only take into 

consideration the first case. 

 DeTy (ei, ej) = 1 if ei and ej are the same with the 

existence of typing error, 0 if not. 

 The post-fixe: We use post- fixes to design the 

same thing. 

 DePost (ei, ej) = 1 if one the two elements is the 

post-fixe of the other, and 0 if not. 

 The pre- fixe: We use pre-fixes to design the same 

thing. 

 DePre (ei, ej) = 1 if one of the elements is the pre-

fixe of the other, and 0 if not. 

The degree of similarity between ei and ej (DeSim (ei, 

ej)) is measured by the numeric value {0} or {1}, and it is 

calculated as following formula (1): 

 

DeSim (ei, ej): Sch1 x Sch2  {0, 1} 

DeSim (ei, ej) = [DeId (ei, ej) + DeSy (ei, ej) + DeTy (ei, 

ej) + DePost (ei, ej) + DePre (ei, ej)]       (1) 

 

The new formula (2) of the simple matching (SM) 

dissimilarity measure is defined as following: 

 

CoefSM (sch1, sch2) = [ (MaxD – CoefD) /  MaxD ] + 

[(MaxM – CoefM) / MaxM ] + [ (MaxF – CoefF ) / 

MaxF] + [ (MaxA –  CoefA ) / MaxA ]        (2) 

 

With: 

 MaxD: It is the maximum number of dimensions 

existing in the two schemas. 

 CoefD: It is the number of similar dimensions 

existing in the schemas using “DeSim”. 

 MaxM: It is the maximum number of measures 

existing in the two schemas. 

 CoefM: It is the number of similar measures 

existing in the schemas using “DeSim” 

 MaxF: It is the maximum number of facts existing 

in the two schemas. 

 CoefF: It is the number of similar facts existing 

in the schemas using “DeSim” 

 MaxA: It is the maximum number of attributes 

existing in the two schemas. 

 CoefA: It is the number of similar attributes 

existing in the schemas using “DeSim” 

 

B. The ak-Mode Algorithm 

 The algorithm of aK-mode is described as following: 

a) Define the ‘k’ number of existing domains. 

b) Select ‘k’ initial modes. The initial modes correspond to 

the schemas that were selected randomly from each cluster. 

c) Allocate a schema to the cluster whose mode is the 

nearest to the cluster, using the formula (2).  

Update the mode of the cluster after each allocation. 

d) After all schemas have been allocated to the respective 

cluster, retest the schemas with new modes and update the 

clusters. 

e) Repeat steps (b) and (c) until there is no change in 

clusters. 

 

VI. MERGING THE USERS’ REQUIREMENTS 

SCHEMAS 

In this part, we generate the schemas of the DM from 

the existing clusters using the schema integration 

technique that combines the matching and the mapping. 

Compared to the others, our methodology does not require 

the pre-integration phase since the used schemas have the 

same model that was unified from the beginning. 

 

A. Schema Matching 

The schema matching is considered as one of the basic 

operations required by the process of data integration [11]. 

It is used to solve the problem related to the heterogeneity 

of the data sources by finding semantic correspondence 

between the elements of the two schemas. This phase is 

iterative; it takes two  schemas  as  input  each  time  to  get  

as  output  a set  of mapping rules in order to facilitate 

the merging task in the next step. 

To ensure the effective schema matching, we focus on 

linguistic matching of names of schemas’ elements and 

according to Li et al. [18], it proceeds in three steps: 

normalization, categorization and comparison. 

 Normalization: Different names design the same 

thing but they are written differently.  They perform 

tokenization (e.g., parsing names into tokens based 

on punctuation, case, and the rest), expansion 

(identification of the abbreviation, acronyms, and the 

rest). So, we propose the use domain ontology, 

lenvenshtein name, and the rest.    

 Categorization: It is to group the elements 

composing the schemas by categories: fact, 

dimension, measures, and attributes to reduce   the 

number   of   one-to-one   comparison   eliminating   

the unnecessary comparisons.  

 Comparison: A coefficient   of   linguistic   similarity   

is calculated by comparing the tokens extracted from 

the names of the elements using the formula (1). 
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B. Schema Matching Steps 

The schema matching serves to extract the mapping 

rules that will be used to facilitate the merging of schemas.  

Our proposed methodology is composed by the following 

steps: 

 Categorization: It is to specify the category of each 

element. This can reduce the risk of error which 

provides a gain of time. 

 Construction of the similarity matrix: It is about 

using a similarity matrix to find the closest elements. 

The cells contain the coefficient of similarity of the 

different elements belonging to the same category 

using the formula (1). 

 Generation of the mapping rules: The rules visualize 

the conditional relationships between the instances of 

the categories. They are expressed as:  “If Similar  

(X, Y) then Action (X, Y)”,  with: 

o X and Y belong to the same category (fact, 

measure, dimension, or attribute). 

o Similar ( ): It is a function that specifies if the 

two inputs are similar or not. 

o Action ( ): It specifies the actions to perform. 

They can be union, or intersection. 

The different rules are stored into rules database. 

 

C. Schema Mapping 

Once we extract the mapping rules; we move to the next 

where we apply those rules to merge the schemas. The 

schema mapping is a qua-triple M = (sch1; sch2; T; ). 

“sch1” is the first schema, “sch2” is the second schema, “T” 

is the target schema, and “” is a set of formulas over <sch1, 

sch2; T>.  

An instance of M is an instance of <s1, s2; t; i> over 

<sch1, sch2; T; > that has a specific formula in the set i. 

The formulas existing in i correspond to one of the 

following functions:  

 Union: R = union (ei, ej) implies that R contains all 

the components of “ei” and all components of “ej”. It 

is applied when the two elements are identical.  

 Intersection: R= intersection (ei, ej) implies that R 

contains the components that exist in “ei” and “ej”. It 

is applied when the two elements are equivalent and 

not identical. 

 

VII. GENERATING MULTIDIMENSIONAL SCHEMAS 

FROM DATABASE 

In this section, we propose an algorithm to generate all 

multidimensional schemas from the data sources. This 

helps to construct the DM logical schemas by making the 

necessary modifications. We suggest working with Entity-

Relationship (ER) model of the data source. 

Our algorithm starts by extracting the potential facts and 

dimensions. For each fact, it extracts all possible measures. 

For each dimension, it adds the attributes. 

 

Step 1: Normalize the ER model 
Apply the 1NF, 2NF and 3NF to construct the ER 

normalized: 

 First Normal Form (1NF):  It is that there should be 

no nesting or repeating groups in a table. 

 Second Normal Form (2NF): It is that the key 

attributes determine all non-key attributes. 

 Third Normal Form (3NF): I t  is that the non-key 

attributes should be independent. 

Step 2: Build the tree from ER model 
From the ER model, we extract the entities (Ef) having 

n-ary relationships with other entities and those having 

numerical attributes. They represent the potential facts. 

Every Ef becomes to root of the tree. The number of trees 

corresponds to the number of Ef entities. From the ER, we 

extract the entities (E) that are directly linked to Ef 

corresponding to the potential dimensions. 

Step 3: Transform the tree to multidimensional model 

 The root of each tree becomes the fact table. 

 The existing  numeric  attributes  become  the  

potential measures 

 The measures are defined by an aggregation 

functions that are specified by the user. 

 The  nodes  that  are  directly  linked  to  the  

roots  are transformed  to  dimensions  keeping  

their attributes  and their primary keys. 

 The primary keys of the children nodes become 

foreign keys in the parents’ nodes. 

Figure 13 presents an example of multidimensional 

schema.  

 
Figure 13. Example of multidimensional schema generated from an ER 

database. 

It is composed by one fact table “Fact_1”, three measures 

“QuantityInStock, QuantityOrdered, Price”, set of keys 

defining the primary key of the fact table, three dimensions 

“Product, Customer, Seller”. Each dimension has its 

primary key and a set of attributes.      
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VIII.  THE DATA WAREHOUSE SCHEMA 

 In this section, we generate the schema of the DW. To 

realize this task, we need first to generate the logical 

schemas of the DM.   

 

A. Generating the Data Mart Logical Schemas 

The purpose of this step is to move from the conceptual 

schemas to the logical ones. At this level, we have two 

types of schemas. The first ones were generated from the 

requirements, they correspond to the Data Mart User 

Schemas (DMUS)s and they are modeled as star. The 

second ones were generated from the different databases, 

they correspond to the Data Mart Multidimensional 

Schemas (DMMS)s and they are modeled as star schemas. 

The validation of DMUS is about adjusting the needs with 

databases so that we have the source from which we can 

extract data later.  

In order to achieve this task, we compare the two types 

of schemas to extract the closest ones, then, we update the 

DMUS by adding the necessary information.    

To compare the DM schemas, we start by classifying their 

elements into the following categories: fact, measure, 

dimension, and attribute. Using the similarity matrix, we 

extract the closest schemas. The updating task has as 

purpose transforming the conceptual schema to logical one. 

To achieve this task, we need human intervention. Indeed, 

we present the elements of two types of schemas and the 

final user specifies the necessary elements to keep. For 

example, Table II visualizes the elements extracted from 

Figure 12 and those extracted from Figure 13 to specify the 

elements of the final schema. For example, the attribute 

“FirstName”, extracted from the conceptual schema, has its 

corresponding attribute existing in the multidimensional 

schema. It has as type “String”. This attribute is added to 

the final schema with its type. The same process is applied 

to the rest of elements. 

 
Figure 14. The logical schema of the Data Mart. 

 

Figure 14 corresponds to the logical schema of the DM 

once the conceptual schema is updated.  

 

B. Generating the Data Warehouse Schema 

At this level, we have a set of logical DM schemas. To 

generate the final schema of the DW, we propose the use of 

schema integration technique as presented previously. It is 

composed by schema matching and schema mapping.  This 

process is iterative. It takes every time two schemas as input. 

We stop when we get one final schema.  

 

IX. CONCLUSION AND FUTURE WORK 

The DW has the capacity to integrate huge amount of 

historical data for analysis purpose. It plays an important 

role with organizations. Despite their importance, many 

projects fail because of the absence of good design. 

In this work, we proposed a new methodology to design 

the schema of the DW reducing the computer-scientists 

intervention. It takes into consideration the needs of each 

department separately to facilitate the detection of possible 

problems earlier, as well as existing databases to get at the 

end the best schema. Indeed, it starts by collecting the users’ 

requirements using an assistant system that exploits the 

previous experiences. Then, it clusters them using ak-mode 

to build first DM schemas that are generated using the 

schema integration technique. Besides, it revises those 

schemas to generate the logical DM schemas that serve at 

the end to build the final DW schema.     

As future work, we propose dealing with other kind of 

data sources (UML, XML files, and the rest). We propose, 

also, taking into consideration the evolution of the schema 

of the database.    
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TABLE II. TRANSFORMATION OF THE CONCEPTUAL SCHEMA TO LOGICAL ONE. 

Category Conceptual 

level 

Multidimensional level Logical level 

Element Type Element Type 

Fact  Sales Fact_1 -  Sales -  

FactKey  -  SellerID Integer SellerID Integer 

-  ProductID Integer  ProductID Integer  

-  CustomerID Integer  CustomerID Integer  

Measure  Quantity QuantityInStock Double  QuantityInStock Double  

QuantityOrdered  Double  QuantityOrdered  Double  

Price  Price  Double  Price  Double  

Gain  -  -  Gain  Double  

Dimension  Customer  Customer  -  Customer  -  

DimensionKey -  CustomerID Integer  CustomerID Integer  

Attribute  FirstName CustomerName String CustomerName String 

LastName CustomerLastName String CustomerLastName String 

Phone CustomerPhone Integer CustomerPhone Integer 

-  CustomerStreet String  CustomerStreet String  

-  CustomerCity String  CustomerCity String  

Dimension  Seller  Seller -  Seller -  

DimensionKey -  SellerID Integer  SellerID Integer  

Attribute  FirstName FirstName String  FirstName String  

LastName LastName String LastName String 

-  Phone Integer  Phone Integer  

-  Fax Integer  Fax Integer  

Dimension  Product  Product -  Product  -  

DimensionKey - ProductID Integer  ProductID Integer  

Attribute  ProductName ProductName String  ProductName String  

Category  ProductCategory String  ProductCategory String  

-  ProductLine String -  -  

-  ProductDescription  String -  -  
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