
ASDeDaWaS: An Assistant System for the Design of Data Warehouse Schema

Nouha Arfaoui, Jalel Akaichi
BESTMOD

Higher Institute of Management

Bardo,Tunisia

e-mail: Arfaoui.nouha@yahoo.fr, Jalel.akaichi@isg.rnu.tn

Abstract—Data Warehouse has the capacity to integrate data

from different data sources for analyses purpose. Despite their

importance, many data warehouse projects fail. As cause, we

can mention, the poor communication between the

developer/designer and the stakeholders, and the bad design

that does not respond appropriately to the user requirements.

Our work is set in the context of Enterprise Data Warehouse,

and we propose a new methodology, Assistant System for the

Design of Data Warehouse Schema (ASDeDaWaS). It ensures

the design of the schema of the data warehouse taking into

consideration the users’ requirements and the available data

sources, minimizing the computer-scientists intervention.

Keywords-Data Warehouse Schema; Data Mart Schema;

Schema Design; Schema Integration.

I. INTRODUCTION

Data Warehouse (DW) is the “heart of architecture

environment and is the foundation of all decision support

system processing” [7], since it provides an infrastructure

that allows businesses to extract, clean and store vast

amount of data. It is defined as “a subject-oriented,

integrated, non-volatile, and time-variant collection of

data in support of management’s decisions” [17].

Concerning the warehousing projects, they are often

characterized by their complexity and their huge costs [1]

and they may fail during their achievements. According to

[1][4][8][9][15], the causes of failure can be summarized

as following:

 The nature of those projects requires long periods of

development.

 The users’ needs are generally poorly expressed by

either designers or developers and they are not based

on a common terminology.

 The absence of a good design that responds

appropriately to the users’ requirements.

 The users are, in many cases, not experienced

with the technologies of DWs.

 The immaturity and complexity of the design

methods and the lack of software tools that support

these methods.

 The nonexistence of the right design that ensures the

performance today and the scalability tomorrow.

The above difficulties lead to various problems such as

the stopping of projects during their implementation, the

exceeding of time and/or budget, and the rest.

In order to overcome the previous problems, we propose

a new methodology, namely, Assistant System for the

Design of Data Warehouse Schema (ASDeDaWaS). It

ensures the construction of the schema of the DW

incrementally taking into consideration both the users’

requirements and the available data sources. It focuses on

each department separately, which facilitates the detection

and the correction of possible problems and conflicts earlier.

It reduces, also, the computer-scientists intervention through

the automation of some tasks.

As working hypothesis, it is proposed to present the user

requirement as a star schema because it is widely supported

by a large number of business intelligence tools; also it has a

simple structure, so it is easy to understand the schema.

Concerning the data sources, it is proposed to deal with

Entity-Relationship (ER) [14] database because it adopts

the more natural view that the real world consists of entities

and relationships; it incorporates some of the important

semantic information and it can achieve a high degree of

data independence [14].

As contributions, we propose in this work:

 Using an assistant system to facilitate the collection

of users’ requirements by exploiting the previous

experiences.

 Using a new algorithm to cluster the schemas taking

into consideration their semantic aspect.

 Automating the schema integration technique to

merge the schemas to generate the logical schemas

of the data mart (DM), and the final schema of the

DW.

The outline of this work is as following:

 In the second section, we present the state of the

art. We summarize some methods that use the mixed

approach to design the DW.

 In the third section, we describe our proposed

solution and we resume every step.

 In the fourth section, we start by detailing the

first step that consists of collecting the users’

requirements using an assistant system. The

different requirements are modeled as star schemas.

 In the fifth section, the generated schemas are

clustered using a new algorithm ak-mode which is

an extension of k-mode. It takes into consideration

the semantic aspect when clustering the schemas.

 In the sixth section, we propose the application of

schema integration technique to ensure the

458Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:Arfaoui.nouha@yahoo.fr
mailto:Jalel.akaichi@isg.rnu.tn

merging of different schemas existing within every

cluster. The proposed technique is composed by

schema matching and schema mapping.

 In the seventh section, we propose generating

multidimensional schemas from Entity-Relationship

(ER) databases.

 In the eighth section, we transform the conceptual

schemas that were generated from the users’

requirements to logical ones by adding the necessary

information extracted from the multidimensional

schemas. Using the logical DM schemas, we apply

the schema integration technique to build the final

schema of the DW.

 We finish this paper with a conclusion and future

work.

II. RELATED WORK

Three main approaches have been proposed in the

literature to conceive the DW: top-down, bottom-up and

mixed.

Top-down starts from the description of the needs of all

the users to construct the schema corresponding to the

entire DW [5]. According to Ballard et al. [3], this approach

has some disadvantages: it is a time-consuming process, it

is difficult to collect the different agreement on the data

definitions and business rules among all the different

workgroups, departments, and lines of business

participating. It can delay actual implementation, benefits

and return-on-investment and it is length task.

Concerning the bottom-up, the construction of the

global schema of DW starts from the different schemas of

DMs that are built taking into consideration the

requirements of the decision-making users responsible for

the corresponding specific business area or process [5]. The

problem with this approach is the redundancy and the

inconsistency of the data between the DMs [3].

The mixed approach takes advantages of the two

previous approaches [5]. It has the speed and the user-

orientation of the bottom-up and the integration enforced

by a DW in a top-down approach.

In the following, we present some work using the

mixed approach to generate the DW and we start by

“SelfStar” [6]. The proposed methodology is composed by

four steps. It requires human intervention to validate the

proposed schema until building the final DW schema. In

what follows, we briefly present each step:

 First step: Extracting from the data source, that is

expressed using the UML language, the candidate facts

and showing them in the intermediate schema. Since

the schema of the data source is not easy to be

understood by a no-computer scientist user, the system

presents a simplified representation automatically

extracted from the schema of the source. The user

selects the facts and the measures that correspond to his

needs. He selects also the operations that will be

applied on the measures.

 Second step: Generating the second schema by

proposing the different dimensions that can be used

with the extracted facts. The extraction of the

dimensions is done using: a source described by an

exploited schema containing classes and links, and an

incomplete decisional base containing one or many

facts.

 Third step: Generating a constellation schema (facts,

dimensions, and all possible hierarchies). This step

generates the candidate hierarchies for each

chosen dimension. They are extracted from the classes

that are related directly to the dimension using “1..N”

link type, and from the attributes of the dimension

excluding the attributes having distinct values. The

temporal dimension is associated with a standard

hierarchy: year, month, date.

 Fourth step: Generating the schema of the DW. In

this step the decision makers choose the relevant

parameters to their analysis. Then, the system generates

the final schema and stores customization metadata for

each user to reuse them later by attributing weights to

the used classes of the source.

Romero and Abelló [10] propose an approach that uses

the end-user information requirements which are expressed

as SQL queries and the logical model of the data sources.

The final result is a constellation schema. The automatic

process is divided into four different stages:

 Concept labeling: It serves to build the

multidimensional (MD) graph by applying the

labeling standards. For each query, it extracts the

MD knowledge.

 Multidimensional graph validation: Each MD-graph

that has been generated in the previous step is

validated in this stage by generating its

multidimensional normal forms.

 Finding representative result: From the previous

steps, more than one MD schema can be produced

for a given query. Besides, the dimensional data

could be considered as an alternative factless fact,

although in most cases it will not be relevant to the

end-user. This step serves to determine the

representativeness of new alternatives and this is

done according to some rules. Two sibling graphs

differ only in the labeling of one node. Therefore,

they have exactly the same labels except for one

node, which is considered a factless fact that plays a

role in one graph and a strict dimensional role in the

other. In short, sibling graphs do not provide new

interesting analytical perspectives. They are used to

analyze the potential factual data that a dimension

may contain. However, in most cases, the end-user

would not be interested in this type of analysis.

 Conciliation: It validates each input requirement and

generates a potential set of MD schemas for each

query. Then, it normalizes MD graphs

459Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Giorgini et al. [13] propose a mixed approach to build

the DW. It starts with the requirement analysis that will be

mapped next to conceptual level. This step requires the

following tasks:

 Organizational modeling: It is centered on

stakeholders. It identifies the facts. It is composed by

three steps:

o Goal analysis: Analyzing each goal of each

actor in more details.

o Fact analysis: Determining all the relevant facts

and associating goals with facts.

o Attribute analysis: Determining all the attributes

that give a value when facts are recorded.

 Decisional modeling: It focuses on decision makers

to extract their information needs. It is composed

by four steps:

o Goal analysis: Identifying the decision makers

and establishing the dependencies between them.

o Fact analysis: Identifying the facts that

correspond to different objects of analysis and

associating the goals.

o Dimension analysis: Linking the fact to the

dimensions according to the decisional goals of

the decision makers.

o Measure analysis: Associating the measures to

each fact previously identified.

Once, they get diagrams that connect enterprise goals

to facts, dimensions and measures, they move to the

conceptual level by mapping the different elements

determined previously. They use two types of frameworks:

mixed design framework and demand-driven design

framework.

 Mixed design framework: The requirements derived

during organizational and decisional modeling are

matched with the schema of the operational database

in order to generate the conceptual schema for the

DW. This is done by performing the requirement

mapping, hierarchy construction and refinement.

 Demand-Driven Design Framework: The generation

of hierarchies cannot be automatic; here we need

the intervention of the designer. Indeed, through his

skills and experiences, he can fruitfully interact

with the domain experts to capture the existing

dependencies between attributes.

Compared to the previous solutions, ASDeDaWaS

follows all the necessary steps to generate the schema of the

DW. It combines the mixed approach, which generates the

logical schemas of the DM from the requirements and the

available data sources, and the bottom up approach, which

generates the DW schema from the DM logical schemas.

Moreover, it offers help using an assistant system to facilitate

the collection of the needs reducing the computer-scientists

intervention. It can be applied to different departments

having different information systems and different needs.

III. OVERVIEW OF ASDeDaWaS

In this section, we describe ASDeDaWaS briefly (Figure

1).

Figure 1. ASDeDaWaS steps.

It starts by collecting the requirements of the different

users. It uses an assistant system DwADS (Data warehouse

Assistant Design System) to facilitate the specification of

the elements basing on the stored traces of the previous

users. It defines, then, the possible facts, their measures,

and the dimensions with their attributes. From the collected

users’ requirements, it generates the corresponding schemas

that are represented as star.

In the second step, it clusters the different schemas using

a new algorithm ak-mode in order to get within one cluster

the closest schemas. The new algorithm is an extension of k-

mode. It takes into consideration the semantic aspect when

making the comparison. Next, for each cluster, it generates

the global schema. To achieve this goal, it uses the schema

integration technique that is composed by schema matching

and schema mapping. The schema matching extracts the

semantically closest elements as well as the conflicts and

presents them as mapping rules. Using the schema mapping

it merges the different schemas to get at the end the global

schema. This step allows the generation of conceptual

schemas of the DM from the users’ requirements. Then, the

conceptual schemas are mapped to logical ones. This is

done in two steps. In the first one, it extracts all possible

multidimensional schemas from the databases. In the second

step, it generates the logical schemas. Indeed, it updates

the conceptual schemas by adding the necessary

information extracted from the multidimensional schemas.

Finally, by merging the logical schemas, it builds the final

schema of the DW.

IV. COLLECTING OLAP REQUIREMENTS

In order to ensure a good design of DW, it is crucial to

start by the requirements that specify “what data should be

available and how it should be organized as well as what

queries are of interest” [5]. In our case, we need to move

460Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

through this step to extract the important objects of the

multidimensional schemas (facts, measures, dimensions, and

attributes). Despite its importance, not much attention has

been paid to this phase causing the failure of 85% of the

DW projects to meet business objects, and the no-

development of 40% of the DW projects [12].

A. The collection of requirements

To collect the requirements, we give the freedom to the

user to express his needs using an easy interface (Figure 2)

where he specifies the different objects composing a star

schema. This interface uses an assistant system DwADS

that helps the user to choose the appropriate objects because

the end users may find difficulties to specify their objects

[5].

Figure 2. The proposed interface to specify the users’ requirements.

Once the user validates his schema, the set of the

manipulated objects and the performed actions (add fact,

create dimension, and the rest) are stored respecting their

order over the time as a trace.

B. The Proposed Assistant System

Our assistant is based mainly on traces. Indeed, it starts

by storing the traces of each user during his session, then,

it suggests the useful elements after a comparison

phase. The system extracts from the trace the objects

through the use model and the actions through the

observation model. Concerning the comparison step, it uses

the episodes to detect the exact position of the user in order

to extract next possible objects. This system occurs during

the specification of requirements by suggesting to the user

the possible elements used to build a first schema basing on

the previous experiences.

DwADS performs two main tasks, as presented in Figure

3. The first one corresponds to the building of traces using

the use model and the observation model. The second task is

about exploiting the previous experiences using the episodes

as a method of comparison. This task includes, also,

suggestion of the possible next objects to manipulate.

Figure 3. The DwADS composition.

The Use Model (Figure 4): It is used to isolate the objects

from the current trace. The objects belong to the following

categories (C): “C: Domain”, ‘C: Model”, “C: FactTable”,

“C: Measure”, “C: DimensionTable”, “C:

DimensionAttribute”, and “C: Link”. These various

categories are linked into single schema through

“Contextualization” link. The latter does not present the

temporal aspect of the organization of different categories.

It, only, shows them connected.

Figure 4. The structure of the use model.

For each requirement specification, the categories are

instantiated which gives rise to many possible scenarios.

For example the instantiation of “domain” can be

“Commerce”, “factTable” can be “Transaction”, and the

rest.

The observation Model (Figure 5): It encapsulates all the

actions (||A: ||) handled by a single user during his session.

It gives a vision on the use of the application and more

precisely on how to deal with the existing objects extracted

from the use model.

461Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 5. The observation model.

The observation model is instanced once the application

is used. It gives different scenarios corresponding to the use

of different objects. The scenarios present the actions used

to instantiate the objects of the use model.

The trace is a succession of objects and actions over the

time. It is built using the use model and the observation

model. As example, in Figure 6 we have the trace

corresponding to the creation of a star schema having one

fact table “Transaction”, one measure “Gain” and three

dimensions “Customer”, “Product” and “Seller”, with their

attributes over the time.

Figure 6. Example of trace corresponding to the construction of star schema.

Exploiting the previous experiences. Each new trace is

stored. The set of existing traces in the database are

exploited in order to assist the current user by extracting the

useful objects. This exploitation is done through performing

two tasks. The first one consists of comparing the trace of

the current user with the previous traces in order to locate

him. The second task is about making the necessary

intervention by proposing the possible objects to use.

The comparison: To well exploit the previous traces, it is

important to start by locate the user e.g., defining his last

manipulated object to be able to predict the next possible

objects. The location is done using the episodes that are

extracted from the instantiation of the use model. For

example, Figure 7 corresponds to three possible

instantiation of the category “FactTable” that are

“Transactions”, “Patient” and “Product”.

Figure 7. Example of episodes corresponding to the instantiation of the

category “FactTable”.

Concerning the comparison, there are two cases:

 The system takes into consideration only the last

manipulated object, example: “Transaction” (Figure

8).

Figure 8. Example of comparing the last manipulated object.

 The system takes the whole trace into consideration,

example: “Commerce, StarSchema, Transaction”

(Figure 9).

Figure 9. Example of comparing the whole trace respecting the order of

objects over the time

.

The intervention: Once the system locates the user, it

extracts from the database the set of traces containing the

selected object or the set of ordered objects. The

462Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

intervention can be done in two different ways:

 The system can intervene by suggesting one next

object, example: “Seller”, “Country” and “Product”

(Figure 10).

Figure 10. Example of intervention by suggesting one possible object.

 The system can intervene by suggesting the rest of the

trace respecting the order of the objects, example:

“Seller, Name”, “Country, City” and “Product, Name”

(Figure 11).

Figure 11. Example of intervention by suggestion the rest of trace.

C. The structure of the generated schema

At the end of this step, we get a set of schemas

corresponding to the users’ requirements as example Figure

12.

Figure 12. Example of user requirement presented as a star schema.

Each one is represented as star schema having the

following structure:

 The fact table corresponds to the subject of analysis.

It is defined by a tuple: FN and MF { } with:

o FN: represents the name of the fact. e.g., “Sales”

o MF {m1, m2, m3, m4, …}: corresponds to the

set of measures related to the fact F, e.g.,

“Quantity, Price and Gain”.

 The dimension tables represent the axis of analysis.

Each one is composed by: DN and A{ } with:

o DN: corresponds to the dimension name, e.g.,

“Customer, Seller and Product”.

o A {a1, a2, a3, a4, …}: presents the set of

attributes describing the current dimension D,

e.g., for the dimension “Customer” the attributes

are “FirstName, LastName and Phone”.

V. CLUSTERING OLAP REQUIREMENTS

SCHEMAS

At the end of the previous step, we get a set of

schemas corresponding to the different requirements. In

order to exploit them, we propose their clustering

according to their domain using a new algorithm ak-

mode that takes the semantics aspect into consideration.

Clustering is the unsupervised classification of

patterns into groups called Clusters [2]. It involves

dividing a set of data points into non-overlapping groups,

or cluster of points [16], and this is exactly what we

aim to do with OLAP Requirement Schemas (ORSs),

i.e., grouping them with maximizing their similarity within

one cluster and minimizing it between clusters.

The clustering proposes different algorithms. To choose

the appropriate one, we compare them in term of “time

complexity”, as presented in Table I.

TABLE I. CLUSTER ALGORITHMS FOR CATEGORICAL DATA.

Algorithm Complexity Coefficient

K-MODE O (n) Simple Matching

ROCK O(kn
2

) Links

QROCK O(n
2

) Threshold

COOLCAT O (n
2

) Entropy

LIMBO O (nLogn) Information Bottleneck

MULIC O (n
2

) Hamming measure

We can notice that the k-mode has O (n), which is the

lowest complexity, cannot deal with our schemas because it

does not take into consideration the semantic aspect of the

elements; so, we extend it and we propose aK-Mode.

A. The Extension of Simple Matching Dissimilarity

Measure

Let Sch1 and Sch2 be two schemas belonging to the

same cluster.

Let Ci be the categories of elements existing in the

schema with Ci = {fact, dimension, measure, attribute}.

When we calculate the similarity between the elements of

the two schemas, we should take into consideration the

following points:

463Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 The identical: We use the same elements name in

the two schemas.

 DeId (ei, ej) = 1 if ei and ej are identical and 0 if not.

 The synonymous: We use two different names that

have the same meaning.

 DeSy (ei, ej) = 1 if ei and ej are synonymous,

and 0 if not.

 The typos: We make mistakes when writing the

name of the element. In this case, we calculate the

degree of error. If it is low, we are in the case of

typing error. If it is high we are in the case of two

different words. In the following we only take into

consideration the first case.

 DeTy (ei, ej) = 1 if ei and ej are the same with the

existence of typing error, 0 if not.

 The post-fixe: We use post- fixes to design the

same thing.

 DePost (ei, ej) = 1 if one the two elements is the

post-fixe of the other, and 0 if not.

 The pre- fixe: We use pre-fixes to design the same

thing.

 DePre (ei, ej) = 1 if one of the elements is the pre-

fixe of the other, and 0 if not.

The degree of similarity between ei and ej (DeSim (ei,

ej)) is measured by the numeric value {0} or {1}, and it is

calculated as following formula (1):

DeSim (ei, ej): Sch1 x Sch2 {0, 1}

DeSim (ei, ej) = [DeId (ei, ej) + DeSy (ei, ej) + DeTy (ei,

ej) + DePost (ei, ej) + DePre (ei, ej)] (1)

The new formula (2) of the simple matching (SM)

dissimilarity measure is defined as following:

CoefSM (sch1, sch2) = [(MaxD – CoefD) / MaxD] +

[(MaxM – CoefM) / MaxM] + [(MaxF – CoefF) /

MaxF] + [(MaxA – CoefA) / MaxA] (2)

With:

 MaxD: It is the maximum number of dimensions

existing in the two schemas.

 CoefD: It is the number of similar dimensions

existing in the schemas using “DeSim”.

 MaxM: It is the maximum number of measures

existing in the two schemas.

 CoefM: It is the number of similar measures

existing in the schemas using “DeSim”

 MaxF: It is the maximum number of facts existing

in the two schemas.

 CoefF: It is the number of similar facts existing

in the schemas using “DeSim”

 MaxA: It is the maximum number of attributes

existing in the two schemas.

 CoefA: It is the number of similar attributes

existing in the schemas using “DeSim”

B. The ak-Mode Algorithm

 The algorithm of aK-mode is described as following:

a) Define the ‘k’ number of existing domains.

b) Select ‘k’ initial modes. The initial modes correspond to

the schemas that were selected randomly from each cluster.

c) Allocate a schema to the cluster whose mode is the

nearest to the cluster, using the formula (2).

Update the mode of the cluster after each allocation.

d) After all schemas have been allocated to the respective

cluster, retest the schemas with new modes and update the

clusters.

e) Repeat steps (b) and (c) until there is no change in

clusters.

VI. MERGING THE USERS’ REQUIREMENTS

SCHEMAS

In this part, we generate the schemas of the DM from

the existing clusters using the schema integration

technique that combines the matching and the mapping.

Compared to the others, our methodology does not require

the pre-integration phase since the used schemas have the

same model that was unified from the beginning.

A. Schema Matching

The schema matching is considered as one of the basic

operations required by the process of data integration [11].

It is used to solve the problem related to the heterogeneity

of the data sources by finding semantic correspondence

between the elements of the two schemas. This phase is

iterative; it takes two schemas as input each time to get

as output a set of mapping rules in order to facilitate

the merging task in the next step.

To ensure the effective schema matching, we focus on

linguistic matching of names of schemas’ elements and

according to Li et al. [18], it proceeds in three steps:

normalization, categorization and comparison.

 Normalization: Different names design the same

thing but they are written differently. They perform

tokenization (e.g., parsing names into tokens based

on punctuation, case, and the rest), expansion

(identification of the abbreviation, acronyms, and the

rest). So, we propose the use domain ontology,

lenvenshtein name, and the rest.

 Categorization: It is to group the elements

composing the schemas by categories: fact,

dimension, measures, and attributes to reduce the

number of one-to-one comparison eliminating

the unnecessary comparisons.

 Comparison: A coefficient of linguistic similarity

is calculated by comparing the tokens extracted from

the names of the elements using the formula (1).

464Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

B. Schema Matching Steps

The schema matching serves to extract the mapping

rules that will be used to facilitate the merging of schemas.

Our proposed methodology is composed by the following

steps:

 Categorization: It is to specify the category of each

element. This can reduce the risk of error which

provides a gain of time.

 Construction of the similarity matrix: It is about

using a similarity matrix to find the closest elements.

The cells contain the coefficient of similarity of the

different elements belonging to the same category

using the formula (1).

 Generation of the mapping rules: The rules visualize

the conditional relationships between the instances of

the categories. They are expressed as: “If Similar

(X, Y) then Action (X, Y)”, with:

o X and Y belong to the same category (fact,

measure, dimension, or attribute).

o Similar (): It is a function that specifies if the

two inputs are similar or not.

o Action (): It specifies the actions to perform.

They can be union, or intersection.

The different rules are stored into rules database.

C. Schema Mapping

Once we extract the mapping rules; we move to the next

where we apply those rules to merge the schemas. The

schema mapping is a qua-triple M = (sch1; sch2; T;).

“sch1” is the first schema, “sch2” is the second schema, “T”

is the target schema, and “” is a set of formulas over <sch1,

sch2; T>.

An instance of M is an instance of <s1, s2; t; i> over

<sch1, sch2; T; > that has a specific formula in the set i.

The formulas existing in i correspond to one of the

following functions:

 Union: R = union (ei, ej) implies that R contains all

the components of “ei” and all components of “ej”. It

is applied when the two elements are identical.

 Intersection: R= intersection (ei, ej) implies that R

contains the components that exist in “ei” and “ej”. It

is applied when the two elements are equivalent and

not identical.

VII. GENERATING MULTIDIMENSIONAL SCHEMAS

FROM DATABASE

In this section, we propose an algorithm to generate all

multidimensional schemas from the data sources. This

helps to construct the DM logical schemas by making the

necessary modifications. We suggest working with Entity-

Relationship (ER) model of the data source.

Our algorithm starts by extracting the potential facts and

dimensions. For each fact, it extracts all possible measures.

For each dimension, it adds the attributes.

Step 1: Normalize the ER model
Apply the 1NF, 2NF and 3NF to construct the ER

normalized:

 First Normal Form (1NF): It is that there should be

no nesting or repeating groups in a table.

 Second Normal Form (2NF): It is that the key

attributes determine all non-key attributes.

 Third Normal Form (3NF): I t is that the non-key

attributes should be independent.

Step 2: Build the tree from ER model
From the ER model, we extract the entities (Ef) having

n-ary relationships with other entities and those having

numerical attributes. They represent the potential facts.

Every Ef becomes to root of the tree. The number of trees

corresponds to the number of Ef entities. From the ER, we

extract the entities (E) that are directly linked to Ef

corresponding to the potential dimensions.

Step 3: Transform the tree to multidimensional model

 The root of each tree becomes the fact table.

 The existing numeric attributes become the

potential measures

 The measures are defined by an aggregation

functions that are specified by the user.

 The nodes that are directly linked to the

roots are transformed to dimensions keeping

their attributes and their primary keys.

 The primary keys of the children nodes become

foreign keys in the parents’ nodes.

Figure 13 presents an example of multidimensional

schema.

Figure 13. Example of multidimensional schema generated from an ER

database.

It is composed by one fact table “Fact_1”, three measures

“QuantityInStock, QuantityOrdered, Price”, set of keys

defining the primary key of the fact table, three dimensions

“Product, Customer, Seller”. Each dimension has its

primary key and a set of attributes.

465Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

VIII. THE DATA WAREHOUSE SCHEMA

 In this section, we generate the schema of the DW. To

realize this task, we need first to generate the logical

schemas of the DM.

A. Generating the Data Mart Logical Schemas

The purpose of this step is to move from the conceptual

schemas to the logical ones. At this level, we have two

types of schemas. The first ones were generated from the

requirements, they correspond to the Data Mart User

Schemas (DMUS)s and they are modeled as star. The

second ones were generated from the different databases,

they correspond to the Data Mart Multidimensional

Schemas (DMMS)s and they are modeled as star schemas.

The validation of DMUS is about adjusting the needs with

databases so that we have the source from which we can

extract data later.

In order to achieve this task, we compare the two types

of schemas to extract the closest ones, then, we update the

DMUS by adding the necessary information.

To compare the DM schemas, we start by classifying their

elements into the following categories: fact, measure,

dimension, and attribute. Using the similarity matrix, we

extract the closest schemas. The updating task has as

purpose transforming the conceptual schema to logical one.

To achieve this task, we need human intervention. Indeed,

we present the elements of two types of schemas and the

final user specifies the necessary elements to keep. For

example, Table II visualizes the elements extracted from

Figure 12 and those extracted from Figure 13 to specify the

elements of the final schema. For example, the attribute

“FirstName”, extracted from the conceptual schema, has its

corresponding attribute existing in the multidimensional

schema. It has as type “String”. This attribute is added to

the final schema with its type. The same process is applied

to the rest of elements.

Figure 14. The logical schema of the Data Mart.

Figure 14 corresponds to the logical schema of the DM

once the conceptual schema is updated.

B. Generating the Data Warehouse Schema

At this level, we have a set of logical DM schemas. To

generate the final schema of the DW, we propose the use of

schema integration technique as presented previously. It is

composed by schema matching and schema mapping. This

process is iterative. It takes every time two schemas as input.

We stop when we get one final schema.

IX. CONCLUSION AND FUTURE WORK

The DW has the capacity to integrate huge amount of

historical data for analysis purpose. It plays an important

role with organizations. Despite their importance, many

projects fail because of the absence of good design.

In this work, we proposed a new methodology to design

the schema of the DW reducing the computer-scientists

intervention. It takes into consideration the needs of each

department separately to facilitate the detection of possible

problems earlier, as well as existing databases to get at the

end the best schema. Indeed, it starts by collecting the users’

requirements using an assistant system that exploits the

previous experiences. Then, it clusters them using ak-mode

to build first DM schemas that are generated using the

schema integration technique. Besides, it revises those

schemas to generate the logical DM schemas that serve at

the end to build the final DW schema.

As future work, we propose dealing with other kind of

data sources (UML, XML files, and the rest). We propose,

also, taking into consideration the evolution of the schema

of the database.

REFERENCES
[1] A. N. AbuAli, and H. Y. Abu-Addose, “Data Warehouse Critical

Success Factors”, European Journal of Scientific Research, vol. 42

pp.326-335, 2010.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A

Review”, ACM Computing Surveys, vol. 31, 1999, pp. 264-323.

[3] C. Ballard, D . Herreman, D . Schau, R . Bell, E . Kim, and A .
Valencic, “Data Modeling Techniques for Data Warehousing”,

International Technical Support Organization, 1998.

[4] E. Börger, “High Level System Design and Analysis using Abstract

State Machines”, FM-Trends, 1998, pp. 1-43.

[5] E . Malinowski, and E . Zimanyi, Advanced Data Warehouse

Design, From Conventional to Spatial and Temporal
Applications, Springer Verlag Berlin Heidelberg, 2008.

[6] F. Abdelhédi, F. Ravat, O. Teste, and G. Zurfluh, “SelfStar: an

interactive system for the construction of multidimensional
schemas”, Informatique des Organisations et Systèmes

d'Information et de Décision (INFORSID), pp. 335-350, 2011.

[7] H. R. Nemati, D. M. Steiger, L. S. Iyer, and R. T. Herschel,
“Knowledge warehouse: An architectural integration of knowledge

management, decision support, artificial intelligence and data

warehousing”. Decision Support Systems, vol. 33, Jun. 2002, pp.
143–16.

[8] M. Golfarelli, “From User Requirements to Conceptual Design

in Data Warehouse Design”. In Data Warehousing Design and
Advanced Engineering Applications Methods for Complex

Construction, IGI Global, Hershey, 2009, pp. 1-16.

[9] M. Golfarelli, and S. Rizzi, “WAND: A CASE Tool for Data

466Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Warehouse Design”. In Demo Proceedings of 17th International

Conference on Data Engineering (ICDE), pp. 7-9, 2010.

[10] O . Romero, and A. Abelló, “Automatic validation of

requirements to support multidimensional design”. Data Knowledge

Engineering, vol. 69, pp. 917-942, 2010.

[11] P. A. Bernstein, and S. Melnik, “Meta data management”. In

Proceedings of the IEEE CS International Conference on Data

Engineering. IEEE Computer Society, 2004.
[12] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik,

“LIMBO: Scalable Clustering of Categorical Data”. In

Proceedings of the 9th International Conference on Extending
Database Technology (EDBT), 2004, pp. 123-146.

[13] P. Giorgini, S. Rizzi, and M. Garzetti, “Goal- oriented requirement

analysis for data warehouse design”. In Proceedings of the 8th
International Workshop on Data Warehousing and OLAP

(DOLAP), 2005, pp. 47 - 56 .

[14] P. P. S. Chen, “The Entity-Relationship Model-Toward a Unified

View of Data”. ACM Transactions on Database Systems, vol. 1,
1976, pp.9-36.

[15] S. R. Gardner, “Building the Data Warehouse”. Communications

of the ACM, Vol.41, 1998, pp. 52-60.
[16] V. Faber, “Clustering and the Continuous k-means Algorithm”.

Los Alamos Science, vol. 22, 1994, pp. 138-144.

[17] W. H. Inmon, “Building the Data Warehouse. John Wiley & Sons
Inc, 2005.

[18] Y. Li, D . Liu, and W . Zhang, “A Generic Algorithm for

Heterogeneous Schema Matching”. International Journal of
Information Technology, vol. 11, 2005, pp. 36-43.

TABLE II. TRANSFORMATION OF THE CONCEPTUAL SCHEMA TO LOGICAL ONE.

Category Conceptual

level

Multidimensional level Logical level

Element Type Element Type

Fact Sales Fact_1 - Sales -

FactKey - SellerID Integer SellerID Integer

- ProductID Integer ProductID Integer

- CustomerID Integer CustomerID Integer

Measure Quantity QuantityInStock Double QuantityInStock Double

QuantityOrdered Double QuantityOrdered Double

Price Price Double Price Double

Gain - - Gain Double

Dimension Customer Customer - Customer -

DimensionKey - CustomerID Integer CustomerID Integer

Attribute FirstName CustomerName String CustomerName String

LastName CustomerLastName String CustomerLastName String

Phone CustomerPhone Integer CustomerPhone Integer

- CustomerStreet String CustomerStreet String

- CustomerCity String CustomerCity String

Dimension Seller Seller - Seller -

DimensionKey - SellerID Integer SellerID Integer

Attribute FirstName FirstName String FirstName String

LastName LastName String LastName String

- Phone Integer Phone Integer

- Fax Integer Fax Integer

Dimension Product Product - Product -

DimensionKey - ProductID Integer ProductID Integer

Attribute ProductName ProductName String ProductName String

Category ProductCategory String ProductCategory String

- ProductLine String - -

- ProductDescription String - -

467Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

