
ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 428

Towards Automated Design Smell Detection

A Proof of Concept in Detecting Opportunities for the Strategy Design Pattern

Stefan Burger

Software Engineering Group

University of Mannheim

Mannheim, Germany

sburger@mail.uni-mannheim.de

Oliver Hummel

Software Design and Quality

Karlsruhe Institute of Technology

Karlsruhe, Germany

hummel@kit.edu

Abstract— Patterns are widely seen as an important ingredient

to improve structure and maintainability of object-oriented

software designs. In order to fully recognize opportunities for

them, however, developers usually need a lot of experience as

well as a good understanding of a given system. Hence, they

often miss possibilities to use design patterns and produce code

containing “design smells”. With a view to overcome this un-

satisfying situation, we have derived predicates that allow

automatically identifying those locations in software systems

where the Strategy design pattern would be beneficial. Moreo-

ver, we have implemented a prototypical tool that is able to

apply these predicates. Using it on eight open-source projects

with roughly 850K lines of code as an explorative study has

discovered a variety of places where the pattern would im-

prove the design. As ongoing work has demonstrated that this

approach is transferable to other patterns, we believe that it

has a good potential to increase the use of design patterns and

therewith code quality in the not too distant future.

Keywords-Design Patterns; Pattern Recommendation; Stra-

tegy; Code Quality

I. INTRODUCTION

Creating a clean and comprehensible design is probably
one of the most challenging aspects in the development of
complex software systems [1]. Hence, it does not surprise
that it usually requires a lot of time and experience until
software engineers have mastered all subtleties involved
therein. In order to mitigate this steep learning curve, the
object-oriented development community has collected a
comprehensive set of so-called design patterns over the last
decades. The best known pattern compilation is probably the
seminal book of Gamma et al. (the “Gang of Four” (GoF),
[2]) that lists 23 of them. However, since patterns are merely
abstract solutions for common problems, they need to be tai-
lored to a given context and consequently, applying the right
pattern in a concrete situation is already a challenge in itself.

In order to break out of this vicious circle, the support of
a (potentially proactive) recommendation system [3] that is
able to recognize and suggest opportunities for the use of
design patterns directly in common programming environ-
ment certainly seems like a promising idea. In recent years,
numerous recommendation engines have been developed,
including tools intended to simplify the usage of complex
application programming interface (API) [4] or generally
aiming on increasing the amount of reuse in software devel-
opment [5][6]. However, despite the popularity of design

patterns, there have only been few attempts to automate the
detection of existing patterns in source code (such as [7]).
Obviously, the idea of detecting pattern opportunities is re-
motely related with works on smell detection in the context
of refactoring (such as by van Emden et al. [9]). Neverthe-
less, pattern recommendation requires an “understanding”
for larger source ensembles that is usually not necessary for
the relatively fine granular refactorings collected in Fowler’s
well-known book [10]. One important work on pattern rec-
ommendation has been presented by Briand et al. [11]. The
authors presented a semi-automated decision support system
intended to help developers find places for the use of patterns
in Unified Modeling Language (UML) design diagrams and
proved its feasibility for one pattern on a small case study
with 15 classes. [8]. To the best of our knowledge, the only
approach that directly aimed at automatically recommending
promising “hot spots” in the code for the use of design pat-
terns so far was recently presented by Christopoulou et al.
[25]. We will discuss this and other related work in more
detail in Section II.

Hence, the fully automatic approach for the detection of
“design smells” and prospective design patterns based on
static code analysis we describe in this paper is entering a
largely unexplored territory. The most obvious benefits of
such a pattern recommendation system are its support for
novice developers who want to learn about good design in
order to enhance the structure of their code. Moreover, it
would also disburden experienced colleagues, for whom the
recognition of pattern opportunities often still remains a chal-
lenging cognitive task, even after decades of experience [12].
Finally, such a system could also be used to get a new im-
pression on code quality, as it would allow judging whether a
system is well structured or still bears improvement potential
in terms overlooked pattern opportunities.

In order to explain our pattern recommendation ap-
proach, we start by briefly discussing related work on design
patterns and refactoring recommendations in Section II. In
Section III, we exemplarily explain our pattern recommenda-
tion approach with the Strategy pattern, before we discuss
how meaningful thresholds for the used metrics can be found
in Section IV. The section following thereafter briefly de-
scribes the prototypical tool we have developed and its ap-
plication on eight open source systems with 850 thousand
links of cod (KLOC), before we conclude our paper with an
outlook on future work and a summary of its contributions.

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 429

II. RELATED WORK

The general idea of supporting developers in the selec-
tion of design patterns in order to improve source code quali-
ty has been discussed in various publications. However, the
degree of automation so far used to be low. One early ap-
proach that has been published by Palma et al. [14] proposes
the use of an expert system. It is based on the Goal-Question-
Metric (GQM) method and uses a specific question template
for every pattern. A developer can go through these tem-
plates in order to find the best matching pattern for a specific
situation. However, this approach is completely manual and
independent from the actual source code. Durdik et al. [12]
have also been working on a set of questions intended to help
documenting decisions for design patterns in order to facili-
tate replicability and hence program maintenance and evolu-
tion. A different approach was presented by Suresh et al. [15]
who were using information about pattern usage (motivation,
consequences, etc.) from other developers to create a pattern
recommendation system. Again, the recommendation is ba-
sed on disruptive questioning about a given situation and has
no direct connection to the source code. Briand et al. [11]
have proposed a similar semi-automatic approach that uses
decision trees to identify places where GoF patterns might be
useful within UML designs. Since not all necessary infor-
mation can be derived automatically by this system, the de-
veloper needs to answer questions there as well. Moreover,
their approach, supporting seven patterns in total, needs a
comprehensive set of UML design diagrams that is often not
available in practice. To our knowledge, the only approach
similar to our work was recently published by Christopoulou
et al. [25]. Their work also focusses on identifying Strategy
pattern candidates, however they merely use an analysis of
conditional statements without analyzing the surrounding
method or class. Moreover, they do not give any rationale
when it is worthwhile to recommend a pattern.

While such pattern recommendation is a relatively new
research strand, automatically identifying potential code
smells and related refactorings have been researched to some
extend in recent years: As an example, consider Seng et al.
[16] who have utilized software metrics in order to detect
code smells and therewith identify potential places for code
refactorings. However, the recommendations generated by
their tool tended to break higher level structures such as
design patterns. Hegedűs et al. [17] aimed to connect the
usage of design patterns with software maintainability. They
measured several hundred revisions of the open source pro-
ject JHotDraw [27]. During their analyses, they found evi-
dence that patterns can improve source code quality. Huston
[18] analyzed the effects of design patterns on applications
and their metrics scores. He developed a mathematical model
based on software metrics (such as Coupling between Ob-
jects) to compare source code with a pattern and the same
code without a pattern. His conclusion was that patterns can
reduce high metric scores, but the usage of software metrics
seems generally questionable in this context. This conclusion
is also supported by Burger and Hummel’s work that showed
that refactorings often worsen metric values. Tourw'e et al.
[28] have been working towards detecting refactoring oppor-

tunities or, in other words, code smells [10]. They are using
logic meta-programming (LMP) for identifying smelly struc-
tures in the source code and for choosing an appropriate
refactoring.

Another interesting challenge is identifying already im-
plemented patterns in a given source code to be able to as-
sess whether they have been applied in a meaningful way.
The pattern detection community, e.g., comprising research-
ers like Baranski et al. [6] and others has been tackling this
challenge for several years and has reached significant re-
sults, i.e., they have created pattern detection tools using
various different technologies and approaches. Heuzeroth et
al. [8] use static analysis of the source code for this purpose.
Guéhéneuc et al. [20] have developed a combined approach
based on a numerical signature (e.g. size/complexity, number
of methods/parents, etc.) and a structural analysis of code
files to identify design patterns. Tsantalis et al. [7] have pro-
posed an approach which uses graph algorithms for identify-
ing potentially modified design patterns. Fabry et al. [19]
have developed an approach for detecting existing patterns,
which is independent from the used programming language
through extracting meta-information, such as method calls or
variable references from the parse tree for this purpose.

III. PATTERN RECOMMENDATION

This section explains our generic approach for a fully au-
tomated recommendation of design patterns and the neces-
sary steps for detecting concrete candidates (we will use the
abbreviation DPC for “design pattern candidate” in the fol-
lowing) in a source code, exemplarily using the GoF Strate-
gy pattern to illustrate it. Step one of our approach is deriv-
ing the abstract syntax tree (AST) of a given Java source
code, i.e., usually one .java file. Step two is extracting the
necessary information (metrics and structural information)
from the AST as a base for identifying DPCs. For this pur-
pose, we aim to create a predicate for each supported pattern
(to be explained in the upcoming subsections) that helps in
recognizing the candidates. A DPC is found whenever all
metric thresholds of a predicate are triggered by the underly-
ing source code, or in other words, whenever the predicate
evaluates to true. A graphical summary of this process is
presented in Figure 1 .

Figure 1 Pattern Candidates Identification Process.

Based on this model, we exemplarily describe the predi-
cates we have defined for the Strategy pattern (see Figure 2)
in the following subsections in more detail. According to
Gamma et al. [2] the Strategy pattern is defined as follows:
“Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.” Following this defini-

1. Build AST
Parse Application

source code

2. Extract
Information

Collect Metric and
Structure Information

3. Check for
DPCs

Evaluate Predicates

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 430

tion, the important part of the Strategy design pattern is the
separation of different algorithmic strategies from the con-
text in order to better support the open/closed principle,
which states that code should be open for extension without
the need for modification [21]. Thus, the strategies are im-
plemented independently in separated classes that each gives
home to a “family” of different algorithms (i.e. the methods
A and B in Figure 2). Obviously, they all need to implement
the common IStrategy interface that defines which methods
should be available.

+methodA()
+methodB()

«interface»
IStrategy

+methodA()
+methodB()

ConcreteStrategyA

+methodA()
+methodB()

ConcreteStrategyB

Context

Client

Figure 2 Class diagram for the Strategy pattern.

Although the GoF book and other literature (as e.g. [12])
provide some general guidance when to use a pattern, all are
relatively imprecise when it comes to concrete rules for actu-
ally using a pattern. For an automatic recommendation sys-
tem, however, it is obviously essential to define precise de-
tection rules with good thresholds so that a suggested pattern
is helpful and does not induce more complexity than it actu-
ally resolves.

The predicate for the Strategy pattern differs only slightly
from the one for the State pattern, which we have also started
to investigate. This is no surprise, since both patterns are
aiming at encapsulating program behavior in separate classes
in order to make it more exchangeable. Hence, candidates for
both can be detected within large conditional (if/switch)
statements depending on the same variable. The central dif-
ference of the two is conceptual: states typically “decide
themselves” when an object should switch into another state
in order to behave differently. For Strategy, this decision is
triggered by an external event, such as a decision of the de-
veloper or the user of a system so that no object variable
should be changed in the body of the conditional. Thus, the
predicate for the Strategy pattern can be written as in Table I.

TABLE I. PREDICATE FOR STRATEGY CANDIDATES.

Rule Description

R1.1

OR

In serveral methods of a class there exists an if/switch statement,
which has a similar number of cases and uses the same attribut

or parameter in the condition.

R1.2 In a class hierarchy there exists a number of subclasses, which

are all overriding the same method(s) of the super class.

Each rule of the predicate aims at identifying a different
design smell indicating a possibility to use the Strategy pat-
tern and is composed of a number of metrics based on code

characteristics like number of subclasses or common attrib-
utes. If all metrics of a rule are passing a predefined thresh-
old, a smell has been identified. Table II describes the met-
rics defined for the rules R1.1 and R1.2.

TABLE II. METRICS FOR STRATEGY DETECTION RULES.

No. Metric Type Rule

M1.1 Number of methods containing a

conditional statement

Numeric R1.1

M1.2 All methods of M1.1 are in the same class Boolean R1.1

M1.3 Every method identified in M1.1 has a
conditional with an identical number of

cases

Boolean R1.1

M1.4 There exists a common attribute /

parameter used in all cases of M1.1

Boolean R1.1

M2.1 Common super class Boolean R1.2

M2.2 Number of overridden methods Numeric R1.2

M2.3 Number of subclasses overriding the

same method

Numeric R1.2

In order to avoid choosing “arbitrary” thresholds, we have
chosen them based on a careful analysis of numerous Strate-
gy implementations retrieved from the Merobase software
search engine [23], as explained in the next section.

IV. THRESHOLD DEFINITION

One of the most critical aspects for the acceptance of our
envisaged approach is determining the thresholds that trigger
a recommendation. Only with meaningful thresholds, it is
possible to decide if a metric result indicates a design smell
that should be resolved through the use of a design pattern or
not. Thus, in this section, we explain exemplarily how we
have derived the thresholds for the Strategy pattern. It should
nevertheless be obvious that this procedure can also be used
for the analysis of other patterns. The basic process contains
four different steps, beginning with identifying the needed
characteristics of the target pattern, i.e., the rules that might
indicate the use of a pattern (cf. Table II). In order to estab-
lish grounded thresholds for a pattern, we considered an
empirical analysis of existing pattern uses as the best solu-
tion so that the second step aims at identifying them with the
help of a code search engine. The next step then is to meas-
ure the characteristics defined in step one for the discovered
pattern instances. Finally, the thresholds can be derived from
the measured values through a statistical analysis. Figure 3
illustrates the overall process graphically.

Figure 3 Finding meaningful thresholds for pattern recommendation.

The definition of the pattern characteristics in step one
can be analytically derived from the explanation of a pattern,
as described in the last section. Spotting concrete pattern
instances in source code, however, as needed for the second
step, is still an area of active research (e.g. [20]) without any
tools that would be readily usable “off the shelf”. Since we

Define Pattern
Characteristics

Search
Pattern

Instances

Measure
Characteristics

Calculate
Thresholds

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 431

nevertheless needed to come up with a way for finding a
serious number of pattern instances with a reasonable a-
mount of effort, we decided to use a software search engine.
Since we are not aware of any search engine that would rec-
ognize patterns based on their structure, we needed to
“guess” names that could be used as search terms. Fortunate-
ly, the Merobase [5] search engine allows to search for wild-
cards under a certain constraint, which is that the asterisk as
wildcard character cannot be used as the first or the last
character of a search. Under the assumptions that many Java
programmers start interfaces with a capital ‘I’, as, e.g., sug-
gested by Beck [22] and that the pattern name will also be
reflected in the interface, we derived the following query:

I*Strategy lang:java type:interface (protocol:svn OR
protocol:CVS) original:yes

Moreover, as is visible in the query, Merobase is able to
limit searches on a desired programming language (here:
Java), and a certain file type (i.e. interfaces). Moreover, we
limited our analyses on Subversion (SVN) and Concurrent
Version System (CVS) repositories as we assumed to find
more mature projects there than in results from the open web
and excluded identical duplicates. Thus, the delivered results
contain every Java interface that starts with an ‘I’ and ends
on Strategy. Merobase finds something over 250 matches for
this query. We have analyzed the first 50 projects of the
result set with a maximum of three patterns from one project
in order not to bias the results towards the habits of a specific
project. Moreover, we filtered out about 33 obviously “incor-
rect” implementations that did not comply with the recom-
mendations of the Gang of Four [2] (e.g. they were just im-
plementing a single Strategy) so that a total of 68 Strategy
implementations remained.

The histogram in Figure 4 illustrates the size of Strategy
implementations on the x-axis, i.e., how many subclasses of
the Strategy interface or methods the analyzed instances of
the pattern contained. The y-axis shows how often each case
has occurred during the analysis.

Figure 4 Distribution histogram of strategies and methods.

A statistical overview of the analysis results is shown in
Table III.

TABLE III. STATISTICAL FACTS OF THE MEASUREMENTS.

 Strategies Methods

Minimum 2.00 1.00

Median 2.00 2.00

Average 3.29 3.37

Maximum 13.00 25.00

As mentioned before, we merely considered Strategy pat-
terns containing 2 or more concrete strategies. On the other
hand, interfaces with only one method in at least two strate-
gies were included in the results.

As the statistical analysis has revealed, existing Strategy
implementations are quite different so that it is hard to come
up with fixed threshold values. Hence, we decided to create a
staged recommendation model based on the average and
median results. Although M1 and M2 (cf. Table II TABLE
II. aim at identifying strategies “hidden” in the code in a
different way, the same thresholds can be applied since both
are based upon the number of strategies and the number of
implemented methods per Strategy. Therefore, our model
illustrated in Figure 5 assigns one of three levels of useful-
ness to each detected pattern recommendation as follows:
1. Possible: a pattern is reasonable and it is likely that it

could improve the code especially if further extensions
are to be expected. A possible place for a Strategy is
found in this case if the number of strategies and meth-
ods is at least equal to the median of the analysis pre-
sented in Table III, i.e., both values are at least 2.

2. Useful: a pattern is useful for an analyzed source code
if the measurement results are at least 3, which roughly
corresponds to the average of the analyses.

3. Recommended: a pattern is definitively recommended
when all measurements are over the average, i.e., if
they are equal or larger than 4.

M
e
tr

ik
 M

1
.1

/
M

2
.2

9

P U R R R R R R

8 P U R R R R R R

7 P U R R R R R R

6 P U R R R R R R

5 P U R R R R R R

4 P U R R R R R R

3 P U U U U U U U

2 P P P P P P P P

1

0 1 2 3 4 5 6 7 8 9

Metrik M1.3/M2.3

Figure 5 Graphical threshold model for Strategy smells.

Figure 5 illustrates the three levels of usefulness grpahi-
cally: Orange for Possible, yellow for Useful und green for
Recommended.

V. DETECTION EXAMPLES

In this section, we demonstrate how our predicates can be
used for automated design smell detection and pattern rec-
ommendation. We have analyzed eight open source pro-
grams with a total of about 850 thousand Lines of Code
(KLOC) in 10,000 classes and found 41 candidates where
the Strategy pattern was deemed helpful. Before we present
the detailed numbers, we briefly explain the tool we have
been developing for this purpose.

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 432

A. Detection Tool Preview

In order to evaluate the explained rules, metrics and
thresholds automatically, we have implemented a detection
tool based on PMD [24]. PMD is a code quality tool using
the abstract syntax tree (AST) of Java for identifying code
smells. Our tool is using the plugin interface of PMD in or-
der to benefit from the PMD platform and avoid reinventing
the wheel. It is able to extract the required data for the appli-
cation of the rules defined in Table II from there and to final-
ly present recommended patterns together with the measured
values and of course the places (i.e. classes) where they
should be integrated.

The code of the tool is separated into four components,
respectively packages. The first package is collecting the
necessary information from the AST. Package two imple-
ments the data model for storing the extracted information,
while package three processes the data and measures the
required metric values. After collecting all necessary infor-
mation, the fourth package stores and evaluates the metrics
as well as the structural information and finally applies the
predicates to identify and present the potential pattern.

B. Detecion Results and Examples

As mentioned previously, we have chosen eight well-
established open source projects for a first explorative study
intended to illustrate the effectiveness of our approach and to
help us gain a better understanding of its mechanics. Table
IV provides an overview of all discovered Strategy design
smells. Execution times were measured on an old 1-core
computer with 2 GHz and can hence at least be divided by
four on more recent machines. However, in order to provide
acceptable times for a proactive recommendation system,
applying an incremental analysis seems necessary.

TABLE IV. ANALYSIS RESULT OVERVIEW.

jE
d
it

L
u

ce
n
e

H
el

ix

M
eg

am
ek

jH
o

td
ra

w

C
o
lu

m
b
a

ty
ra

n
t

Ja
ff

a

Possible 2 0 2 13 3 2 3 1

Useful 1 4 1 12 2 0 0 0

Recomm. 0 0 0 0 0 0 0 0

KLOC 117 90 35 283 80 91 41 113

Time (h) 1.5 1.1 0.6 18 1.9 3 1.4 3

Interestingly, no clear recommendation for the use of the
Strategy pattern has been found, but a total of 45 occasions
where the pattern at least appears to be possible. For the
moment, we have manually inspected the discovered sugges-
tions and consider them as appropriate. The next section on
future work will discuss planned additional evaluations.

In order to illustrate the results more vividly, we have
chosen a design smell discovered in the open source tool
jEdit (Version 5.1) [29] as an example. The code snippet
shown in Figure 6 was extracted from its TextUtilities class.
It contains two methods (findWordEnd/findWordStart) with
a switch statement in turn containing three cases using the

same case condition (i.e. WHITESPACE, SYMBOL and

WORD_CHAR) and the same switch parameter (type). Due
to limited space, code details have been omitted.

public static int findWordStart(…) {

switch(type) {
case WHITESPACE:
 …
case WORD_CHAR:
 …
case SYMBOL:

 …
} return 0;

}

public static int findWordEnd…) {
switch(type) {
case WHITESPACE:
 …
case WORD_CHAR:
 …
 case SYMBOL:
 ...
} return line.length();

}

Figure 6 Examplary opportunity to use the Strategy pattern in jEdit.

Table Vsummarizes the assessment of the predicate de-
fined in Tables I and II, respectively, for this example.

TABLE V. MEASUREMENT RESULTS FROM TEXTUTILITIES CLASS.

Metric Value Metric Value

M1.1 2 M1.3 3

M1.2 True M1.4 True

As visible in the Table V, both Boolean metrics (M1.2
and M14) are true and hence fulfill the first requirement for
design smell detection. Moreover, M1.3 is equal to the aver-
age of 3 as well as M1.1 is equal to the median. According to
the model described in Figure 5 , a Strategy pattern can be
considered as a useful improvement for this piece of code.

VI. FUTURE WORK

We have planned to improve our prototypical recom-
mender application so that it is able to detect and recommend
pattern candidates for design patterns automatically for each
Java project a developer is working on in a common inte-
grated development environment. In this context, it is im-
portant to find a convincing way to present pattern recom-
mendations to the users. A well-designed user interface that
clearly indicates where a pattern could be introduced and
which classes should participate in the pattern in what role is
probably the key to achieving user acceptance. Another re-
quirement is that it will most likely be necessary to extend
the use of thresholds to the size of the code base, i.e. the size
of code in the case blocks in case of the Strategy patterns.
According to informal feedback of colleagues, it seems to be
the case that developers are very sensitive when patterns
create a relatively large overhead compared to the actual
functionality they “contain”. Moreover, we will continue
working on recommendation predicates for further GoF pat-
terns. We currently assume that we will be able to develop
detection possibilities for most of the GoF patterns. Only
prospective Adapter and Interpreter patterns cannot be sug-
gested based on existing code since they require a cognitive
decision of the developer to integrate a novel piece of code
into an existing system. It is also impossible to recommend
opportunities for the Composite pattern since a domain anal-
ysis has to detect the part-whole hierarchies between objects
to be represented by this pattern.

Another important open topic is of course the evaluation
and the fine tuning of the developed predicates and thresh-
olds that we use for pattern candidate detection. We plan to
analyze further open source projects in order to see whether

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4 433

our tool is able to recommend appropriate pattern opportuni-
ties. In order to increase the validity of the results, we want
to give the identified recommendations to various profes-
sional developers (or even the authors of the investigated
systems themselves) in order to get an independent feedback
whether they consider the discovered candidates as useful.
Another validation we plan to tackle soon is scanning the
repositories of open source projects for concrete refactorings
that have integrated design patterns into their code base.
Using our tool on the version before such a refactoring obvi-
ously should yield a recommendation for the appropriate
pattern and further demonstrate the effectiveness of our ap-
proach.

VII. CONCLUSION

In this paper, we have presented a prototype of a design
pattern recommendation tool that can be directly integrated
into common development environments. It comprises the
following three contributions. First, we have explained how
opportunities for the use of design patterns can be identified
through analyzing the AST of Java programs based on so-
called detection predicates. Nevertheless, the presented ideas
are not be limited to Java, but should be transferable to other
object-oriented languages as well. Second, we have present-
ed an approach on how meaningful thresholds for the metrics
used in the detection predicate can be derived from mining
existing Strategy implementations in open source projects.

Third, in order to demonstrate the practical feasibility of
our ideas, we have presented concrete predicates for the GoF
Strategy pattern as well as a concrete Java implementation
for a detection utility and evaluated it on eight open source
projects together comprising more than 850 thousand lines of
code 10,000 classes. Our tool was able to present numerous
meaningful opportunities for the utilization of the pattern.
Hence, we are encouraged to continue our work in order to
also define predicates for various other GoF patterns and
extend our prototype accordingly.

REFERENCES

[1] C. Larman, Applying UML and Patterns, An Introduction to
Object-Oriented Analysis and Design and Iterative
Development, 3/e, Pearson Education India, 2012.

[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
patterns: Abstraction and reuse of object-oriented design,
Springer, 1993.

[3] M. Robillard, R. Walker and T. Zimmermann,
“Recommendation Systems for Software Engineering”, IEEE
Software, Vol. 27, No. 4, pp. 80-86, 2010.

[4] R. Holmes, R. J. Walker and G. C. Murphy, “Strathcona
example recommendation tool”, ACM SIGSOFT Software
Engineering Notes, pp 237-240, 2005.

[5] O. Hummel, W. Janjic and C. Atkinson, “Code Conjurer:
Pulling reusable software out of thin air”, IEEE Software,
Vol. 25, No. 5, pp. 45-52, 2008.

[6] M. Baranski and J. Voss, “Genetic algorithm for pattern
detection in NIALM systems”, IEEE Intern. Conference on
Systems, Man and Cybernetics, , pp. 3362-3468, 2004.

[7] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.
Halkidis, “Design pattern detection using similarity scoring”,
IEEE Transactions on Software Engin., pp. 896-909, 2006.

[8] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,
“Automatic design pattern detection”, IEEE International
Workshop on Program Comprehension”, pp. 94-103, 2003.

[9] E. Van Embend, and L. Moonen, “Java quality assurance by
detecting code smells”, Working Conference on Reverse
Engineering, pp. 97-106, 2002.

[10] M. Fowler, Refactoring: improving the design of existing
code, Addison-Wesley Professional, 1999.

[11] L. Briand, Y. Labiche, and A. Sauve, “Guiding the
Application of Design Patterns based on UML Models”,
Intern. Conf. on Software Maintenance, pp. 234-243, 2006.

[12] K. Beck, et al., “Industrial experience with design patterns”.
Intern. Conf. on Software Engin., pp. 103 -114, 1996.

[13] Z. Durdik, and R. Reussner, “Approach for architectural
design and modelling with documented design decisions”, Int.
Conf. on Quality of Software Architectures, p.9, 2012.

[14] F. Palma, H. Farzin, Y. Gueheneuc, and N. Moha,
“Recommendation system for design patterns in software
development”, Intern. Workshop on Recommendation
Systems for Software Engineering, pp. 49 – 54, 2012.

[15] S. Suresh, M. Naidu, S. A. Kiran, and P. Tathawade, “Design
pattern recommendation system: a methodology, data model
and algorithms”, International Conference on Computational
Techniques and Artificial Intelligenc, 2011.

[16] O. Seng, F. Simon, and T. Mohaupt, Code Quality
Management, dpunkt Verlag, Heidelberg, 2006

[17] P. Hegedűs, D. Bán, R. Ferenc, and T. Gyimóthy, “Myth or
Reality? Analyzing the Effect of Design Patterns on Software
Maintainability”, in Computer Applications for Software
Engineering, Disaster Recovery, and Business Continuity,
Springer, pp. 138 - 145, 2012.

[18] B. Huston, “The effects of design pattern application on
metric scores”, Journal of Systems and Software, Vol. 58, No.
3, pp. 261-269, 2001.

[19] J. Fabry and T. Mens, “Language-independent detection of
object-oriented design patterns”, Computer Languages,
Systems & Structures, Vol. 30, No. 1, pp. 21-33, 2004.

[20] Y. Guéhéneuc, G. Jean-Yves and S. Houari. "Improving
design-pattern identification: a new approach and an
exploratory study." Software Quality Journal 18.1, pp. 145 -
174, 2010.

[21] R. Martin, Clean code: a handbook of agile software
craftsmanship, Pearson Education, 2008.

[22] K. Beck,. Implementation Patterns. Pearson Education, 2007.

[23] W. Janjic, O. Hummel, M. Schumacher, and C.Atkinson, “An
unabridged source code dataset for research in software
reuse“. Intern. Workshop on Mining Software Repositories,
pp. 339 – 342, 2013.

[24] N. Rutar,C. Almazan, and J. Foster. “A comparison of bug
finding tools for Java“. In 15th International Symposium on
Software Reliability Engineering, pp. 245 – 256, 2004.

[25] Christopoulou, A., Giakoumakis, E. A., Zafeiris, V. E., and
Soukara, V., “Automated refactoring to the Strategy design
pattern”. Information and Software Technology, pp. 1202-
1214, 2012.

[26] S. Burger and O. Hummel, “Über die Auswirkungen von
Refactoring auf Softwaremetriken“ (in German), GI-
Fachtagung Softwaretechnik, pp. 113–126, 2012.

[27] http://www.jhotdraw.org/, JHotDraw as Open-Source Project,
Accessed on 02/11/2014

[28] T. Tourw'e und T. Mens, „Identifying refactoring
opportunities using logic meta programming,“ in Software
Maintenance and Reengineering, 2003.

[29] http://www.jedit.org/, Progammer’s Text Editor, Accessed on
02/11/2014

