
Towards Automating the Coherence Verification of
Multi-Level Architecture Descriptions

Abderrahman Mokni∗, Marianne Huchard†, Christelle Urtado∗, Sylvain Vauttier∗ and Huaxi (Yulin) Zhang‡
∗LGI2P, Ecole des Mines Alès, Nı̂mes - France

Email: {Abderrahman.Mokni, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr
†LIRMM, CNRS and Université de Montpellier 2, Montpellier - France

Email: huchard@lirmm.fr
‡INRIA, Ecole Normale Supérieure de Lyon, Lyon - France

Email: yulinz88@gmail.com

Abstract—Component-Based Software Engineering considers off-
the-shelf software component reuse as its cornerstone. In previous
work, we proposed Dedal, a three level Architecture Description
Language. It supports a novel modeling approach that aims at
describing the specification, the implemented configuration and
the running assembly of the software. This eases reuse by guiding
the search for existing components. In this paper, we propose a
formal approach that states the rules for component reuse and
interoperability among Dedal models. The use of B, a specifi-
cation language providing model-checking capabilities, enables
the automatic verification of Dedal architecture descriptions. The
approach is illustrated using the example of a home automation
software.

Keywords–Software architecture, component reuse, B formal
models, component subtyping, component compatibility, architec-
ture levels.

I. INTRODUCTION

Component-Based Software Engineering (CBSE) aims at
engineering software from previously developed components.
Expected outcomes are to increase development speed and
software quality, to ease the development of software of
ever increasing complexity and to decrease costs. In previous
work [1], we proposed a three step approach to specify, de-
sign and deploy software architectures from existing software
components. This proposal also includes means to control
architecture evolution. It is supported by a three level Ar-
chitecture Description Language (ADL) and component model
called Dedal. The originality of this approach is to focus on
component reuse by guiding the search for adequate compo-
nents during the CBSE process. In this paper, we propose rules
to automatically support verification and validation of Dedal’s
architecture descriptions which is a first step to handle reuse
and architecture-centric evolution in a rigorous way. The rules
are expressed in the B [2] notation, a formalism that can
be automatically verified using existing provers and model
checking tools. The remaining of the paper is structured as
follows. Section II gives an overview of the three Dedal models
and illustrates them with a home automation architecture
example. Section III presents an overview of our formalization
of Dedal models using the B notation. Section IV sets the intra-
level rules for component substitutability and compatibility.
Section V describes inter-level rules that define the relations
between component descriptions in two successive description
levels. Section VI depicts an overview of the experimentation

of the presented formal models and rules. Section VII analyzes
related work before Section VIII concludes and discusses
future work.

II. OVERVIEW OF THE DEDAL MODEL

Dedal is an ADL that helps software development at three
abstraction levels. These levels have been designed to support
reuse-centered architecture development. In the following, we
detail each of Dedal’s three abstraction levels [1]. To illustrate
these concepts, we propose to model a part of Home Automa-
tion Software (HAS) that manages comfort scenarios. Here,
it automatically controls the building’s lighting and heating in
function of the time and ambient temperature. For this purpose,
we propose an architecture with an orchestrator component
that interacts with the appropriate devices to implement the
scenario.

A. The abstract architecture specification

The abstract architecture specification is the first level
of architecture software descriptions. It provides a generic
view of the global structure of the software and states its
expected functionalities according to functional requirements.
An architecture specification may correspond to a prescriptive
architecture, which describes the system’s architecture ”as-
wished” at specification time, as defined by Taylor et al. [3]. In
Dedal, the architecture specification is composed of component
roles and their connections. Component roles represent the
roles that components are expected to play in the system. They
thus are abstract and partial component type specifications.
They are identified by the architect in order to search for and
select corresponding concrete components in the next step.
Figure 1-a shows a possible architecture specification for the
HAS. In this specification, five component roles are identified.
A component playing the HomeOrchestrator role controls
four components playing the Light, Time, Thermometer and
CoolerHeater roles.

B. The concrete architecture configuration

The concrete architecture configuration is an implemen-
tation view of the software architecture. It results from the
selection of existing component classes in component repos-
itories. Thus, an architecture configuration lists the concrete

416Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 1: Architecture specification, configuration and assembly of HAS

component classes that compose a specific version of the
software system.

Component classes are concrete component implementa-
tions. In Dedal, component classes can be either primitive
or composite. Primitive component classes encapsulate exe-
cutable code. Composite component classes encapsulate an
inner architecture configuration (i.e., a set of connected com-
ponent classes which may, in turn, be primitive or composite).
A composite component class exposes a set of interfaces cor-
responding to unconnected interfaces of its inner components.
A Component type gives an abstract representation of a set
of component classes. It defines the set of interfaces that
a class must hold to be an implementation of this type.
Component types are used to classify component classes and
build indexes on the content of component repositories. To
search for component classes that can be used to implement an
architecture specification, component roles are matched with
component types (using a classification based on specialization
and substitutability in a manner similar to Arévalo et al. [4]).
As they are implementations of their declared component
types, these component classes are valid realizations of the
component roles. Figure 1-b shows the architecture config-
uration of the HAS example as well as an example of an
AirConditioner composite component and its inner configura-
tion. As illustrated in this example, a single component class
may realize several roles in the architecture specification as
with the AirConditioner component class which realizes both
Thermometer and CoolerHeater roles. Moreover, a component
class may provide more services than those listed in the
architecture specification as with the Lamp component class
that provides an extra service to control the intensity of light.

C. The instantiated architecture assembly

The instantiated architecture assembly describes software
at runtime and gathers information about its internal state.
The architecture assembly results from the instantiation of
an architecture configuration. It lists the instances of the
component and connector classes that compose the deployed
architecture at runtime and their assembly constraints (such as

maximum numbers of allowed instances).
Component instances document how component classes from
an architecture configuration are instantiated in the software.
Each component instance has an initial and current state
represented by a list of valued attributes. Figure 1-c shows
an instantiated architecture assembly for the HAS example.

D. Motivation

The three-level Dedal model is a novel approach to compo-
nent-based software development that increases reuse by sup-
porting the search for off-the-shelf components. The associated
ADL focuses on the description of architectural concepts in
three separated abstraction levels but it lacks mechanisms to
verify and validate architecture definitions before and after evo-
lution. This work aims to provide mechanisms to automate the
verification and validation of coherence between architecture
levels from requirement to runtime. We propose a set of rules
to define the relations inside each abstraction level and between
two of them. The rules are expressed using B [2], a first-order
logic and set-theoretic language with a rich expressiveness that
can be automatically verified using existing model checkers.

III. OVERVIEW OF THE FORMALIZATION

The formalization is divided into two parts. A first part,
which is generic and independent from any architectural
model, consists in formalizing the most common concepts of
software architectures. The second part is specific to Dedal and
consists in formalizing concepts and relationships of the Dedal
model. The formal model of Dedal therefore is a specialization
of the generic model. In the remainder, we present the most
important parts of the formalization.

A. Formalizing underlying architectural constructs

During the last decades, a consensus established that archi-
tectures were made of three main elements [5]: components
(loci of computation), connectors (mediators) and configura-
tions (topologies of the architecture). In Table I, we give the
formal definition and relations between these concepts (the
arch concepts model).

We note that Arch concepts includes an inner model
called Basic concepts which contains the formalization of
finer grained elements (i.e., interfaces and signatures).
Basic concepts is not presented in this paper for the sake of
space.

B. Formalization of Dedal architecture levels

Dedal proposes three abstraction levels to describe architec-
tures. Formalizing each of these levels enables to verify each
of them separately but also to check the global coherence of
architecture definitions.

The Arch specification model. An architecture specifica-
tion inherits from the generic definition of an architecture as
stated in the Arch concepts model. In Dedal, an architecture
specification is specifically made of a set of component roles.
Roles are thus defined as specializations of components by the
following property: COMP ROLES ⊆ COMPS ∧ compRole ⊆ COMP ROLES.

The Arch configuration model. In the same way, the
component class concept used in the Arch configuration model

417Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE I: Formal specification of underlying concepts

MACHINE Arch concepts
INCLUDES Basic concepts
SETS
ARCHS;COMPS;COMP NAMES
VARIABLES
architecture, arch components, arch connections, component,
comp name, connection, comp interfaces, client, server
INVARIANT
/* A component has a name and a set of interfaces */

component ⊆ COMPS ∧
comp name ∈ component → COMP NAMES ∧
comp interfaces ∈ component � P (interface) ∧

/* A client (resp. server) is a couple of a component and an interface */
client ∈ component ↔ interface ∧
server ∈ component ↔ interface ∧

/* A connection is a one-to-one mapping between a client and a server */
connection ∈ client �� server ∧

/* An architecture has a set of components and connections */
architecture ⊆ ARCHS ∧
arch components ∈ architecture → P (component) ∧
arch connections ∈ architecture → P (connection)

Specific B notations:
→: total function ↔: relation �: injection
��: bijection P(<set>): powerset of <set>

is defined as a specialization of the component concept, as
they share the same properties (name, interface, etc.). Table II
shows the formalization of the configuration level.

TABLE II: Formal specification of the configuration level

MACHINEArch configuration
INCLUDES Arch concepts, Arch specification
SETS

COMP CLASS; CLASS NAME; ATTRIBUTES; CONFIGURATIONS
CONSTANTS

COMP TYPES
PROPERTIES
/* Component types are also a specialization of components distinct from roles */

COMP TYPES ⊆ COMPS ∧ COMP TYPES = COMPS - COMP ROLES
VARIABLES

config, config components, config connections, compType, compClass,
class name, class attributes, compositeComp, delegatedInterface, . . .

INVARIANT
compType ⊆ COMP TYPES ∧

/* A component class has a name and a set of attributes */
compClass ⊆ COMP CLASS ∧ class name ∈ compClass → CLASS NAME ∧
attribute ⊆ ATTRIBUTES ∧ class attributes ∈ compClass → P(attribute) ∧

/* A composite component has also a configuration and is constituted of
component classes */
compositeComp ⊆ compClass ∧ composite uses ∈ compositeComp → config ∧

/* A delegation is a mapping between a delegated interface and
its corresponding one */
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface � interface ∧

/* A configuration is a set of component classes and connections*/
config ⊆ CONFIGURATIONS ∧
config components ∈ config → P(compClass) ∧
config connections ∈ config → P(connection)

The Arch assembly model. The Arch assembly model
captures the definition of architectures at the instance level.
Component instances are mapped to initial and current states.
This information is useful to audit software evolution at
runtime and control dynamic reconfigurations. Next section
sets Dedal’s intra-level rules by defining invariant constraints
on the previously defined concepts.

IV. INTRA-LEVEL RULES

A. Component substitutability rules

In software architectures, substitutability determines when
a component can replace another while holding the architecture

consistent. The notion of substitutability was firstly discussed
in object-oriented languages to define subtyping and object
interoperability. This notion has also been discussed in the
component-based paradigm [6] [7] but there is still no con-
sensus in defining component substitutability. Indeed, com-
ponents are complex entities that can be studied from many
views (syntactic, semantic, protocol, etc.). In Dedal, at least a
syntactic substitutability is needed to filter components while
searching for suitable ones in repositories. The corresponding
rules can be extended later to take dynamic behavior into
account. Figure 2 shows an example of component subtyping
that illustrates the main substitutability rules. The principle
that is enforced is that a subtype should provide at least the
same services as its supertype and require the same or less
services. For example, Clock can be substituted for ClockV2
which, provides one more interface (IInfo) and requires one
less interface (interface ILanguage is no more required) (cf.
Rule 1), and the interface type ILocation is subtyped by
ILocation&GMT which has one more signature getGMT() (cf.
Rule 3).

Figure 2: Example of component substitutability

Rule 1: Component substitutability. A component C sup
can be substituted for a component C sub iff there exists an
injection inj1 between the set of interfaces of C sup and the
set of interfaces of C sub such that int can be substituted for
inj1(int), int being a provided interface of C sup, and there
exists an injection inj2 between the set of interfaces of C sub
and the set of interfaces of C sup such as inj2(int) can be
substituted for int, int being a required interface of C sub.
Formally:

comp substitution ∈ component ↔ component ∧
∀ (C sup , C sub).

(C sup ∈ component ∧ C sub∈ component ∧ C sup 6= C sub
⇒

(C sub ∈ comp substitution [{ C sup}]
⇔

∃ (inj1 , inj2).
(inj1 ∈ providedInterfaces (C sup) � providedInterfaces(C sub) ∧
∀ (int).

(int ∈ interface ∧ int ∈ providedInterfaces(C sup)
⇒

inj1(int) ∈ int substitution [{int}]) ∧

inj2 ∈ requiredInterfaces (C sub) � requiredInterfaces (C sup) ∧
∀ (int).

(int ∈ interface ∧ int ∈ requiredInterfaces (C sub) ∧
⇒

int ∈ int substitution [{inj2 (int)}]))))

418Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

According to Rule 1, the component subtype can have more
provided and fewer required interfaces than its supertype. This
rule depends on interface substitutability which we define as
follows:

Rule 2: Interface substitutability. Interface substitutabil-
ity depends on the interface type and direction. Interface
substyping is given by Rule 3. When both interfaces are
provided, substitutability is covariant with interface subtyping
(i.e., a provided interface int sup is substituted for a provided
interface int sub iff the type of int sub is a subtype of int sup’s
type). In the second case where the two interfaces are required,
substitutability is contravariant with interface subtyping (i.e., a
required interface int sup is substituted for a required interface
int sub iff the type of int sup is a subtype of int sub’s type).

Rule 3: Interface subtyping. An interface type intTypeSub
is a subtype of an interface type intTypeSup iff there exists an
injection inj between the signature set of intTypeSup and the
signature set of intTypeSub such that for each signature sig of
intTypeSup, inj(sig) specializes sig.

int subtype ∈ interfaceType ↔ interfaceType ∧
∀ (intTypeSup,intTypeSub).
(intTypeSup ∈ interfaceType ∧ intTypeSub ∈ interfaceType ∧
intTypeSup 6= intTypeSub
⇒

((intTypeSup, intTypeSub) ∈ int subtype
⇔
∃ inj.

(inj ∈ int signatures(intTypeSup) � int signatures(intTypeSub) ∧
∀ (sig).
(sig ∈ signature ∧ sig ∈ int signatures(intTypeSup)
⇒

inj(sig) ∈ sig subtype[{sig}]))
)

)

According to Rule 3, interface subtyping allows to add new
signatures. This is why this relation is used both in a covariant
way on provided interfaces and in a contravariant way (to
require less signatures) on required interfaces in Rule 2.
Interface subtyping in turn relies on signature specialization.

Rule 4: Signature specialization. Signature specializa-
tion conforms to method overriding in the object-oriented
paradigm. A specialized signature must have contravariant
specialization of parameter types and covariant specialization
of return type as it must require less information when invoked
and provide richer results. To define signature specialization,
we first consider parameter specialization.

Rule 4.1. A signature sig sub is parameter subtype of a
signature sig sup iff there exists an injection inj between the
parameters of sig sup and the parameters of sig sub and for
each parameter param of sig sup, inj(param) has the same
name as param and the type of inj(param) is a subtype of
param’s type.

∀ (sig sup, sig sub).
(sig sup ∈ signature ∧ sig sub ∈ signature ∧ sig sup 6= sig sub
⇒ (

(sig sup, sig sub) ∈ param subtype
⇔
∃ inj.(inj ∈ parameters(sig sup) � parameters(sig sub) ∧

∀ param.(param ∈ parameter ∧
param ∈ parameters (sig sup)

⇒
param name (param) = param name (inj (param)) ∧
parameter type (inj(param))

∈ closure (subtype)[{parameter type (param)}]))
)

)

Rule 4.2. A signature sig sub specializes a signature
sig sup if and only if they have the same name and sig sup
is parameter subtype of sig sub and the return type of sig sub
is a subtype of the return type of sig sup.

∀ (sig sup, sig sub).
(sig sup ∈ signature ∧ sig sub ∈ signature ∧ sig sup 6= sig sub
⇒ (

(sig sup, sig sub) ∈ sig subtype
⇔ (

sig name (sig sup) = sig name (sig sub) ∧
(sig sub, sig sup) ∈ param subtype ∧
sig return (sig sub) ∈ closure (subtype)[{sig return (sig sup)}])
)

)

B. Component compatibility rules

Components compatibility relies on interface compatibility.
Two components can interact if and only if they have at least
two compatible (connectable) interfaces.

Rule 5: Interface compatibility. A provided interface intA
and a required interface intB are compatible iff the type of intA
is a subtype of intB’s.

In other words, a provided interface should declare the
same, a specialization of and possibly extra signatures than the
required interface to ensure that all the required functionalities
can be supplied.

Substitutability and compatibility rules are defined for
general-purpose. In Dedal, they are used to check intra-level
relations between components of the same kind (i.e., roles,
types, classes or instances). In the remainder, we focus on the
inter-level rules which enable to check the global coherence
between the multiple architecture definitions.

V. INTER-LEVEL RULES

Specifying inter-level rules is a crucial step to ensure
coherence between architecture levels from requirements to
runtime (cf. Figure 3). In order to go from the specification of
an architecture to an implemented configuration, the architect
must select suitable concrete component classes that realize the
specified roles. The implementation can then be instantiated
and deployed in multiple contexts. Inter-level rules are the
foundations to automate such a reuse process in component-
based software development.

A. Relations between the specification and configuration levels

Two main relations are considered between the
specification and configuration levels: the matching relation

419Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 3: Relations between architecture levels

between component roles and concrete component types
and the realization relation between component roles and
component classes.

Rule 6: Component type matching. A component type
CT matches with a component role CR iff it exists an injection
inj between the set of interfaces of CR and the set of interfaces
of CT such that int can be substituted for inj(int), int being an
interface of CR. Formally:

matches ∈ compType ↔ compRole ∧
∀ (CT, CR).(CT ∈ compType ∧ CR ∈ compRole
⇒
((CT,CR) ∈ matches
⇔
∃(inj).(inj ∈ comp interfaces (CR) � comp interfaces (CT) ∧

∀ (int).(int ∈ interface ⇒ inj (int) ∈ int substitution [{int}])
)))

As stated in Section II, component role descriptions are
specified by the architect to guide the search for existing
component classes. Hence, there are several ways to find a
concrete realization of component roles. A component class
can realize several roles at once or a composition of component
classes (composite component) can complement each other
to realize a given role. This holds a many-to-many mapping
between component roles and concrete component types.

Rule 7: Component implementation. To draw an anal-
ogy with object-oriented programming, the relation between
a component class and a component type is similar to the
relation between a class and an interface. A component class
must implement all the provided interfaces of the component
type. Implementation details (that depend on decisions of the
architect) are out of the scope of the abstract aspects that
we intend to validate. However, an abstract formalization of
the implementation is compulsory to make our formal model
coherent. Component implementation is defined as follows:

class implements ∈ compClass → compType

Rule 8: Component realization. The relation between a
component class and a component role is a corollary of the

matching relation (Rule 6) and the implementation relation
(Rule 7). Indeed, a component class CL realizes a component
role CR iff it exists a component type CT implemented by CL
and that matches with CR. Formally:

realizes ∈ compClass ↔ compRole ∧
∀ (CL, CR).(CL ∈ compClass ∧ CR ∈ compRole
⇒

((CL, CR) ∈ realizes
⇔
∃ CT.(CT ∈ compType ∧ (CT , CR) ∈ matches ∧
(CL,CT) ∈ class implements))

)

Rule 9: Relation between an architecture specification
and its configuration. An architecture configuration Conf re-
alizes an architecture specification Spec iff for each component
role CR in Spec it exists a component class CL in Conf such
that CL realizes CR.

implements ∈ config ↔ arch spec ∧
∀ (Conf, Spec).(Conf ∈ config ∧ Spec ∈ arch spec
⇒ (Conf, Spec) ∈ implements

⇔
∀ CR.(CR ∈ compRole ∧ CR ∈ spec components (Spec) ⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config components (Conf) ∧
(CL, CR) ∈ realizes)))

B. Relation between the configuration and assembly levels

An architecture assembly is composed of instances of the
component classes that are in the architecture configuration.
The instantiation depends on many technical choices that
should be made by the architect (e.g., the choice of the runtime
framework) and should not be considered at such an abstract
level of formalization.

comp instantiates ∈ compInstance → compClass

The instantiation is a total function between the set of
component instances and the set of component classes. This
means that each component instance instantiates one and only
one component class. Conversely, a component class can have
several instances (the number of instances can be specified
through assembly constraints).

Consequently, an architecture assembly Asm instantiates an
architecture configuration Conf iff every component class CL
of Conf is instantiated at least once by a component instance
CI in Asm and every component instance CI in Asm is an
instance of a component class in Conf :

instantiates ∈ assm → config
∀ (Asm,Conf).(Asm ∈ assm ∧ Conf ∈ config
⇒
((Asm,Conf) ∈ instantiates
⇔
∀ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf)
⇒
∃ CI.(CI ∈ compInstance ∧ CI ∈ assm components(Asm) ∧
(CI,CL) ∈ comp instantiates) ∧

∀ CI.(CI ∈ compInstance ∧ CI ∈ assm components(Asm)
⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf) ∧

(CI,CL) ∈ comp instantiates)))))

VI. EXPERIMENTATION OVERVIEW

In order to validate the proposed rules, formal models are
manually instantiated using simple tests covering the main
cases. Each test corresponds to a specific instantiation of

420Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

a given architectural model to check if one of the defined
rules meets the required definition. Models are checked using
ProB [8], a model checker of B that shows invariant violations
and the current state of the given model. In case a violation
is detected, either instantiation is wrong or the defined rules
have to be revisited. At this stage of work, all rules have
been manually validated and can be used later to automate
the analysis process.

In future work, we aim to automatically generate the
specification of model instances from the graphical or textual
descriptions of architectures. The derived models will then be
passed to the model checker for automatic verification of the
architectural descriptions.

VII. RELATED WORK

Over two decades ago, many researches focused on giving
ADL’s a formal representation. A classification of the major
ADL’s was proposed by Medvidovic et al. [5]. Although,
most of these ADL’s provide the required features to describe
an architecture, they often are either domain-specific or lack
formal foundations to support automatic analysis and dynamic
evolution. Some ADL’s like Wright [9] and Rapide [10] focus
on the specification and verification of architectural behavior.
Wright uses CSP, a formal language based on process algebra
while Rapide uses partially ordered sets (posets) of events to
model behavior and enable formal reasoning on architecture
specifications. Both Wright and Rapide, however, focus on
architecture behavior and do not consider its structure. They
do not provide any mechanism for component reuse and do
not support multiple abstraction levels either.

Other close works are the formalization and analysis of
architectural styles using a formal language. Kim and Gar-
lan [11] propose an approach for modeling and analyzing ar-
chitectural styles using Alloy. These works address architecture
styles rather than architecture constructs and aim to provide a
generic formal model for several styles like C2 [12] or the
pipe and filter style. Our focus is slightly different since we
address the structure of architectures independently from its
style.

Our work has also drawn inspiration from type theory
in object languages [13]. Like objects, components can have
subtyping relations that enable reuse and software evolution.
However, components are more complex than plain objects
and they do not obey the same rules. To our knowledge, there
was no real attempt, except for Medvidovic et al. to adapt the
theory of objects to components. Medvidovic et al. propose a
type theory for software architectures by multiple component
subtyping and have the architect decide about which properties
(name, interface, behavior or implementation) he wants to spe-
cialize. They applied their theory on their C2SADEL [6] ADL.
In our three level component model, we need different typing
rules to define relations between components into and between
each levels of architecture descriptions. A part of our subtyping
rules is also inspired from our previous work on building
component directories using Formal Concept Analysis [14]. In
fact, rules for specializing functionality signatures were defined
to guide the search for compatible or substitutable components
in a yellow-page like component directory.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes mechanisms to automate component
reuse and inter-level coherence checking in a component-based
development process. The outlined approach consists in cou-
pling a three-level ADL called Dedal with B formal models.
These models were reinforced with invariant constraints to set
substitutability and compatibility rules into each abstraction
level and inter-level rules to enable (1) reuse by guiding
the search for concrete component classes and (2) coherence
checking between abstraction levels. This work sets the basis
for the definition of evolution rules which will be the next
step of our contribution. Indeed, the proposed mechanisms
will be used to automatically handle software evolution and
propagate changes among architecture descriptions to preserve
coherence.

A practical issue of future work will be to provide a toolset
for Dedal, our three-level ADL. Indeed, we plan to map Dedal
to UML and provide a visual modeling tool. Furthermore, we
are considering the integration of existing model checkers and
animation tools to automate verification and realize simulations
and early validations of evolution scenarios.

REFERENCES

[1] H. Y. Zhang, C. Urtado, and S. Vauttier, “Architecture-centric
component-based development needs a three-level ADL,” in Proc. of
the 4th ECSA, ser. LNCS, vol. 6285. Copenhagen, Denmark: Springer,
August 2010, pp. 295–310.

[2] J.-R. Abrial, The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[3] R. Taylor, N. Medvidovic, and E. Dashofy, Software architecture:
Foundations, Theory, and Practice. Wiley, 2009.

[4] G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vauttier, “FCA-
based service classification to dynamically build efficient software
component directories,” International Journal of General Systems, 2008,
pp. 427–453.

[5] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” IEEE TSE,
vol. 26, no. 1, Jan. 2000, pp. 70–93.

[6] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and en-
vironment for architecture-based software development and evolution,”
in Proc. of the 21st ICSE, Los Angeles, USA, 1999, pp. 44–53.

[7] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, Jul 1999, pp.
38–45.

[8] M. Leuschel and M. Butler, “ProB: An automated analysis toolset for
the B method,” International Journal on Software Tools for Technology
Transfer, vol. 10, no. 2, Feb. 2008, pp. 185–203.

[9] R. Allen and D. Garlan, “A formal basis for architectural connection,”
ACM TOSEM, vol. 6, no. 3, Jul. 1997, pp. 213–249.

[10] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and analysis of system architecture using
rapide,” IEEE TSE, vol. 21, 1995, pp. 336–355.

[11] J. S. Kim and D. Garlan, “Analyzing architectural styles,” Journal of
Systems and Software, vol. 83, no. 7, Jul. 2010, pp. 1216–1235.

[12] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., and
J. E. Robbins, “A component- and message-based architectural style for
GUI software,” in Proc. of the 17th ICSE. Seattle, USA: ACM, 1995,
pp. 295–304.

[13] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM
TOPLAS, vol. 16, no. 6, 1994, pp. 1811–1841.

[14] N. A. Aboud, G. Arévalo, J.-R. Falleri, M. Huchard, C. Tibermacine,
C. Urtado, and S. Vauttier, “Automated architectural component clas-
sification using concept lattices,” in Proc. WICSA/ECSA, Cambridge,
UK, September 2009, pp. 21–31.

421Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

