
Security Through Software Rejuvenation

Chen-Yu Lee, Krishna M. Kavi, Mahadevan Gomathisankaran, Patrick Kamongi

Department of Computer Science and Engineering
University of North Texas

Email: {Chen-Yu.lee,Krishna.Kavi, Mahadevan.Gomathisankaran}@unt.edu
Email: patrickkamongi@my.unt.edu

Abstract—Software rejuvenation has been used to improve reli-
ability of systems by periodically checkpointing and restarting
them. In this paper, we propose to use rejuvenation as a
mechanism to enhance the security of Cloud infrastructure and
eliminate malware by continuous and periodic rejuvenation. To
evaluate the effectiveness of rejuvenation in eliminating malware,
we defined an experimental setup, and utilizing complete sys-
tem rejuvenation, as well as application level rejuvenation we
investigated which malware were eliminated. We also describe
a cost model for rejuvenation so that one can determine how
often systems and applications should be rejuvenated, trading
cost against security. Our experiments and models show that
rejuvenation once every 24 hours is cost-effective.

Keywords–Rejuvenation; Malware; Security; Vulnerability.

I. INTRODUCTION

Computer viruses have been evolving into more complex
malware and the detection and elimination of such threats is
becoming very expensive in large IT operations. The number
of new types of malware detected over the past ten years has
increased very rapidly since 2010.

Software Rejuvenation technology was first proposed by
Lin in 1993 [1]. The author observed that system performance
degrades with time, and failure rates also increase with time.
This phenomenon was termed software aging. A proactive so-
lution to this problem is to gracefully terminate an application
or a system and restart it in a clean internal state, known
as software rejuvenation [2]. Rejuvenation technology was
originally used for software fault tolerance [3] [4]. The most
relevant work that applies rejuvenation for protection against
security attacks is SWRMS proposed by Aung in 2004 [5]. The
authors propose to identify attacks using an intrusion detection
system, and then perform software rejuvenation to counteract
these attacks, including killing the intruders’ processes, halting
abuse, shutting down unauthorized connections, and restarting
applications. The attacks, however, are not eliminated if the
processes are infected. They do not rely on rollback to restart
infected processes from a known clean state. Moreover, since
the approach is based on detecting intrusions, one should
include the cost of detecting attacks along with the cost of
rejuvenation, to estimate the total cost of their approach. We do
not base rejuvenation on detecting attacks; rejuvenation is ap-
plied regularly. Along with rejuvenation, we restart processes
from a checkpointed or clean state.

More generally, we believe that rejuvenation can either be
used in place of scanning to detect attacks and malware, or in

addition to scanning. To evaluate the effectiveness of rejuve-
nation against malware and viruses, we created a testbed that
performs both system level and application level checkpointing
and restarting. We then introduced known malware and verified
if the malware was eliminated after the restart. The testbed also
provides for a realistic evaluation of the cost of rejuvenation
and which malware can be eliminated using rejuvenation. In
this paper, we also develop a model to compare the cost
of rejuvenation with the cost of scanning for malware. We
emphasize that rejuvenation is more than just restarting of
systems, it also includes checkpointing software applications
and systems in clean states, and periodically rolling back the
software to known clean states.

The rest of the paper is organized as follows: Section II
introduces how rejuvenation can be used to enhance security.
This section also introduces a model for estimating the cost
of rejuvenation. Section III shows the simulations results of
rejuvenation on our web service built by Joomla [6] and Open-
Stack [7]. Section IV compares rejuvenation with scanning
approaches. Section V provides our conclusions and future
work.

II. REJUVENATION FOR SECURITY

A. Environment Description

The proposed rejuvenation is applied to Cloud computing
[8] environments to enhance security and stability of the
systems. Many commercial operations rely on Cloud com-
puting and in such applications, maintaining low Mean Time
To Repair (MTTR) and the cost of repair are essential to
the profitability of the operations. Therefore, they normally
use software patches to fix problems, instead of completely
overhauling their systems. The patches include system patches,
software patches, malware/virus signatures, firewall rules, etc.

B. Work Flow of Rejuvenation for Security

We propose to use periodic rejuvenation (i.e.,checkpoint,
rollback, recover and restart) to improve security and reliability
of components. The rejuvenation can be applied modularly to
minimize the downtime of the system. Each module is restored
(or rejuvenated) to a clean checkpoint and reconnected with
other related modules. Patches can also be applied to modules
during a rejuvenation to reduce their vulnerabilities and to
eliminate detected malware. The patches should be verified
as clean and distributed by authorized providers, to assure
that patched modules are clean. The work flows are shown
in Figure 1, and the main processes are described below:

347Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 1. The workflow of secure rejuvenation mechanism

• Checkpoint: When a new software module is tested,
verified, and ready to go online, it is assumed to
be in a clean state and a checkpoint of the module
is taken. Periodically, the module is rolled back to
the clean checkpoint to scrub the module of any
infections. If any design fixes or other patches are
made available to the module since its original release
(and the patches are verified as trusted and clean), the
module is upgraded during the rejuvenation period,
and the checkpoint image is also updated to the new
clean state.

• Recover: All modules of a system go through a re-
juvenation process (checkpoint-recovery) periodically,
where the periodicity is determined based on the cost
of rejuvenation and the frequency of new malware in-
troductions. The process eliminates not only software
aging and soft or intermittent faults, but also some
malware. The rejuvenation may also be performed
when an abnormal condition or a suspected security
threat is detected.

• Restart: The module always restarts after each recov-
ery. This eliminates software aging and some common
security threats, including denial of service (DoS) and
others.

III. SIMULATION RESULTS

A. Simulation Settings
To understand how rejuvenation can eliminate malware,

we built a Joomla content management service on our private
Cloud environment supported by OpenStack [7]. The specifi-
cation of our system is shown in Table I.

B. Results and Analysis
The rejuvenation is divided into two types: a complete

system rejuvenation and component rejuvenation. In our sim-
ulation, the complete system rejuvenation is provided by
OpenStack which creates an instance snapshot stored in the
snapshot repository, and restores it while launching the com-
plete rejuvenation. It supports live snapshotting, which allows
for taking snapshots of the running virtual machines without

pausing them. In the second case, we only take checkpoints of
an application or components of applications and periodically
restore them.

In the experiment, we tested some malware and vulnerabil-
ities listed in Table II. Most of the attacks are at the Operating
Systems (OS) level: they create backdoors for bot or other
attacks by using rootkit or other related technologies. Under
the attack, the malware gains root privileges, hides itself, and
deletes itself from the log. We perform our experiment in two
phases.

Phase 1. Inject malware and scan the complete system
to make sure the malware is in the system and
detectable by anti-malware software. NOD32 [9]
and ClamAV [10] are applied in our experiments.

Phase 2. Restore the checkpointed version and then scan to
find if the malware is eliminated by rejuvenation.
If the malware is not eliminated by the reju-
venation, it should be detected by anti-malware
software.

The experimental result shows that the complete system
rejuvenation eliminates all the malware we introduced and
recovers all of the infected files. We also simulated changes
to the integrity of MySQL [11] files using the known vul-
nerabilities of MySQL. After restoring, the modified files are
recovered correctly. The rejuvenation can only recover the

TABLE I. textscSimulation Environment Specification

Platform Version
Cloud platform OpenStack
Flavor m1.small
RAM 2GB
Processor QEMU Virtual 1.0@2.33GHz(1Core)
Instance operation system Ubuntu 12.04
Instance Size 20 GB
Application service Joomla 3.3
Database MySQL 5.5.36
Compiler PHP 5.4.27
Web service Apache 2.4.9
Anti-malware software ClamAV 0.98.3
Anti-malware software F-prot 6
Anti-malware software Nod32 4

348Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

infected files, but the vulnerabilities still exist making the
system vulnerable for repeated attacks. Vulnerabilities can only
be fixed with appropriate patches. We also tested to show that
rejuvenation can rescue the system from Denial of Service
(DoS) [12] or low-rate DoS attacks [13].

TABLE II. TEST MALWARE AND VULNERABILITIES

Malware Scope Rejuvenation, Result
Backdoor.Linux.Ovason Operation System Restore, Eliminated
Backdoor.Linux.Phobi.l Operation System Restore, Eliminated
Backdoor.Linux.Rst.a Operation System Restore, Eliminated
Exploit.Linux.Da2.a Operation System Restore, Eliminated
Exploit.Linux.Race.l Operation System Restore, Eliminated
Net-Worm.Linux.Scalper.b Operation System Restore, Eliminated
Rootkit.Linux.Agent.sm Operation System Restore, Eliminated
Trojan.Linux.Rootkit.n Operation System Restore, Eliminated
Trojan.Tsunami.B Operation System Restore, Eliminated
VirTool.Linux.Mhttpd Operation System Restore, Eliminated
Virus.Linux.Osf.8759 Operation System Restore, Eliminated
Virus.Linux.Radix Operation System Restore, Eliminated
Virus.Linux.Silvio.b Operation System Restore, Eliminated
Virus.Linux.Snoopy.c Operation System Restore, Eliminated

Vulnerability Scope Rejuvenation, Result
CVE-2013-1636 Joomla Restore, Recovered
CVE-2014-2440 MySQL Restore, Recovered
CVE-2014-2436 MySQL Restore, Recovered

Attack Scope Result
Denial of Service (DoS) Apache Reboot, Recovered
Low-rate Dos Apache Reboot, Recovered

C. Performance and Cost
Performance of rejuvenation (the time spent for rejuvena-

tion) is important because it relates to the unavailability or
downtime of the system or service. In this section, we report
the performance of our simulations in two parts: time spent
for rejuvenation and the storage space required for storing
checkpointed information.

1) Time spent and storage space costs: For the com-
plete rejuvenation experiment, we checkpointed and restored
the working instance. But, checkpointing can be performed
without any downtime; restoring, however causes 54 sec-
onds of downtime. For component rejuvenation, we set up
a checkpoint on Apache and MySQL database software in
our experiments with 850 MB of data without pausing; the
chekpoint images used 327MB of memory. Application level
rejuvenation required 187.51 seconds (includes the time to
retrieve checkpointed images, stopping the application and
restarting the application using the checkpointed image).

2) Cost: Globalscape found that in 60% of Fortune 500
companies, a single hour without critical systems costs their
company between $250,000 and $500,000 and one in six
companies reported that one hour of downtime can cost $1
million or more [14].

Assuming that on average $500,000 of loss per hour of
downtime, our experiments show a cost of $7500 for com-
plete system rejuvenation, $26,043 for rejuvenating Apache
and MySQL software. The cost of the storage needed for
checkpoint images are $2.4 and $0.12 respectively based on
Amazon’s prices. The cost model is described in Section IV-B.

IV. ANALYSIS AND COMPARISON OF REJUVENATION FOR
SECURITY

In this section, we compare the capabilities in term of
defense against various security threats and cost associated
with rejuvenation and malware scanning techniques.

A. Characteristics Comparison

Rejuvenation has been used as a fault-tolerant/fault-
avoidance approach in software systems. In a similar manner,
rejuvenation can be applied as a defense against security
threats. By restoring components to clean or healthy states,
rejuvenation can make the system less prone to catastrophic
failures. In Table III, we compare the capabilities of reju-
venation with malware scanning when applied to survivable
systems. In Section III, our experiments have shown that
rejuvenation can eliminate or mitigate the effects of several
types of malware. Some weaknesses that cannot be eliminated
using rejuvenation include trapdoors, which are eliminated
by compiler-based code checkers and detected by resource
monitors. But, anti-malware software need to monitor and
scan entire memory and file systems to detect malware and
eliminate or quarantine the infected files.

TABLE III. THE COMPARISON OF THE FEATURES, AND THE ABILITIES OF
THREAT ELIMINATION BETWEEN REJUVENATION AND MALWARE

SCANNING FOR SECURITY.

Feature Rejuvenation Malware Scanning
Fault avoidance Partial No
Fault tolerance Yes Yes
Denial of Service(DoS) or
Low-rate DoS

Reboot Log analysis

Virus elimination Restore to checkpoint Scanning
Trojan horse elimination Restore to checkpoint Scanning
Trapdoors elimination No No
Automated software-patching Yes Yes
Intrusion dection No Yes

B. Cost Model

This section discusses the cost of performing rejuvenation
compared with malware scanning more formally.

Malware scanning software (e.g., anti-malware software) is
usually performed as a daemon, scanning all the stored files,
executing processes, system kernel and other system software
continuously. Scanning may detect more security threats than
that can be eliminated using only rejuvenation. However,
scanning for malware consumes computational resources and
thus the following model can be used for estimating the cost
of malware scanning (CoMS).

• Instance size(V): The cost of scanning is proportional
to the size of the system being scanned. In addition to
scanning of the system at startup, malware scanning
occurs continuously and is invoked when changes to
the system are detected (such as file updates, internet
downloads, mail attachments or other changes to the
system state, such as changes to page tables). In this
paper, we relate the cost of scanning to the average
volume of the new information that must be scanned
over a given period of time. The period of time and
the volume of data scanned are compared with the
rejuvenation period and the volume of information
involved in the rejuvenation process.

• Scan speed(SS): This is the rate at which a system
can be scanned to detect malware or virus signatures.

• Cloud computing fee (CCF): The fee charged by
Cloud providers (whether the computing is used for
scanning or for providing services).

349Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The total cost involved with malware scanning CMS for
size V over a chosen time period T is

CMS(V, T) =
V × CCF

SS
(1)

As an example, if it is assumed that the scanning speed is
26.58 MB/sec [15] and the computing fee charged by Amazon
EC2 is $0.176, $0.351, $0.702, and $1.404 per hour for
instance size 4, 32, 40, and 80GB [16], the cost of performing
one malware scan on a Cloud environment with 10 GB size
data would be $0.007, $0.117, $0.293, and $1.173 respectively.

In this paper, we assume two types of rejuvenation: a
regular, periodic rejuvenation at fixed periods, and ad hoc
rejuvenations when anomalies or threats are detected. Thus,
factors that contribute to the cost of rejuvenation are divided
into two parts. One is the cost involved with rejuvenation
(CoR), and the other is involved with monitoring (CoM)
to detect anomalies. Rejuvenation makes some modules un-
available (downtime) during the process of restoration. The
following are the factors that influence the cost of rejuvenation.

• Downtime (DT): While performing the rejuvenation,
some modules will be unavailable and the downtime
can range from a few seconds to a few minutes.

• Number of transactions lost (TL): The number of
transactions lost during the downtime.

• Potential loss of revenue associated with each transac-
tion (PR) that could not be completed during down-
time.

• Version storage fee (SF): Since clean modules and
checkpointed states must be saved, we include the
cost of storage with rejuvenation. In some cases, we
may need to save m snapshots or checkpoints to fully
recover the system to a clean state. Thus we include
the total cost of storage needed for checkpointing. This
can be compared with the volume scanned by malware
scanners.

• Data transfer fee (TF): We assume that the check-
points are stored in a backup or archival facility and
this information has to be transferred to executing
environments during restoration. We include the data
transfer costs for transferring n bytes of data trans-
ferred between an execution environment and backup
facility.

The total cost involved with rejuvenation CoRperiodic for
size V , with a rejuvenation period of T , is

CoRperiodic(V, T) = DT ×TL×PR+mV ×SF +V ×TF
(2)

In addition to periodic rejuvenation, ad hoc rejuvenation
(rollback to clean checkpoint and restart) is also applied when
an abnormal condition or a security violation is detected. The
detection may be based on monitoring system performance
or other indicators. For example, performance indicators, in-
cluding memory allocations, CPU usage, network traffic, disk
writes, may indicate abnormal behavior of applications. We
will include the cost of monitoring (CoM(V, t)) the system to

identify abnormal conditions in the cost of rejuvenation. The
cost depends on the volume V of information monitored.

CoRadhoc(V, t) = CoM(V, t) + CoRperiodic(V, t) (3)

Since the ad hoc rejuvenation can take place at any time
between scheduled periodic rejuvenations, we will use a prob-
ability distribution that associates the probability of detecting
an abnormal condition over this period of time. We can now
compute the expected cost of rejuvenation that includes both
ad hoc and periodic rejuvenation as follows.

CoRtotal(V, T) =

∫ T

0

f(t)(CoM(V, t) + CoRperiodic(V, t)) dt

(4)

Here, f(t) is the probability density function that reflects
the probabilities of detecting abnormal behaviors. f(t) varies
depending on the security environment of the institution. If the
systems are not protected, the probability of detecting an ab-
normal system may be higher. T is the scheduled rejuvenation
period.

Consider for example that it takes 17 seconds to rejuvenate
a system (i.e., the downtime is 17 seconds [17]), the average
number of transactions lost in a year is 355.72 [17], the average
potential revenue of a transaction lost is $100,000, and the
storage fee charged by Amazon is $0.095 per GB-month and
data transfer fee is $0.12 per GB, the cost of performing each
periodic rejuvenation is $19.1756 for the 10 GB cloud instance.
If we assume that in addition to hourly scheduled rejuvenation,
ad hoc rejuvenations are warranted with a probability of 10%
in between scheduled rejuvenations and if we assume that
monitoring consumes 0.1% of CPU time, the total cost of
rejuvenation can be estimated as

CoRtotal(10GB, 1hr) = 2.03756 + 19.1756 (5)

C. Cost Comparison
Figure 2 shows the cost of rejuvenation performed peri-

odically for different frequencies: four hours, six hours, 12
hours, and 24 hours over a year. The cost of rejuvenation
over a year depends on the frequency of rejuvenation and the
cost of each rejuvenation. In Figure 2, we did not include
monitoring and ad hoc rejuvenation costs, since these costs
depend on the probability of detecting an abnormal condition.
The figure also shows the cost of scanning for malware. The
cost of scanning depends on the size of the system being
scanned. The red horizontal lines represent the cost of scanning
continuously (Frequency = 0). We also show the cost of
malware scanning when scanning takes place at four, six, 12
and 24 hour periods - similar to rejuvenation. Systems need
only to scan new information generated during the period and
we assume that the amount of new information generated is
proportional to the length of the period. It can be seen that the
cost of rejuvenation decreases with the decrease in frequency
(less frequent rejuvenation). The cost of continuously scanning
for malware (see the three dash lines) is higher than rejuvena-
tion at certain rejuvenation periodicities. If one assumes that

350Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 4	 6	 12	 24	 36	 48	 60	 72	 84	 96	

CO
ST
	 (L
G(
X)
)	

FREQUENCHY	 (HRS)	

80G-‐Scanning	 40G-‐Scanning	 32G-‐Scanning	 80G-‐Rej	 40G-‐Rej	 32G-‐Rej	

Figure 2. Cost comparison of secure rejuvenation versus malware scanning

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

20
6

21
1

21
6

22
1

22
6

23
1

23
6

24
1

24
6

N
um

be
r o

f p
ot

en
tia

l u
nd

et
ec

te
d

m
al

w
ar

e

Day

Scanning method Rejuvenation method

The signatures malware
are generated since 180th

day.

Figure 3. The potential number of malware remaining in a system after use of scanning versus rejuvenation

systems scan for malware at fixed internals (such as every
four hours), rejuvenation costs are higher except when it takes
place once every 80-100 hours. Based on our assumptions and
cost models, rejuvenation once every 24 hours appears to be
a reasonable choice for different system sizes.

D. Undetectable Malware Elimination

Malware is getting more sophisticated and the sophisti-
cation is increasing in recent years. McAfee’s report shows
that there are over 100,000 new malware instances detected
in a given day [18]. There are three phases in the detection
and elimination of malware. The first is the undetected phase

in which the malware strain was not detected in the system.
The second is the identification phase in which the malware
strain is detected as a malicious code pattern and its signature
is generated. Finally, the malware strain enters the detected
phase after its signature is updated. A study by Damballa
demonstrated that the typical gap between malware release and
detection using anti-malware is 54 days, almost 8 weeks [19].
Nearly half of the 100,000 malware samples go undetected on
the first testing day, and there were at least 15% of the samples
remaining undetected even after 180 days. This means that the
system may suffer from undetected malware for long periods
of time.

351Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Suppose a system component is infected with an average of
30 malware strains every day since it is released, the number of
potential malware strains hidden may increase over the next
several weeks before some strains are detected. On average
it will be 9 weeks before detected malware signatures are
released, and the number of hidden malware will be reduced
as shown in Figure 3.

By contrast, the proposed rejuvenation mechanism periodi-
cally restores the component to a ”clean” version (checkpoint);
thus, the exposure of the system to new malware introduction is
the time between rejuvenations. Assuming that the component
is rejuvenated once a day, it remains in ”clean” status at the
beginning of each day. After the 9th week, some malware
strains are eliminated because of the signatures, thus the
potential malware strains lurking may decrease as long as the
backup version is not infected.

E. Complete Rejuvenation and Component Rejuvenation

The services can be rejuvenated one service at a time
such that the impact of rejuvenation is not felt by the entire
system. The performance of rejuvenation depends on the
instance’s capability. By taking our experiment as an example,
the instance works with flavor m1.small, thus the ability of
checkpointing smaller size files is slower than checkpointing
of complete instance performed by the host. Furthermore, any
patches or upgrades to services can be done separately from a
running system.

F. Application of Mobile Device

Kaspersky Lab’s report shows that approximately
10,000,000 unique mobile malicious installation packages
were detected in 2012-2013 [20]. Sometimes mobile malware
resists the anti-malware protection because of Android
vulnerabilities. Malware uses the vulnerabilities to bypass
the code check, enhance the privilege to extend their
capabilities, and make it more difficult to be removed, like
Trojan-SMS.AndroidOS.Svpeng.a. Therefore, it is difficult
for normal users to remove malware, since most of the
malware is embedded in the legitimate software and acquires
administrator privilege during the installation. There are only
two options for users. One is to reset the system to factory
settings, but some malware could obstruct this reset. The
other is to apply anti-malware software to continuously scan,
analyze, and eliminate it; but this consumes processing and
thus the battery life of the device.

Our rejuvenation mechanism can be applied on Virtual
Machine-based environments, such as cloud services, as well
as mobile devices (e.g., Android). Our rejuvenation mechanism
restores the checkpointed image from either the storage of
the device or from some external storage in the Cloud, or
may rely on trusted zones to bring the system to a clean or
consistent state. If the rejuvenation is performed while the
device is connected to a power source, the battery life will
not be a consideration. Rejuvenation can be performed on
a regular basis, similar to checking periodically for software
patches and upgrades. A rejuvenation mechanism, therefore, is
more suitable in a mobile environment, than malware scanning
techniques.

V. CONCLUSION

The cybersecurity of Cloud-based computing systems are
becoming critical to modern society as we are becoming ever
more dependent on information infrastructures. Balancing sys-
tem reliability, availability and security is complex. Malware
and other security threats are becoming more sophisticated.
Thus a multipronged approach is necessary to improve se-
curity as well as system survivability. We feel that software
rejuvenation, which has been successfully employed as a fault-
tolerance mechanism, can also be used as a defense against
security threats. We conducted experiments in a controlled
environment to show that rejuvenation does eliminate some
malware. We will extend our experiments to more thoroughly
evaluate which types of malware can and cannot be eliminated
with rejuvenation only. In this paper, we also introduced a
model that can be used to compare the costs associated with
rejuvenation and malware scanning so that one can determine
the rejuvenation frequencies that lead to cost-effective defense
against hidden threats. While we compared rejuvenation as
an alternative to scanning in this paper, they should be used
together.

ACKNOWLEDGMENT

This research is supported in part by the NSF Net-centric
and Cloud Software and Systems Industry/University Cooper-
ative Research Center and NSF award 1128344 and 1332035.
The authors also acknowledge David Struble’s help in making
the paper more readable.

REFERENCES

[1] F. Lin, “Re-engineering option analysis for managing software rejuve-
nation,” Information and Software Technology, vol. 35, no. 8, 1993, pp.
462–467.

[2] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software re-
juvenation: analysis, module and applications,” in Proceedings of the
25th International Symposium on Fault-Tolerant Computing (FTCS-25),
1995, pp. 381–390.

[3] R. Agepati, N. Gundala, and S. V. Amari, “Optimal software rejuve-
nation policies,” in Proceedings of the Reliability and Maintainability
Symposium (RAMS), 2013, pp. 1–7.

[4] S. Oikawa, “Independent Kernel/Process Checkpointing on Non-
Volatile Main Memory for Quick Kernel Rejuvenation,” in Proceedings
of the 27th International Conference on Architecture of Computing
Systems (ARCS), ser. LNCS. Springer, 2014, vol. 8350, pp. 233–
244.

[5] K. M. M. Aung and J. S. Park, “Software Rejuvenation Approach to
Security Engineering,” in Proceedings of the International Conference
on Computational Science and Its Applications (ICCSA), ser. LNCS.
Springer, 2004, vol. 3046, pp. 574–583.

[6] “Joomla,” URL: http://www.joomla.org [accessed: 2014-07-28].
[7] “OpenStack,” URL: http://www.openstack.org [accessed: 2014-07-28].
[8] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”

NIST, Tech. Rep. SP800-145, Sep. 2011.
[9] NOD32, URL: http://www.eset.com [accessed: 2014-07-28].

[10] ClamAV, URL: http://www.clamav.net/ [accessed: 2014-07-28].
[11] MySQL, URL: http://www.mysql.com/ [accessed: 2014-07-28].
[12] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A System for

Denial-of-Service Attack Detection Based on Multivariate Correlation
Analysis,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 2, 2014, pp. 447–456.

[13] Y. Tang, X. Luo, Q. Hui, and R. Chang, “Modeling the Vulnerability of
Feedback-Control Based Internet Services to Low-Rate DoS Attacks,”
IEEE Transactions on Information Forensics and Security, vol. 9, no. 3,
2014, pp. 339–353.

352Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[14] “Three Ways System Downtime Affects Companies and Four Methods
to Minimize It,” Globalscape, Tech. Rep., 2014.

[15] “Scan Speeds for 2011/2012 AntiVirus Software,” Antivirus Ware,
2011, URL: http://www.antivirusware.com/testing/scan-speed/ [ac-
cessed: 2014-07-28].

[16] “Amazon EC2 Price,” Amazon Web Services, 2013, URL:
http://aws.amazon.com/ec2/pricing/ [accessed: 2014-07-28].

[17] F. Machidaa, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system with live VM
migration,” Performance Evaluation, vol. 70, 2013, pp. 212–230.

[18] “Infographic: The State of Malware 2013,” McAfee, Inc., Tech.
Rep., Apr. 2013, URL: http://www.mcafee.com/us/security-
awareness/articles/state-of-malware-2013.aspx [accessed: 2014-07-28].

[19] “3% to 5% of Enterprise Assets Are Compromised by Bot-
driven Targeted Attack Malware,” Damballa, Inc., Tech. Rep.,
Mar. 2008, URL: http://www.prnewswire.com/news-releases/3-to-5-
of-enterprise-assets-are-compromised-by-bot-driven-targeted-attack-
malware-61634867.html [accessed: 2014-07-28].

[20] V. Chebyshev and R. Unuchek, “Mobile Malware
Evolution: 2013,” Kaspersky Lab ZAO, 2013, URL:
http://www.securelist.com/en/analysis/204792326/
Mobile Malware Evolution 2013 [accessed: 2014-07-28].

353Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

