
Collaborative Team Management in Agile and

Distributed Development Environments

NohSam Park and JongHyun Jang

IT Convergence Technology Research Laboratory

ETRI

Daejeon, Korea

{siru23, jangjh}@etri.re.kr

Abstract—The inherent nature of software engineering is

collaboration. Recently software engineering practices have

seen many agile methods, and distributed collaboration in

geographically distant environment. In this paper, we

propose the methods to manage the collaborative team for

this changing environment. Collaborative team management

skills in agile requires the communication skills and

procedures in terms of social activities in agile process. In a

distributed software project, human factors are emphasized

for facilitating collaboration. The importance of risk

management strategy is highlighted to address the

circumstantial limitations of both environments. This paper

presents the basic skills for an agile and distributed project,

and reports on our experience of adapting for the real Studio

project settings with the concrete methods.

Keywords-Collaborative Team; Team Management; Agile;

Distributed software development; Software Engineering.

I. INTRODUCTION

Software engineering is a result of team activity.
Collaboration in software engineering has greatly
increased thanks to widespread use of the Internet and
many kinds of project management tools. Rapid
development using agile methods also enabled various
team organization and project management by
emphasizing the communication process with customers
[1].

Just like in many open source projects, distributed
team formation may make communication more
complicated because of time difference, culture, and
language barriers. The wide range of engineers on the
team may have different motivations and needs. These
characteristics in global and diverse team management
facilitate collaboration by offering technical tools and
adaptive software processes. Teaming process research
shows the importance of establishing and managing
software teams and emphasizes the difficulties of
implementing it [2]. Collaboration in software engineering
refers to managing the entire lifecycle of the project, and it
is the most important factor to accomplish high quality
product, and efficient software engineering practices.
Collaboration is complicated and hard to achieve because
of the increased interdependencies between the project
teams.

Agile software development has become popular since
the early of 2000s, and involves collaboration and
interactions naturally, resulting in creating working

software [3]. The structure and organization of agile teams
proves the people-focused approaches when it comes to
collaboration.

The need for coordination in software project comes
because tasks and artifacts between team members are
tightly connected to each other, so researchers created a
variety of tools and approaches to improve team
coordination. In addition, some evaluation types and
frameworks such as DESMET [4] for coordinating
software engineering tools have been proposed [5].

Much work has been done in collaborative software
engineering, but the collaborative practices are not routine
and generalized. In a research field there are three main
topics: theoretical understanding of collaborative software
engineering, designing assessment methods for specific
situations, and implementing tool support [1]. As should
be clear from the practices and research work,
collaboration is without doubt the core of software
engineering. From the point of collaboration, it is required
to develop the methods how to manage collaborative team
in the current software engineering situations. As Austin
and Devin described in their book [6], successfully
managing knowledge workers – software team members –
call for collaboration without detailed or coercive direction,
keeping in mind that we cannot supervise talented
employees in any conventional sense; we must lead them
with passionate support and faith in their work.

This paper is organized as follows. In Section 2, some
skills are proposed for enhancing collaboration in agile
process and distributed development environment. Section
3 presents the case study of MSE Studio project at
Carnegie Mellon University (CMU), and Section 4
concludes the paper.

II. COLLABORATIVE TEAM MANAGEMENT IN

DIFFERENT ENVIRONMENT

Collaboration in software engineering has evolved
through diverse processes, methodologies, and
development environments. In this section, the ways of
achieving the collaborative team management in the agile
process and the distant development environment are
discussed.

A. Agile Process Development Team

Customer collaboration and social activities get much
emphasis in agile. Nevertheless, collaboration does not
come naturally just by setting the agile team up. The team

341Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

management skills are important in order to improve
collaboration and coordination, especially between the
customer and software developers in the agile process.

Identify social skills for the agile process
The agile process has key practices such as small

release, simple design, refactoring, and iteration. They also
put an emphasis on communication with customers and
reflection on development iterations. For example, pair
programming in Extreme Programming (XP) [7]
encompasses the whole communication not just involving
two programmers in the same room. They discuss the
problem, understand the task, negotiate their opinions and
share the work.

Agile process practitioners need to socialize with
coworkers and customers. Most of them are familiar with
communicating using social networking and instant
messaging. But, socializing also requires us to keep in
contact with people in the physical situation. It involves
respect for the difference, understanding people’s situation,
and sound critique towards participants. Socializing might
cause conflicts among team members whether we apply it
online or offline.

The team should identify diverse social skills from
many different perspectives. From the technical view, the
team encourages technical discussion and research. The
team can have technical workshops or open-lab for
intriguing the intellectual motivation. The working
condition should easily accommodate the collaboration
between people. Just like XP’s pair programming requires
the reconfiguration of desks, the working environment
should be open and shared to increase collaboration.

Establish reporting channels between stakeholders
Co-located setting of agile processes does not require

formal reporting procedures to keep managers and
customers up-to-date with progress. Those procedures
hinder the project from moving fast, which violates the
agile property. The agile principle of “barely sufficient [8],”
can be applied to reporting as well. The reporting
concentrates on key features developed or requirements
satisfied, removing any unnecessary information. But it
should be able to hold the minimum value for the project.

Agile teams need to establish the reporting channel
when they show the project progress information to the
customer. Many agile teams still do in a light way such as
spreadsheet, sticky notes on the wall or whiteboard. The
intention was not try to impose additional burden or cost
on the agile practices, but it is another option for the team
that wants to use agile continuously.

Many tools can provide appropriate level of
information for both managers and the customer. It would
be the alternative for the formal reporting procedure
between stakeholders in the agile methods. Plus, agile
software tools provide reflections functionality when
teams finish iteration for both developers and the customer.
For example, by offering the burn-down chart, it shows the
simple trend and increases understanding of the project
progress.

Establish a risk management strategy
The elements of the risk management paradigm are the

following: identify, analyze, plan, track, control, and
communicate risks [9]. Agile risk management follows the
same activities like the traditional software projects. The
iterative nature allows us to tackle high risk sooner than
later. The risk management process is repeated every
iteration, and remaining risks are re-assessed. Teams
prioritize risks and take proactive risk management
strategy for the top priority risks.

The pitfall of risk management in agile processes is
that the team tends to dismiss the risks with low priorities
when they assess the risks. People are likely to identify
new risks for the project and focus on the high priority
risks. In order to prevent the tem from overlooking those
risks, the risk overhaul is suggested on every milestone of
the project. Risk overhaul implies that existing risks are
initialized and teams inspect risk management process
from the scratch. From the risk identification to risk
planning, teams go through every step involving the entire
stakeholders. Teams can start with the remaining risks, and
each risk is inspected thoroughly and reassessed.

In the risk overhaul, the outside member of the team
can join with a fresh eye. In other words, every remaining
risk should be treated and evaluated like newly identified
risks. It could be burdensome and costly to do quite often,
so it would be viable to perform it on a major milestone
basis.

In Figure 1, collaboration skills for the agile process
are described. Based on firm social skills, cooperation and
coordination procedure should be established. On top of
that, reporting channels enable the stakeholders to
communicate effectively. Throughout these procedures, a
proactive risk management should be implemented.

B. Distributed Development Team

The goal of distributed team building is to build a high
performance team. Global Teaming goals are suggested in
[10], each of which has specific practices and sub-
practices when implementing a global software
engineering (GSE) strategy. It has two specific goals:
Define Global Project Management, and Define
Management between Locations.

Figure 1. Collaboration skills for the agile process.

Social skills for Agile process

Cooperation and coordination procedure

Reporting channel

Risk

Management

342Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

In distributed software development, diverse factors
should be taken into account like distance, language,
culture, etc. from the team setup. Especially, human
factors are important for motivating participants and
letting them take the initiative. The following are some
suggestions for collaborative team management for
distributed development teams.

Identify common goals, objectives as fast as possible
Distributed development settings require each team

member to have consensus for the goals, objectives in the
early phase of the project. But, the team members in
different location have relatively fewer ways to get
feedback and information for the project. They usually
resort to online communications such as email, web-based
tools, and social networking. Face-to-face interface like
videoconferencing is possible, but still limited, especially
when the team is globally distributed.

Distributed development teams should put much effort
in getting all the stakeholders on the same page. The small
problem in the early phase will snowball and end up
bringing serious implications for the project. It is
preferable to hold not only the kick-off meeting but also
several workshops. Even though team members should be
located in distance, it would be much better to get together.

Teams only work and collaborate when they share the
same idea and goals. Though many technologies support
meetings via audio or video, not all team members are
comfortable because of diverse factors such as language
barrier, time difference, etc. Just having a meeting does
not guarantee to keep them agreed upon the issues.
Follow-up activities should be implemented and the team
should clarify the problem when they have issues during
the meeting.

Define the explicit roles and responsibilities
Distant team should be given explicit roles and

responsibilities for their team. Without them, the project
manager will receive dozens of questions from distant
development team members because they want to check
what their missions and tasks are. The objective is to
distribute work and motivate them to take the leadership of
their own.

No one in the distant team would want to put his/her
head up and lead without explicit roles and responsibilities.
Make them take the initiative of the project, and make
them feel they are the part of the team. When they can see
what should be done throughout the project, they will
make plan, accomplish tasks, and communicate as a whole
team. The project manager should be able to inspire the
distant team by setting the boundary of the central and
distant team.

Partitioning and allocating tasks across the distant team
is a key concept of the distant development. It is related to
the team’s capability to manage and develop features of
the project. The project management should assess the
distant team and local team’s abilities objectively and
modularize functional units.

Give autonomy and accountability
Some recommendations called “coherent and co-

located teams of fully allocated engineers” were made for
global software development projects [11]. They say that
engineers should not be distracted by other tasks working
on the same processes, methodologies, and terminology.
The success of the distant development team comes from
the innovation of the team members given autonomy.

The distant team can manage itself not by the central
team’s micromanagement. The distant team may have its
own rules and management styles, thus it can make self-
organized team. Then the central team gives it the
necessary information, tools, and other resources in order
to let it work. Product management would empower the
distant team with the privilege and remove impediments in
its way that may harm the progress of the project. All
those things are related to promoting team performance in
the project. The team as a whole can progress in its own
roles and contribute to the project success.

The team needs to find the golden mean between
autonomy and accountability. Autonomy should be
allowed within the roles and responsibilities given by the
central team. Autonomy and privileges should be only
allowed in terms of the common goal: the success of the
project. Autonomy naturally brings accountability for the
team’s result. Individuals in different locations work for
the team and project’s success, and each individual is
responsible for their result. Use of different process can be
done only when they meet the whole team’s schedule,
deliverables, and cost. The management should monitor
and track team’s progress and take actions to address the
issues when autonomy gets on track of the project.

Relate the risks and problems
Distributed development projects bring additional high

risk exposure as many risk factors exist such as culture-
related and geographical-related risks. Bass et al. presented
a coordination risk analysis method for multi-site projects
in [12]. The team leader can start with this risk
management strategy for the distant development project.

The team leader should relate the risks to the actual
problems from these risks. It is the best to avoid risks or
prevent them from becoming problems. But, some risks
evade and become problems. In the risk management
strategy, prioritizing and mitigating risks are highlighted,
but not much attention is paid to the correlation between
risks and problems when risks become problems.

Software engineers tend to either fix the problem or
controlling the risk. We need to analyze the correlation
between them, so that we can achieve more effective risk
management. First, we analyze risk monitor, track and
control activities. Then we look into what triggered the
risk for becoming the problem, and what the problem’s
impact is. Investigating the reason and result of the
problem helps us reflect on the risk management. That
reflection keeps the risk with similar conditions from
happening again. The risk/problem analysis process
incorporates collaboration among physically distant team
members.

343Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

III. CASE STUDY

In this section, we will give an example of CMU MSE
(Master of Software Engineering) Studio project, and
discuss issues when team management skill suggestions

are applied to the real collaborative team setting.

A. The Studio project and team setup

MSE is a 16-month/4 semester intensive program for
software engineers. The program can be done in the form
of full or part-time via distance education as well. The
entire program emphasizes application of course material
in a hands-on experience with real, paying clients who
expect actual deliverables [13]. CMU has been
incorporating the core academics of software engineering
into the MSE Studio.

The Studio project has three stakeholders: the team,
mentors, and the client. The team is structured as a small
with three to five students from diverse culture and
backgrounds. Students are expected to overcome technical
challenges, and meet their client’s requests through the
Studio project. Mentors are assigned to each team, and
they conduct, advise and guide the project. Student-mentor
meetings are held weekly in an interactive style of asking
the student, encouraging reflections. The client requests
the development of output by giving requirements and
information, providing feedback, and evaluating the
deliverables from the team.

Our team was composed of five team members, two
mentors, and the client. Each team member is from
different country. They speak different languages, and it
means the team had various factors to consider such as
language and culture. Work experience was also various
from less than 1 year to more than 10 years. The client of
the studio project came from the area of the retail store,
which has many branches worldwide. The goal of the
project was to improve the customer's shopping experience
such as shortening the checkout time in the local store. In
order to achieve the goal, the customer required us to
develop a mobile application on the Android platform.

The team adopted OpenUp [14], which is one of the
agile processes, as the development process. OpenUp has
4 phases of development lifecycle: Inception, Elaboration,
Construction, and Transition. Though the team used the
agile process, the client did not co-locate in the same place
with the team. In the inception phase in OpenUp, the team
was supposed to refine requirements and elicit specific
features for the project.

The team had to take also another thing into
consideration: one of the team members had to return to
the home country and continue the academics in the
transition phase.

B. Project Development and reflection about

collaboration

1) Inception
In the inception phase of OpenUP, the team is

supposed to establish the scope of project and do the
requirements analysis. The team, however, did not get

much response from the customer. The client stopped
communicating once in a while and the team did not take
the initiative meanwhile. We should have tried to fix the
problem of miscommunication and come up with our own
solutions despite of the client’s absence. Basically we just
waited the response from the client and we did not put
much effort on the Studio project, which made the agile
method ineffective. In addition, we did not prepare for the
upcoming risk of the remote team setup.

2) Elaboration
In the elaboration phase, the tasks are mostly related to

design. Architecture is believed to heavily affect the
software and the team tried to convince the client to
increase the communication for the architectural review.
Technical risks were identified and reported to the client
regularly, which made the team feel confident about the
success of the project.

The team also established the project strategy during
the elaboration phase not to repeat the mistake of the
inception phase. That was mostly from what we learned in
the architecture class, more specifically from Architecture-
Centric Design Methodology (ACDM) [15]. We tailored
the steps and procedures in accordance to our project
context. The team also suggested the strategy and plan
related to it. Contrary to the frustration in the elaboration
phase, a well-established reporting channel and risk
management strategy boosted the team morale as well as
the client satisfaction.

3) Construction
Implementing is what software engineers enjoy and

indulge in the most. The team was given 48 hours of work
each week. The common working time was set up during
the weekdays to work together, and a daily scrum meeting
was planned to check the status. With plenty time of work,
developing two features the client asked was considered
not a big deal for the team.

The plan was only a plan again, though. The chronic
time management problem still did not show any hint of
the improvement for some members. The daily meeting
was switched to two meetings per week. The quality plan
and the milestones have continuously changed because the
client did not respond to any reports from us. It was the
last opportunity for the team to co-work because one
member would be in a remote place in the next phase. The
Studio project is an academic course and that aspect
heavily influenced for the team members. The benefits in
the elaboration phase did not last long because the
reporting channel with the client was collapsed and the
social skills were useless.

The best lesson the team members learned is the
importance of communication with the client. We were at
a loss when the client just quit the connection and became
contactless from time to time. This time, we changed the
policy. The customer liaison, which has already existed,
notified that he/she would try to contact with several times
using email, text, and phone calls. When there was no
response for those efforts, the team finally made their own
decisions. At least, we tried to remove some uncertainties
and the team was able to deliver the mobile application

344Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

integrating two features. That would not be exactly what
the client wanted at first, but it was the minimum we could
make without enough communication.

4) Transition
The team finally faced the distant team setting in the

transition phase. Actually, that intrigued the team because
it was not common in small and medium sized businesses.
The transition phase normally does not involve many tasks
related to the development, so it was not easy to assess
how the suggestions for the remote collaboration would
work.

Collaborating as a team can be a real challenge.
Getting everybody on the same page, assigning tasks,
following up on pending items, and making sure everyone
is always in the loop is never easy, and it is something
almost all companies struggle with. The team decided to
have a weekly meeting considering the time difference and
team members’ schedule. The team used a
videoconferencing tool like Skype or Hangout of Google
to get together. The team prepared the remote development
condition from the construction phase, but that was not
enough. More documents were needed for the remote
member to catch up. More methods to collaborate online
should have been attempted.

In the early weeks of the transition phase, the weekly
meetings were canceled or held without getting the whole
team members. The meeting itself was not satisfactory:
just checking and reporting the status without enough
discussion and review of the deliverables and the iteration
process. The team did not take advantage of the current
collaboration technologies. Whereas the Studio project did
not see the effectiveness from the remote team condition,
in another situation of the remote class we took at the same
time, the collaboration was good enough. The class asked
for the group presentation about one topic and we were in
the same distant team setting. The group shared the goals
of the presentation and divided the parts each member had
to do. We had a weekly meeting to check each member’s
progress after working individually. A subjective criterion
would be the members’ morale whereas an objective one
would be the grade for each class. The results in the Studio
project were poor in both criteria.

One way of assessing the success of the team in the
agile method is the trend of team’s velocity. It could be

applied to the evaluation of distant team in the agile
method. Comparing the velocity in the co-located situation
with one in the remote condition will show the
effectiveness of the team’s status. The team’s velocity did
not show the improvement during the project in Figure 2.
Overall the trend is not stable except during the
elaboration phase from iteration 12 to iteration 17. Some
tasks are not finished on time during the iteration in the
transition phase after iteration 22.

C. Discussion

In this section, we will investigate how these
suggestions would make better this situation or what were
the issues when adopting these into the real situation.

1) Agile team
Identifying social skills refers to acquiring diverse

communication methods both among team members and
for the customer. Even though the agile method was
adopted, which requires the intimate and quite often
conversation, the team was too passive to just wait
requirements from the customer. The team established
several kinds of communication methods: a Facebook
group between team members in addition to traditional
ways such as email and instant messaging, and biweekly
teleconference meeting with the customer.

Reporting channels are the official procedure for
discussing, negotiating and satisfying the customer
expectation for the project. The team did not have the on-
site customer even though adopting the OpenUp. So the
team needed to set up the reporting channel, and a
biweekly teleconference meeting was held with the
customer to report the progress of the project, and the
customer gave feedback about it.

Risk management strategy is emphasized by the
nature of the OpenUp requiring risk management process
at the end of iteration. The team adopted the
aforementioned risk overhaul in the elaboration phase. The
customer wanted the team to follow feature-by-feature
development for the mobile application. When we touched
another one after finishing one feature, new kinds of risks
were identified and the team needed to see it differently
from the usual risk management process.

As these suggestions were applied to the real agile
project, the problem behind them is always the motivation.
When the team members are not motivated to use them,
the collaboration skills are meaningless. In fact, the team
was not able to build some management foundation before
realizing the team's collaboration and coordination
problems and raising the awareness of the importance of
them.

2) Distant team
Sharing common goals and vision in the early phase

of the project is the first thing we had to consider. The
team had co-located setting except in the transition phase
that was good enough for having the common goals and
objectives. Maintaining the commonality, however, should
be kept throughout the entire project when the change
happens.

(b) Velocity Status

Figure 2. Team’s velocity trend

345Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Explicit roles and responsibilities are a factor which
enables to proceed in the distant development environment.
The distant team member should be able to know what his
tasks are, when they should be done, and how they can be
incorporated into the deliverables of the project. It is only
possible when the team defines roles and responsibilities
for each team member.

Autonomy and accountability is an integral part
when we deal with the team morale and the project
accomplishments. In reality, it is not feasible to
micromanage the distant team member. One of solutions is
to give autonomy and ask accountability for the results.
The team leader or project management should be able to
ask for accountability for his tasks.

Risk/problem analysis is supplemental to the existing
risk management process. A risk may become a problem
or not, and the distant team condition may bring
confliction when it becomes a problem. Without complete
analysis about the reason and implications of the
risk/problem, the team might evade the responsibility or
accuse someone else who is not present, thus infringing
collaborative team spirit.

Table 1 summarizes the suggested skills and the
corresponding methods in the Studio project. The criteria
for the skills are measured by both subjectively like
questionnaire and quantitatively.

IV. CONCLUSION

In this paper, the trend of collaboration in software
engineering was reviewed, and some suggestions were
proposed for the agile process and distributed development
environment. Agile process is known for strengthening the
collaboration with the customer, but it is necessary to
prepare strategy and procedure beforehand about how to
communicate both within the teams and among the
customer.

Management skills in distributed development
environment presented in this paper focuses on human
factors. Respecting, understanding given circumstances of

each team will facilitate the collaboration. Besides,
thorough preparation and planning regarding how to
manage the project will drive collaborative team members
to follow the practices of software engineering.

Some issues and reflections are discussed when we
implemented these skills into the real software project. Our
team had both characteristics of agile and distributed
development. We learned that coordinating and
collaborating are hard to obtain from some of experience
in the project because of human and technological factors.

ACKNOWLEDGMENT

This work was supported by Electronics and
Telecommunications Research Institute (ETRI) Grant
funded by the Korea government [14ZC1320,
Development of WoT Collaboration Service Platform
based on Social Relation].

REFERENCES

[1] Ivan Mistrik, John Grundy, Andre van der Hoek, and Jim
Whitehead, Collaborative Software Engineering. Springer, 2010.

[2] Ita Richardson, Valentine Caseyb, Fergal McCafferyb, John
Burtonc, and Sarah Beechama, "A Process Framework for Global
Software Engineering Teams," Information and Software
Technology,” vol. 54, pp. 1175-1191, November 2012.

[3] Helen Sharp and Hugh Robinson, "Collaboration and coor-dination
in mature eXtreme programming teams," International Journal of
Human-Computer Studies,” vol. 66, pp. 506-518, July 2008.

[4] Barbara Kitchenham, Stephen Linkman, and David Law,
“DESMET: a methodology for evaluating software engineering
methods and tools,” Computing & Control Engineering Journal,
vol. 8,pp. 120-126, June 1997.

[5] Barbara Ann Kitchenham, "Evaluating Software Engineering
Methods and Tool Part 1: The Evaluation Context and Evaluation
Methods," SIGSOFT Software Engineering Notes, vol. 21, pp. 11-
14, January 1996.

[6] Rob Austin and Lee Devin, Artful making: What Managers Need
to Know About How Artists Work, Prentice Hall, 2003.

[7] Kent Beck and Cynthia Andres, Extreme Programming Explained,
Addison-Wesley, Reading MA, 2000.

[8] Kevin Tate, Sustainable Software Development: An Agile
Perspective, Addison-Wesley Professional, 2005.

[9] Ray C. Williams, George Pandelios, and Sandra Behrens, Software
Risk Evaluation (SRE) Method Description (Version 2.0), SEI,
1999.

[10] Ita Richardson, Miriam Q'Riordan, and Valentine Casey,
"Knowledge Management in the Global Software Engineering
Environment," ICGSE 2009, pp. 367-369, 2009.

[11] Christof Ebert and Philip De Neve, "Surviving global software
development," IEEE Software, vol. 18, pp. 62-69, March 2001.

[12] Matthew Bass, James D. Herbsleb, and Christian Lescher, "A
Coordination Risk Analysis Method for Multi-Site
Projects:Experience Report," 2009 IEEE International Conference
on Global Software Engineering, pp. 31-40, November 2009.

[13] Mary Shaw, Jim Herbsleb, Ipek Ozkaya, and Dave Root,
"Deciding What to Design: Closing a Gap in Software Engineering
Education," ICSE 2005, pp.607-608, May 2005.

[14] Eclipse Foundation, OpenUp Wiki, http://epf.eclipse.org/
wikis/openup, 2014.08.15.

[15] Anthony J. Lattanze, Architecting Software Intensive Systems,
Auerbach Publications, 2009.

TABLE I

COLLABORATIVE SKILLS FOR THE STUDIO PROJECT

Skills Team’s methods Criteria for the skills

Social skills Email, Facebook group,

biweekly teleconference

meeting

Team members’ and

client’s morale

(questionnaire)

Reporting

channels

VersionOne report, biweekly

teleconference meeting

Number of reporting

Risk management

strategy
 Risk evaluation at the end of

iteration

Risk overhaul

Trend of the number of

risks

Common goals in

the early phase

Requirement engineering (RE)

in co-located environment

Time spent in RE

Number of requirements

Explicit roles and

responsibilities

Assign of role to each member Assigned roles

Autonomy and

accountability

Distant team member

management by formal

(VersionOne) and informal

(regular videoconferencing)

method

Progress report by team

member

Relate risk to

problem

Risk/problem analysis Number of problems from

the risks

346Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

