
Combining MARTE-UML, SysML and CVL to Build Unmanned Aerial Vehicles

Paulo Gabriel Gadelha Queiroz

Departamento de Ciências Exatas e Naturais - DCEN
Universidade Federal Rural do Semi-Árido

Mossoró, Brazil
Email: pgabriel@ufersa.edu.br

Rosana Teresinha Vaccare Braga

Instituto de Ciências Matemáticas e de Computação - ICMC
Universidade de São Paulo

São Carlos, Brazil
Email: rtvb@icmc.usp.br

Abstract—Several methodologies have been proposed in the last
decades to improve the quality of critical embedded systems
and, at the same time, keep costs and schedule compatible with
project plans. In particular for Unmanned Aerial Vehicles (UAV),
approaches such as Product Line Engineering (PLE) and Model-
Driven Engineering (MDE) offer an interesting solution to reduce
development complexity and are being widely used in various
academic research and industrial projects. This paper presents
an approach combining PLE and MDE to develop families of
Unmanned Aerial Vehicles. In this approach, we propose the use
of SysML and MARTE UML profile to support requirements
specification, design, validation, simulation and eventual code
generation. Additionally, we propose the use of the Common
Variability Language (CVL) to support the transformations of
the generic product line models into specific product models,
aiming at achieving a high degree of reuse. Additionally, this
paper proposes a process to use the above mentioned modeling
techniques to produce family models and a method to use these
artifacts to generate product members. Finally, we illustrate
the various concepts presented in the proposed methodology by
means of a UAV case study.

Keywords–Product Line; Model-Driven Development; Safety-
Critical Systems.

I. INTRODUCTION

Embedded Systems are components integrating software
and hardware jointly and specifically designed to provide given
functionalities [1]. Safety-Critical Embedded Systems (SCES),
in particular, are embedded systems whose failure could result
in loss of lives or on significant environmental or property
damage. SCES are common in medical devices applications,
aircraft flight control systems, weapons, and nuclear systems.
Aircraft flight control systems, for example, must present
failure rates as low as a serious fault per 108 flight hours
[2] and other complex constraints and requirements like cost-
effectiveness, time to market, fast evolving environment, re-
liability, security, availability, criticality, reactivity, autonomy,
robustness, and scalability [3], which impose overhead costs on
the development. In the SCES domain, we focus on Unmanned
aerial vehicles (UAV), which can be defined as airplanes that
fly without the need of a human pilot, accomplishing a pre-
established mission.

The coming generations of SCES, like UAVs, must meet
the new expectations created by hardware evolution like the
increase in computational power of processors and the corre-
sponding decrease in size and cost that lead to the increase
of users expectations for new functionalities and have al-
lowed moving more and more functionality to software [4].

Therefore, to overcome these challenges and to fulfill the
requirements and constraints mentioned above, we need new
efficient and flexible development methodologies and tools that
can reduce UAV production complexity.

The use of Product Line Engineering (PLE) [5] has proven
to be a good alternative to reduce system costs and time
to market, as well as to increase system reliability through
the assembling of reusable and extensively tested resources.
Model-Driven Engineering (MDE) [6] is also used in this
context, producing models in higher abstraction levels and
allowing automatic generation of products through model
transformations.

The motivations for this work have arisen after the creation
of a Product Line (PL) workgroup in the National Institute of
Science and Technology - Critical Embedded Systems (INCT-
SEC) [7] project, whose goal was to create methodologies and
tools to develop, among others, families of UAVs. The first
family, called Tiriba, was developed by the AGX Company [8]
in partnership with INCT-SEC. During our participation in this
workgroup we performed a systematic review of the literature
to find gaps in existing methodologies and approaches that
combine MDE and PLE to develop SCES, as well as a study
using three other UAV existing examples [9][10][11] to build
a family of UAVs and validate our approach. These studies
culminated with the approach proposed in this paper, whose
main goal is to build a family of UAV using a combination
of both PLE and MDE techniques. The novelties of the
proposed approach are the use of MDE in both Domain and
Application Engineering and the management of both software
and hardware variabilities, accompanied by Verification and
Validation (V&V) activities during the whole cycle. For an
effective use of MDE, we propose the use of a subset of
the Systems Modeling Language (SysML) [12] and the UML
profile for Modeling and Analysis of Real-Time and Embedded
systems (MARTE) [13] to enable model transformations in
the Domain Engineering (DE) phase. We also propose the use
of the Common Variability Language (CVL) [14] to manage
system variabilities and enable model transformations during
the Application Engineering (AP) phase. Finally, we illustrate
the various concepts present in the proposed approach by
means of a UAV family case study. It is worth to mention
that this approach is an extension of the work presented in
[15], with the addition of CVL to manage variabilities, the
safety analysis activity and the evolution of the case study.

The rest of this paper is organized as follows: Section II
presents a background summary of Product Line Engineering

334Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

and variability management; Section III summarizes related
works; Section IV presents the proposed approach; Section V
illustrates the proposed approach by means of a UAV product
line case study; lastly, Section VI presents the conclusions of
this paper.

II. BACKGROUND

Product Line Engineering is an approach that enables
organizations to develop, deliver and evolve an entire Product
Line portfolio, through each stage of the development life
cycle, with much higher degrees of efficiency compared to
developing single systems [16]. The products of a PL differ
from each other in terms of features, which are user-visible
aspects or characteristics of a software system or systems [17].
As expected, the costs, in terms of time and money spent, to
build a PL is higher in comparison with the costs to build a
single system, because among other things PLE is done in two
stages: Domain Engineering (DE), which is the development
of a series of generic artifacts to the PL; and Application
Engineering (AE), in which the application engineer uses the
artifacts developed in DE to assemble products of the line,
known as members.

During DE, a general architecture for the PL is defined,
from which various products can be generated. Despite the
higher cost, Weiss and Lai [18] claim that the construction of
a PL is justified if at least three systems generated from the
PL are derived. Since UAV are often manufactured, distributed
in large scale and present significant variability in terms of
hardware and applications, it can be expected that the use of
PLE is advantageous to them.

On the other hand, in Model-Driven Engineering, the
software complexity concentrates on high level models and
not in the code, which can be automatically generated from
the models. Furthermore, system quality can be improved
with the use of V&V methods [19]. According to model-
based approaches, models become part of the final product
and most of the development complexity shall belong to
the transformations that should be used to automatically or
semi-automatically produce code. To successfully use MDE
techniques to model a UAV PL, we propose the use of SysML,
MARTE and CVL.

SysML [12] is a general-purpose modeling language for
systems engineering applications, which reuses a subset of the
Unified Modeling Language (UML) [20] and provides addi-
tional extensions. SysML supports the specification, analysis,
design, verification, and validation of a broad range of complex
systems and is used to model a wide range of industrial and
academic systems [21]. As SysML is an UML extension, there
is a compatibility of tools and concepts, which can reduce the
learning time. We also want to propose an approach that can be
adopted using free tools, which are abundant for UML-based
languages.

MARTE [13] is an UML profile that provides capabilities
for model-driven development of Real Time and Embedded
Systems (RTES). It provides support for specification, design,
and verification/validation stages [13]. MARTE is also used to
model a wide range of industrial and academic systems [22].
We adopt it in our approach because UAVs have many real

time constraints that need to be checked by model simulation
in early development stages, to improve product quality.

Even though some authors consider MARTE and SysML
profiles incompatible, by using the MADES methodology
[3] recommendation we can avoid conflicts related to the
two profiles by not mixing SysML and MARTE concepts
in the same diagram, but instead focusing on a refinement
scheme. Therefore, as presented later, SysML is used for
initial requirements and functional description, while MARTE
is utilized for the enriched modeling of the global functionality
and execution platform/software modeling.

Another resource that can be useful to improve the appli-
cation of MDE techniques to build the UAV PL is CVL [14],
which is a separate and generic language to define variabilities.
CVL semantics are defined as a transformation of an original
model (e.g., a product line model) into a configured, new
product model. CVL combines user-centric feature diagrams
with an automation-centric approach to the production of
product models. In CVL, the focus is on specifying variability
in a model separate from the base product line models. A base
model is an instance of any metamodel conforming to Meta
Object Facility (MOF) [23]. The base models are produced
in domain engineering in our case. There may be several
variability models applied to the same base product line model
and the base model is unaware of the variability models (there
are only links from the CVL model to the base model). Several
product resolutions can apply to the same variability model.
CVL is executable, i.e., after specifying the resolution of
variabilities, a CVL tool can automatically derive the specific
product model.

The core concept of CVL is substitution. Models are
assumed to consist of model elements in terms of objects that
are related by means of references. The CVL model points out
model elements of the base PL model and defines how these
model elements shall be manipulated to yield a new product
model. There are three kinds of substitution: value substitution,
reference substitution and fragment substitution. A substitution
replaces base model elements named as placement by base
model elements named as replacement [14]. CVL can represent
variabilities through the concepts of Variation point, Substi-
tution, Existence, Value assignment, Variability specification,
and Choice, among others.

III. RELATED WORKS

While there is a large number of researches who make use
of either PLE or MDE for safety-critical embedded systems,
due to space limitations, it is not possible here to give an
exhaustive description, so we only provide a brief summary
of works that combine PLE and MDE to build safety-critical
embedded systems, similarly to the approach proposed in this
work.

The work presented by Polzer et al. [24] is concerned
with variability in control systems software, where a model-
based PL engineering process using Rapid Control Prototyping
system is combined with MDE techniques. The authors mod-
ularize the components parameterization in a separate setup,
which is isolated from the model that defines the behavior of
the controller. Simulink [25] and Pure::variants [26] are used
for modeling and automatic code generation. It is observed

335Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

that this work is done with proprietary tools and modeling
techniques like Matlab building blocks that although efficient
for the project description, are not ideal for requirements
modeling and communication with the final user, which goes
against the purpose of this paper.

Regarding the development of UAV product lines, there
are approaches such as Product Line on Critical Embedded
Systems (ProLiCES) [27] and SysML-based Product Line Ap-
proach for Embedded Systems (SyMPLES) [28]. Even though
they were not defined for UAV, the authors used a UAV case
study to illustrate their approaches. ProLiCES creates a parallel
path in the process to handle the PL domain engineering and
also proposes the use of Matlab/Simulink as a Model-Driven
Development (MDD) technique, which limits requirements
analysis and concentrates the MDD only in one step of the
process. SyMPLES is an approach for PL application in
embedded systems through the extension of SysML language
to include variability together with a development process,
but in this study the authors do not distinguish between the
characteristics of hardware and software and focus on the use
of SysML for the architecture description.

Svendsen et al. [29] present a case study for creating a
PL for the train signaling domain. The Train Control Lan-
guage (TCL) is a Domain-Specific Language that automates
the production of source code for computer-controlled train
stations, also using CVL. However, their approach presents
just the variability management through CVL, which consists
of a portion of the system product line development process.

In the work presented by Haber et al. [30] the authors
focus on variability management in all development phases
using Matlab/Simulink. They propose a modular variability
modeling approach based on the concept of delta modeling.
A functional variant is described by a delta encapsulating a
set of modifications. A sequence of deltas can be applied to a
core product to derive the desired variant. The authors illustrate
the approach by presenting a prototypical implementation.

Finally, we highlight the Cardiac Pacemaker PL described
by Huhn and Bessling [31], where they present how to specify
the PL and its products by means of CVL. CVL enforces a
strict structuring of the product models (done in SCADE) that
reflects the substitution concepts used to describe variability.

The approach we propose in this paper is different from
the above mentioned related works, as it focuses on the PL
definition, modeling both hardware and software variabilities.
We propose the use of MDE, like automatic generation of
hardware descriptions and embedded software from high level
models, for rapid design and specification of SCES. Further-
more, we propose the use of free tools for MDE, the use of
UML as it is an extensively used modeling language and the
use of CVL to model variability.

IV. PL APPROACH

Figure 1 illustrates our proposed Product Line approach.
Notice that the approach addresses both hardware and software
variability with its underlying requirement dependencies. To
reduce both domain and application engineering complexity,
we propose the use of UML based models, in particular SysML
and MARTE. Despite being the most widely used modeling

language, UML is generally easier to understand than Matlab
blocks.

The strengths of the proposed methodology are the use
of MDE in both Domain and Application Engineering phases,
with focus on model-to-model transformations in requirements,
analysis and design activities, especially for the purpose of
modelling and generating application variants. This is different
from most of the PL methodologies, which focus on model-
to-text transformations just in the Application Engineering
phase, through the use of application generators. The use of
MDE has also the advantage to promote the possibility to
use Model-Based Test [32] in early design stages, which can
substantially reduce the V&V costs and effort [33]. Safety
analysis [34] techniques is also recommended in early design
stages, especially for certification purposes, but this is out of
the scope of this paper.

As seen in Figure 1, the approach is divided into two
interdependent phases, Domain Engineering and Application
Engineering, which are common in consolidated methods
like the Framework for Software Product Line Practice [16]
and the PLUS method [35]. During the DE phase, the high
level system models are carried out using SysML and CVL,
which are exemplified later in Section V. After the system
PL specification (user requirements, specification and related
hardware/software variability specification), underlying model
transformations (model-to-model and model-to-text transfor-
mations) are used to produce models for the subsequent design
phases including MARTE profile. The next design phases
include verification, hardware descriptions of modeled targeted
architecture and generation of platform specific embedded
software from platform independent software specifications.
For implementing model transformations in the case study, we
use the Eclipse Modeling Platform (EMF) [36]; the Papyrus
[37] modeling tool, which is a UML modeler that enables
model transformations, code generation and validation; and the
CVL Eclipse Plug-in [38] as the engine for the transformations
of product line models into specific product models. The
proposed approach is not limited to these tools, therefore
the choice of the modeling tool is up to the user, the only
requirement is to support MARTE and SysML metamodels.

Another important factor to be noted is that in the UAV
domain, hardware variability could impact directly on soft-
ware requirements and vice versa. For example, consider the
following system requirement: the system should allow the
user to choose between broadcasting the images to the ground
control station in real time or to recording a video (in flash
memory, for example). In that case, the UAV hardware must
include a camera. Moreover, for each new sensor added, their
corresponding software drivers must also be added. Another
highlight is the continuous feedback in the artifacts repository,
in which we can store any kind of artifact from both hardware
or software types. As a repository to store hardware artifacts,
we refer in a logical level, to a hardware models repository (the
same repository to store software artifacts). This feedback can
come from updates in DE or from new different requirements
elucidated from new members modeled in the AE. The feed-
back is represented by both dashed arrows and double-headed
arrows.

336Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 1: Overview of the proposed approach.

A. Domain Engineering

Before the Domain Engineering takes place, a business
team performs an economic feasibility analysis of the PL,
which will indicate whether or not it is worth to be developed.
If the PL is feasible, then we start the Domain Engineering
by modeling requirements in the system abstraction level, as
detailed below. It is out of the scope of this work to propose
domain analysis techniques, as they can be easily found in the
literature. So, existing techniques such as those mentioned in
the survey by Prieto-Diaz and Arango [39] can be used.

The Domain Engineering is performed by the domain
expert, who should first define the PL strategy, i.e., he must
decide whether to use a proactive or reactive approach [40].
Regardless of the strategy chosen, to model variabilities we
propose the use of CVL. Since CVL replaces values and sets
of model elements, by executing CVL we can add, remove
or replace functionality. To use CVL, according to Svendsen
et al. [29] the domain expert has three options for choosing
a base model: the first is a model with maximum set of
features included, meaning a complete model where CVL can
remove features to get a specific product model; the second
is a model with a minimum set of features included in the
model itself, and other fragments in other library models, then
the product models will be generated by adding features to the
base model; and the third is to choose a base model that has
neither maximum nor minimum, but somewhere in between,
so this base model can be, for instance, the base model that is
most similar to the majority of the product models, or a base
model that is tailored for teaching purposes.

CVL proposes a model with two parts: the Feature Specifi-
cation Layer (FSL) and the Product Realization Layer (PRL).
The FSL resembles a feature diagram [17], while the PRL
connects the FSL to the base model, for example by substi-
tutions. We also suggest that domain experts develop the FSL
incrementally: first, create a high level system FSL, then add
the software and the hardware features. Hardware variability
management should concern the impact evaluation of hardware
variabilities on software requirements, in the same way that
software variability management should concern the impact
evaluation of software variabilities in hardware requirements.
To manage this impact, the dependencies between hardware
and software features should be defined.

As we propose the use of CVL in conjunction with a subset
of MARTE and SysML models to describe the PL, the domain
expert should prepare a PRL that corresponds to each SysML
and MARTE models, so that after the variability resolution, all
models created for the PL are automatically adapted for each
product.

To complement the system requirements definition, a
SysML requirements diagram should be created, where distin-
guishing between functional and non-functional requirements
is recommended. As illustrated in Figure 1, the artifact reposi-
tory is updated during the PL life cycle for both domain experts
and application engineers. So, if concrete products have new
requirements not covered by the PL, the requirements diagram
can be further reviewed to include them.

Following the system requirements activity, we proceed
to the system specification activity, where we produce use
case scenarios and a system domain model. The use case
is described using traditional UML Use Case Diagrams. The
system domain model can be modeled using a class diagram,
in which the concepts are represented by pseudo-classes. These
two modeling concepts are strongly related to the functional
high level specification described subsequently. While the use
case is needed to obtain a SysML block diagram, as explained
below, the domain model is used to communicate with domain
experts for a better understanding about the domain, for
validating the specification and for a future definition of a
domain specific language by means of a UML profile, for
example.

To finalize this system initial description, each use case is
converted into a SysML block (or internal block), for example
by applying the MADES methodology [3], with the difference
that a mandatory use case is converted to a mandatory block,
an optional use case is converted to an optional block, and an
alternative use case is converted to an alternative block. After
including all the developed artifacts in the repository, we can
continue the PL development by going to hardware or software
abstract levels or even to both in parallel.

Following this initial system specification, the development
can evolve into two parallel paths, as illustrated in Figure
1. The first path starts at hardware specification, architecture
definition, design of the components and simulation. The
second path goes through software variability specification
and management, architecture definition, subsystems design,
simulation, testing, and code generation.

The designer can move to the partitioning of the system in
question: depending upon the requirements and resources in

337Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

hand, he or she can determine which part of the system needs
to be implemented in hardware or software. It is possible,
although it could substantively increase SPL costs, to improve
safety by implementing system features in a redundant way,
i.e., whenever possible, to provide features implementations in
both hardware and software. Thus, it becomes part of the Ap-
plication Engineering to decide if the features implementation
component should be integrated in the product by software or
hardware.

Since the proposed approach focuses on UAV, V&V activ-
ities should be executed in each stage. It is important to notice
that on hardware and software paths a more detailed specifica-
tion takes place by the eventual allocation with schedulability
and underlying model transformations (model-to-model and
model-to-text transformations) that are used to bridge the
gap between these abstract design models and subsequent
design phases. These phases include verification, hardware
descriptions of modelled target architecture and generation
of platform specific embedded software from independent
architectural software specifications.

For a description of the different steps related to each
design level by means of MARTE concepts, see the work of
Quadri et al. [3], which can be adapted to this approach by
creating a CVL model for the base models representing the
hardware and software specification, architectural definition,
components and subsystems design and simulation. It is also
important to perform validation activities in every model to
ensure they correspond to the requirements and are traceable
to each other. At the end of this phase, our repository contains
all the artifacts and the domain engineering is ended.

B. Application Engineering

Application Engineering corresponds to configuring a prod-
uct by assembling reusable artifacts from the repository. This
step is the responsibility of the application engineer, who elicits
the particular system requirements. By using our approach, the
application engineering phase is simplified and reduced to the
definition of the resolution model, which consists of selecting
the desired features for the PL member. So, the application
engineer can choose which substitutions to execute, and then
execute the CVL model that will generate specific products
(i.e., specific models). To conclude this step, it is necessary
to conduct simulation and testing also on the target system to
validate it.

V. CASE STUDY

To illustrate the use of the proposed methodology, we
present the initial development of a UAV PL. Through this
example, we aim to show the power of CVL to manage
hardware and software variabilities. We assume that the PL
economic feasibility analysis indicated it is worth to be de-
veloped. The domain expert defined the following strategies:
reactive approach with the base model with maximum set of
features. We have chosen Tiriba as a starting point, but intend
to include other UAVs in future works.

In Figure 2, we illustrate part of the SysML requirements
diagram with the maximum set of features. The next step is
to create the CVL model, which comprises FSL and PRL, for
this base model. For the management of both hardware and

<<FuncitionalRequirement>>

<<FuncitionalRequirement>> <<FuncitionalRequirement>> <<FuncitionalRequirement>> <<FuncitionalRequirement>>

<<FuncitionalRequirement>> <<FuncitionalRequirement>>

<<FuncitionalRequirement>>

Figure 2: Part of the SysML requirements diagram for the UAV
Product Line.

Figure 3: Part of the system high level FSL for the UAV
Product Line.

software features, we should create a hardware and software
FSL, which are modelled from the system high level feature
diagram, as illustrated in Figure 3. To finish this first part,
we define the PRL, which connects the feature specification
layer to the base model and the substitutions, like illustrated in
Figure 4 through an architectural view. Observe that the base
model has the maximum set of features, thus a subtractive
strategy is used for most parts, and sometimes a substitution.

Supposing that the same process is done for the other
models proposed and all the models are stored in a repository,
all the application engineer needs to do is to create the
resolution model, by selecting the required features for the
product. A possible resolution model with the positive choices
for Autonomous Navigation, Manual Control, Agrochemical
Sprayer and Video Camera is illustrated in Figure 5. After
executing the CVL engine, the PRL is transformed into the
resulting product model presented in Figure 6.

VI. CONCLUSIONS AND FUTURE WORKS

This paper aimed to present an approach for UAV product
lines modeling with the use of MDE techniques in both
Domain and Application Engineering, as well as software and
hardware variability management. To fulfill this objective we
have used a subset of UML profiles like SysML, MARTE in
combination with the CVL. The use of the proposed approach
in the UAV domain can bring the benefits of PL and MDE
techniques, such as reducing system costs and time-to-market

338Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 4: Part of the PRL for the UAV Product Line.

Figure 5: Part of the UAV resolution model.

Figure 6: Part of the UAV product model after processing the
variabilities.

and increasing system reliability. Finally, the most important
steps, models and concepts from the proposed approach have
been illustrated by a UAV product line case study. The main
limitation of our approach is the lack of definition of a
UAV UML profile to improve model-to-code transformation.
Therefore, for future work we propose to define a UAV UML
profile and to evaluate the proposed approach by means of an
experiment to compare our approach with others in terms of
efficiency and usability.

Acknowledgments

The authors would like to thank CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior) for financial
support received during the development of this work.

REFERENCES

[1] J. Sifakis, “Embedded systems - challenges and work directions,” in
Principles of Distributed Systems, 8th International Conference, Greno-
ble, France, ser. Lecture Notes in Computer Science, T. Higashino, Ed.,
vol. 3544. Springer, Dec. 2004, pp. 184–185.

[2] I. Moir, Civil Avionics Systems, ser. Aerospace Series (PEP). John
Wiley Sons Ltd, 2006.

[3] I. R. Quadri, A. Sadovykh, and L. S. Indrusiak, “MADES: a
SysML/MARTE high level methodology for real-time and embedded
systems,” in ERTS2 2012: Embedded Real Time Software and Systems,
Feb. 2012, pp. 1–10.

[4] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli,
“Using multiple levels of abstractions in embedded software design,”
in Embedded Software, ser. Lecture Notes in Computer Science,
T. A. Henzinger and C. M. Kirsch, Eds. Springer Berlin
Heidelberg, Sep. 2001, vol. 2211, pp. 324–343. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45449-7 23 [retrieved: August, 2014]

[5] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

339Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[6] S. Kent, “Model driven engineering,” in Integrated Formal Methods, ser.
Lecture Notes in Computer Science, M. Butler, L. Petre, and K. Sere,
Eds. Springer Berlin Heidelberg, Apr. 2002, vol. 2335, pp. 286–
298. [Online]. Available: http://dx.doi.org/10.1007/3-540-47884-1 16
[retrieved: August, 2014]

[7] INCT-SEC, “Sistemas Embarcados Crı́ticos: aplicações em segurança
e agricultura,” 2008. [Online]. Available: http://www.inct-sec.org
[retrieved: August, 2014]

[8] AGX Tecnologia Ltda, 2014. [Online]. Available: www.agx.com.br
[retrieved: August, 2014]

[9] GISA-Grupo de Interesse em Sisvants e Aplicaes, 2014. [Online].
Available: http://gisa.icmc.usp.br/site/ [retrieved: August, 2014]

[10] SLUGS-Santa Cruz Low-cost UAV GNC System , 2014. [Online].
Available: http://slugsuav.soe.ucsc.edu/ [retrieved: August, 2014]

[11] Ardupilot , 2014. [Online]. Available: http://ardupilot.com/ [retrieved:
August, 2014]

[12] Object Management Group, OMG Systems Modeling Language (OMG
SysML), V1.3, 2012.

[13] Object Management Group*, UML Profile for MARTE (Modeling and
Analysis of Real-Time and Embedded Systems) 1.1, 2011, OMG doc.
http://www.omg.org/spec/MARTE/1.1/ [retrieved: August, 2014].

[14] O. Haugen, A. Wasowski, and K. Czarnecki, “Cvl: Common
variability language,” in Proceedings of the 16th International Software
Product Line Conference - Volume 2, ser. SPLC ’12. New
York, NY, USA: ACM, 2012, pp. 266–267. [Online]. Available:
http://doi.acm.org/10.1145/2364412.2364462

[15] P. G. G. Queiroz and R. T. V. Braga, “A critical embedded system
product line model-based approach,” in SEKE-26: Proceedings of
the The 26th International Conference on Software Engineering and
Knowledge Engineering. London, UK: Springer, Jul. 2014, pp. 71–75.

[16] Northrop, L. M. et al., “A Framework for Software
Product Line Practice, Version 5.0,” 2009. [Online]. Available:
http://www.sei.cmu.edu/productlines/framework.html [retrieved: Au-
gust, 2014]

[17] K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line
Engineering,” IEEE Software, vol. 19, no. 4, Aug. 2002, pp. 58–65.

[18] D. M. Weiss and C. T. R. Lai, Software Product-line Engineering: A
Family-based Software Development Process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[19] L. Belategi, G. Sagardui, and L. Etxeberria, “Model based analysis
process for embedded software product lines,” in Proceedings of
the 2011 International Conference on Software and Systems Process,
ser. ICSSP ’11. New York, NY, USA: ACM, May. 2011, pp. 53–
62. [Online]. Available: http://doi.acm.org/10.1145/1987875.1987886
[retrieved: August, 2014]

[20] O. M. Group, “OMG Unified Modeling Language (OMG UML),
Infrastructure, V2.1.2,” Tech. Rep., nov 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF [retrieved: Au-
gust, 2014]

[21] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a Large
Industrial Context - Motorola Case Study,” in Proceedings of the 8th
International Conference on Model Driven Engineering Languages and
Systems, ser. MoDELS’05. Berlin, Heidelberg: Springer-Verlag, Oct.
2005, pp. 476–491.

[22] M. Z. Iqbal, A. Arcuri, and L. Briand, “Environment modeling with
uml/marte to support black-box system testing for real-time embedded
systems: Methodology and industrial case studies,” in Proceedings
of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part I, ser. MODELS’10. Berlin, Heidelberg:
Springer-Verlag, Oct. 2010, pp. 286–300. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1926458.1926486 [retrieved: August,
2014]

[23] omg, Meta Object Facility (MOF) Core Specification Version 2.0, 2006.
[Online]. Available: http://www.omg.org/cgi-bin/doc?formal/2006-01-
01

[24] A. Polzer, S. Kowalewski, and G. Botterweck, “Applying software
product line techniques in model-based embedded systems engineering,”
in Model-based Methodologies for Pervasive and Embedded Software
(MOMPES 2009), Workshop at the 31st International Conference on

Software Engineering (ICSE 2009), vol. 0. IEEE Computer Society,
May May. 2009, pp. 2–10.

[25] O. Beucher, MATLAB und Simulink (Scientific Computing). Pearson
Studium, 08 2006.

[26] Pure Systems, “pure::variants,” 2012.
[27] Braga, R. T. V. et al., “The prolices approach to develop product

lines for safety-critical embedded systems and its application to
the unmanned aerial vehicles domain.” CLEI Electron. J., vol. 15,
no. 2, May 2012, pp. 1–13. [Online]. Available: http://dblp.uni-
trier.de/db/journals/cleiej/cleiej15.html#BragaBJMNB12 [retrieved: Au-
gust, 2014]

[28] R. F. Silva, V. H. Fragal, E. A. de Oliveira Junior, I. M.
de Souza Gimenes, and F. Oquendo, “SyMPLES - A SysML-based
Approach for Developing Embedded Systems Software Product
Lines.” in ICEIS (2), S. Hammoudi, L. A. Maciaszek, J. Cordeiro,
and J. L. G. Dietz, Eds. SciTePress, Jul. 2013, pp. 257–
264. [Online]. Available: http://dblp.uni-trier.de/db/conf/iceis/iceis2013-
2.html#SilvaFJGO13 [retrieved: August, 2014]

[29] Svendsen, A. et al., “Developing a software product line for train
control: A case study of cvl.” in SPLC, ser. Lecture Notes in Computer
Science, J. Bosch and J. Lee, Eds., vol. 6287. Springer, Sep. 2010,
pp. 106–120. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
15579-6 8 [retrieved: August, 2014]

[30] Haber, A. et al., “First-class variability modeling in matlab/simulink,”
in Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems, ser. VaMoS ’13. New
York, NY, USA: ACM, Jan. 2013, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/2430502.2430508 [retrieved: August, 2014]

[31] S. Blessing and M. Huhn, “Formal Safety Analysis
and Verification in the Model Driven Development of a
Pacemaker Product Line.” in MBEES, H. Giese, M. Huhn,
J. Phillips, and B. Schtz, Eds. fortiss GmbH, Mnchen,
Feb. 2012, pp. 133–144. [Online]. Available: http://dblp.uni-
trier.de/db/conf/mbees/mbees2012.html#BlessingH12 [retrieved: Au-
gust, 2014]]

[32] M. Timmer, H. Brinksma, and M. I. A. Stoelinga, “Model-based
testing,” in Software and Systems Safety: Specification and Verification,
ser. NATO Science for Peace and Security Series D: Information and
Communication Security, M. Broy, C. Leuxner, and C. A. R. Hoare,
Eds. Amsterdam: IOS Press, April 2011, vol. 30, pp. 1–32.

[33] Heimdahl, Mats Per Erik, “Safety and software intensive systems:
Challenges old and new.” in FOSE, L. C. Briand and A. L. Wolf, Eds.,
2007, pp. 137–152.

[34] J. Liu, J. Dehlinger, and R. Lutz, “Safety analysis of software product
lines using state-based modeling,” in 16th IEEE International Sympo-
sium on Software Reliability Engineering, 2005. ISSRE 2005, pp. 10–
30.

[35] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Redwood City, CA,
USA: Addison Wesley Longman, 2004.

[36] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[37] “Open source tool for UML modeling,” 2011,
http://www.papyrusuml.org/ [retrieved: August, 2014].

[38] SINTEF, “Cvl tool from sintef,” 2012. [Online]. Available:
http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl tool from sintef
[retrieved: August, 2014]

[39] R. Prieto-Diaz and G. Arango, Domain Analysis and Software Systems
Modeling. IEEE Press, 1991.

[40] C. W. Krueger, “Variation management for software production
lines,” in Proceedings of the Second International Conference
on Software Product Lines, ser. SPLC 2. London, UK, UK:
Springer-Verlag, Aug. 2002, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645882.672255 [retrieved: August,
2014]

340Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

