
System Composition Using Petri Nets and DEVS Formalisms

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—This paper is part of the work dealing with system
developoment and deployment, where the system behavior
should be modeled by formalisms allowing to define workflow
scenarios and offering an interface for workflows synchroniza-
tion. One such formalism is represented by Object Oriented
Petri Nets (OOPN). OOPN are based on well-known class-based
approach enriched by concurrency. Nevertheless, OOPN lacks
one important element—a hierarchy followed by a simple way
to model items exchanges on the fly. Therefore, the formalism
of Discrete Event System Specification (DEVS) is taken into
account. In the presented approach, the OOPN model is split up
into DEVS components. Each component can be coupled with
another component through the same compatible interface.
A combination of OOPN and DEVS formalisms is used to
compose the system using DEVS-based components, where
each such component is modeled by means of OOPN. It
preserves the advantages of using OOPN for behavior modeling
and makes it possible to hierarchize models. The paper deals
with the combination of both formalisms and compares the
classic object approach to the component approach for system
composition.

Keywords-Object Oriented Petri Nets; DEVS; system compo-
sition; data passing.

I. INTRODUCTION

The paper is part of the work dealing with system

developoment and deployment [1][2][3], where the system

is modeled, as well as implemented, by means of formal

models. Present methods use various models in analysis

and design phases, whereas these models usually serve as a

system documentation rather than real models of the system

under development. The system is then implemented in

accordance with these models, whereas the code is either

generated from models or implemented manually. Unfortu-

nately, many implementation differ from the designed mod-

els because of changes created during the system debugging

and improvement. Consequently, models become out of date

and useless.

To solve this problem, the methodologies and approaches

commonly known as Model-Driven Software Development

were investigated and developed for many years [4][5].

These methods use executable models, e.g., Executable

Unified Model Language (ExecUML) [6] in Model Driven

Architecture methodology [7], which allow to test systems

using models. Models are then transformed into code, but

the resulted code has to often be finalized manually and

the problem of imprecision between models and transformed

code remains unchanged.

The system development methodology, which makes a

base of the presented work, uses formal models for system

description, as well as system implementation. Therefore,

there is no need to transform models. Moreover, the system

is developed using different kinds of models in simula-

tion, i.e., it is possible to test systems in any state at

any time. The combination of formalisms allows to derive

benefits from their different features. This paper deals with

two formalisms—Object Oriented Petri Nets (OOPN) [8],

[9] and Discrete Event System Specification (DEVS) [10].

It preserves the advantages of using OOPN for behavior

modeling and makes it possible to compose systems us-

ing DEVS-based components. This combination has been

already used in previous works [2][11][12] as it is, without

an analysis of its features and usefulness. This paper puts

an accent on the ability of that concepts to model a sys-

tem composition and its usability is demonstrated ising an

example, which was defined in [11].

The paper is organized as follows. Section II deals with

related work. Then, we briefly introduce the system in

simulation concept in Section III and the used formalisms of

OOPN and DEVS in Section IV. The different principles of

system composition will be described in Section V, followed

by analysis of system elements communication in Section

VI. The usability of the presented approach is demonstrated

in Section VII and the summarization and future work will

be described in Section VIII.

II. RELATED WORK

There are many works dealing with similar problems in

the field of the design of control or embedded systems. The

common feature is to use formal system (language, models,

etc.) to software design and testing. There are two main mo-

tivations of formal system usage. First, to build and maintain

control of the system in a quite fast and inuitive way. The

High-level languages, especially based on Petri Nets, are

used in this way. For example, the RoboGraph framework

[13] for the robot application control uses hierarchical binary

Petri nets for middleware implementation. In the area of

309Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

embedded systems, we can mentioned the work by Rust et

al. [14], which uses Timed Petri Nets for the synthesis of

control software by generating C-code, the work based on

Sequential Function Charts [15], or the work based on the

formalism of Nets-Within-Nets (NwN) [16][17][18].

These tools and works allow to model systems using a

combination of different formalisms, but do not allow to

use formal models in system implementation. The formal-

ism of NwN is closest to the formalism of OOPN, but

OOPN fully support an integration of formal description

and programming language, which facilitates, e.g., reality-

in-the-loop simulation or usage of formal models in the

target application. The proposed approach allows to use of

formal models to design, analyze and program applications,

including a combination of simulated and real components.

The main advantages are the following: there is no need for

code generation, and the same formalisms and methods are

used for further investigation of deployed systems.

III. SYSTEM IN SIMULATION CONCEPT

The basic principles of the system development methodol-

ogy [3][11] will be introduced in this section. The methodol-

ogy supposes that the system is developed in the simulation;

this concept will be outlined, too.

A. System Development Methodology

The modeling process is split up into three basic phases—

identification of model elements, modeling the system be-

havior, and modeling the system architecture. The basic

model elements are subjects, roles, and activities. The sub-

ject represents a data unit, e.g., the user working with the

system or an individual element in the system. Each subject

acts through its role. One subject can have more roles, e.g.,

the user can act as a reviewer, as well as a participant, in the

conference review system. The activity represents the system

functionality and is modeled by workflow scenarions. To

model each such element, the formalism of OOPN is used.

It can also be modeled by any other formalism allowing

to define workflow scenarios and offering an interface for

workflows synchronization, e.g., statecharts, activity dia-

grams, or other kind of Petri nets. The system architecture

is modeled by classes that can be coupled into components

using the formalism of DEVS.

B. Application Framework For System in Simulation

The used methodology [11] supposes that the system is

being developed in the simulation. The development process

starts with the empty simulation (simulation containing no

model elements). Subsequently, in every subsequent step,

model elements are being created, modified, or exchanged

within the simulation. The simulation can be suspended,

resumed, or restarted at any time, so that designers are

able to test system behavior immediately, after each change.

The model can be tested in real conditions, too. Therefore,

a possibility to communicate with elements of product

environment has to be ensured. The product environment is

the target system where the developed model has to work.

The presented concept has to be supported by an appli-

cation framework allowing to model the system, to simulate

designed models, and to manipulate with models during

the simulation. The application framework has to fulfil

three basic requirements. First, to link models and product

environment. Second, to work with models in simulations.

Third, to exchange elements of models on the fly—the

model elements should be exchanged with no changes in

the depending model elements.

The application framework PNtalk, which satisfies previ-

ously listed requirements, has been developed [19]. Since the

framework is implemented in Smalltalk [20], the objects of

the OOPN formalism are directly available in the Smalltalk

application and Smalltalk objects are directly available in

the PNtalk framework. Nevertheless, OOPN objects can be

linked to objects of any languages or formalisms allowing

message passing.

Second, the PNtalk framework allows to execute models

in different simulation modes that are suitable for design,

testing, hardware/software-in-the-loop simulation, and sys-

tem deployment. Using simulation allows, among others, to

suspend (i.e., to exclude from the execution), to modify, or to

exchange chosen parts of the model. By this point, we came

in on the third requirement—a possibility to exchange model

parts on the fly (any time during the system simulation).

Therefore, the formalism of DEVS is taken into account.

DEVS offers component approach allowing for wrapping

an other kind of formalisms. The combination of OOPN

and DEVS formalisms preserves the advantages of using

OOPN for behavior modeling and makes it possible to

hierarchize models. It allows the designer to derive benefits

from component exchanges instead of object exchanges.

IV. FORMAL MODELS

We will briefly introduce the formalisms of OOPN and

DEVS that make a base of the system development method-

ology [3][11].

A. Formalism of Object Oriented Petri Nets

The formalism of OOPN [21] is based on the well-known

class-based approach. All objects are instances of classes,

every computation is realized by message sending, and

variables contain references to objects. This kind of object-

orientation is enriched by concurrency. OOPN objects offer

reentrant services to other objects and, at the same time, they

can perform their own independent activities. The services

provided by the objects, as well as the autonomous activities

of the objects are described by means of high-level Petri

nets—services by method nets, object activities by object

nets.

310Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The formalism of OOPN contains important elements

allowing to test object states (predicates) and to manipulate

object state (synchronous ports) with no need to instantiate

method nets. Object state testing can be negative (negative

predicates) or positive (synchronous ports). Synchronous

ports are special (virtual) transitions that cannot fire alone

but need to be dynamically fused to some other transitions

the synchronous port is called from (via message sending).

Negative predicates are special variants of synchronous ports

having inverted semantics—the calling transition is fireable

if the negative predicate is not fireable.

For the sake of notation simplicity, we introduce the

formal notation for following relationships. The term @
represents the relationship is an instance of. For example,

(a, C1) ∈ @ means that a is the instance of the class named

C1. We will write this relation in the form a@C1. If the

instance identifier is not important, we will type only @C1.

The terms
M
⇁ and

M
↽ represent the relationship contains

a reference to. For example, a1@A
M
⇁ a2@B means that

a1@A contains a reference to a2@B and a1@A
M
↽ a2@B

means that a2@B contains a reference to a1@A. If there

are both relationships on the same elements, we will write

a1@A
M

⇋ a2@B.

B. Formalism of DEVS

The formalism of DEVS [10] can represent any system

whose input/output behavior can be described as a sequence

of events. The atomic DEVS model is specified as a structure

M containing sets of states S, input and output event values

X and Y , internal transition function δint, external transition

function δext, output function λ, and time advance function

ta. These functions describe the behavior of the component.

This way, we can describe atomic models. Atomic models

can be coupled together to form a coupled model CM . The

later model can be employed itself as a component of a larger

model. This way, the DEVS formalism brings a hierarchical

component architecture. Sets S, X , Y are to be considered

as structured sets. It allows to use multiple variables for

specification of a state; we can use a concept of input and

output ports for input and output events specification, as well

as for coupling specification. In another words, components

are connected by means of ports and event values are

carried through these ports. We will denote input port by the

notation component name⊕port name and output port

by the notation component name⊖port name.

As with the object approach, we will define the for-

mal notation of DEVS components. Since the component

represents the model description (cf. classes), as well as

its executable form (cf. objects as instances of classes),

there is no means for a notion to be an instance. The

new component having the same structure and behavior of

existing one can be created by clonning that component.

To differ from the notation contains a reference to
M

⇋ ,

Figure 1. Packages with bidirectional relationship.

we define the relationship linked with meaning that the

component is linked with another one through their ports.

This relationship will be represented by terms left link
D
⇁ ,

right link
D
↽ , and link

D

⇋ . For example, c1
D
⇁ c2 (or

c1
D
↽ c2) establishes a channel for data transmission from

the component c1 to the component c2 (or from c2 to c1).

The link
D

⇋ means there are both (left and right) links. To

specify ports, we will write c1⊖port1
D
⇁ c2⊕port2.

C. Combination of OOPN and DEVS Formalisms

The DEVS formalism offers a component approach, al-

lowing to wrap other kinds of formalisms, so that each

such formalism is interpreted by its simulator and simulators

communicate with each other by means of the compatible

interface. The OOPN model is then split up into components

linked together by the compatible interface. Let MPN =
(M,Π,mapinp,mapout) be a DEVS component M , which

wraps an OOPN model Π. The model Π defines an initial

class c0, which is instantiated immediately the component

MPN is created. Functions mapinp and mapout map ports

and places of the object net of the initial class c0. The

mapped places then serve as input or output ports of the

component, i.e., they are part of the component interface.

V. SYSTEM COMPOSITION

The different principles of system composition will be

described in this section. First, we describe the classic object

oriented approach defining packages, where the interface is

build up from classes or objects. Second, we describe the

DEVS approach defining components, where the interface is

build up from ports.

A. Packages Composition

In the classic approach, the interface of each package

is built up from classes and their operations. Relation-

ships between two packages should be only unidirectional—

if there are bidirectional relationships, packages cannot

be simply replaced by other packages. The example is

shown in Figure 1. There are two packages net and

model1; the class model1.M1 needs to use the class

311Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

net.Communication and net.Communication no-

tifies model1.M1 about incomming events—the relation-

ship is bidirectional. If the package net would be used with

another package (e.g., model2), there is a problem how to

represent the association from net.Communication to

model2.M2. The only way is to change the package net.

Figure 2. Packages with unidirectional relationship.

Figure 2 shows a solution of the previous situation—

the class net.Communication depends on the newly

created class net.EventListener and model1.M1 is

derived from it—the relationship is unidirectional (only from

model1 to net). If the package net would be used

with another package, e.g., model2, this package only

uses classes from net—no changes are needed. It is an

application of known Dependency Inversion Principle.

B. Components Composition

In DEVS approach, the component interface is built up

from ports. Relationships between two packages do not

need to be only unidirectional; components can be simply

replaced by other components in both cases. The example

is shown in Figure 3. There are two components net

and model1; the component model1 sends commands

to the component net and net notifies model1 about

incomming evets—the relationship is bidirectional.

net

cmd
event

model1

cmdevent

Figure 3. Components with bidirectional relationship.

If the package net would be used with another compo-

nent (e.g., model2), there is no problem how to do it—the

new component is simply re-connected through ports (see

Figure 4).

VI. COMMUNICATON

The difference between objects and components replace-

ment on the fly will be taken into account in this section.

A. Message Passing

In the classic approach, the package communication is

provided by message passing. The object from one package

(client) sends a message to the object from second package

(server), whereas the client usually waits for an answer (until

the message is processed—synchronous communication).

net

cmd
event

model1

cmdevent

model2

cmdevent

X X

Figure 4. Components composition through ports with component chang-
ing.

Figure 5a) shows the communication between packages

net and model1 through their interfaces. The instance

@net.Communication notifies the instance @model1.M1
about arrising events and @model1.M1 sends commands

to @net.Communication. Let us assume that the class

Communication represents an interface to the real robot

and the class M1 implements control algorithms. During the

simulation, there can arise a need to test another algorithms

in the current situation—the simple way is to change the

control algorithm on the fly and continue in simulation. So,

the component model1 is exchanged to model2; it follows
that @model1.M1 is removed and @model2.M2 is put in

its place.

Figure 5. Communication through the object and component interfaces.

The object exchange on the fly means that one reference is

exchanged to another one. To achieve this goal, the server

has to be prepared for such an operation—it has to offer

a protocol for attaching and detaching clients. Second, if

the new client has a different protocol, it has to be adapted

(cf., e.g., the design pattern Adapter). Third, if the detached

component is in process, e.g., it processes a method which

has been called from another object, the problem of its

correct removing arrises.

312Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

If we get back to the previous example, we make out

that the instance of the class net.Communication has

a reference to the instance of the class model1.M1 and

vice versa—from this point of view, there is a bidirectional

relationship @net.Communication
M

⇋ @model1.M1.

B. Data Passing

In DEVS approach, the component interface is built up

from ports. Component communication is then provided by

data passing; the client component sends a piece of data to

the server component, whereas the client usually does not

wait for an answer (asynchronous communication).

Figure 5b) shows a data passing between components

net and model1 through their interfaces. The component

net notifies the component model1 about arrising events by

carrying a piece of data from net⊖event to net⊕event.

The component model1 sends commands to the component

net by carrying a piece of data through the data connection

model1⊖cmd
D
⇁ net⊕cmd. Since the component repre-

sents the model description (cf. classes), as well as its

executable form (cf. objects as instances of classes), there

is no difference between components replacements during

their composition or on the fly.

C. Comparison of Data and Message Passing

Since the Petri nets have good ability of describing

processes, they can be used to model the difference between

message passing and data passing. Figure 6a) describes the

model of message passing and Figure 6b) describes the

model of data passing.

a = r.msg(d)

 r.msg(d)

r.msgsend

send

send
msg

a

a) b)

d

a

d

a

Figure 6. Comparison of message passing and data passing.

Let us investigate Figure 6a). The sequence of unnamed

places and transitions represents one thread in the system

behavior containing the message passing. It is modeled by

the transition named send—it sends a message msg to the

receiver r with a piece of data d and waits for the answer

a. The transition send can be split up into output transition

(shown with output arrow), which needs to know receiver,

message, and data, and input transition (shown with input

arrow), which waits for the answer, i.e., waits until the called

method r.msg is finished.

d
send

msg

a

a

Figure 7. Adjusting data passing to sychronous communication.

Let us investigate Figure 6b). The transition send needs

to know only a piece of data d that are put to the output port

msg (shown with output arrow) representing the message.

First, the component does not care about the receiver (any-

thing what is linked) and its interface. Second, the transition

send models asynchronous communication (no waiting for

the answer). If the component needs to get the answer, it can

define an independent thread, which is started by putting the

answer to the input place a (shown with input arrow). In the

case the component needs to wait for the answer, it can be

modeled as shown in Figure 7.

VII. DATA PASSING AND SYSTEM IN SIMULATION

CONCEPT

This section demonstrates the usability of the presented

approach on a simple example of the robotic system, which

has been described in [11]. The robotic system consists of

the simulated robot (the data unit modeled by the subject

Device), its role Robot, and one possible scenario of the

robot behavior (the activity Scenario). These model elements

are identified in accordance with development methodology

(see Section III).

A. Model of Behavior

We will suppose a very simple activity, which can be de-

scribed by the following algorithm: (1) the robot is walking;

(2) if the robot comes upon to an obstacle, it stops, turns

right and tries to walk, (3) if the robot cannot walk, it turns

round and tries to walk; (4) if there is no possibility to walk,

it stops. The activity net Scenario describing the presented

behavior is shown in Figure 8.

The activity @Scenario communicates with the object

@Role, which is initially placed in the place walking.

The communication is provided using predicates that serve

for testing (see isCloseToObstacle and isClearRoad) and

synchronous ports for action performing (see stop, go, and

turnRight).

313Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

walking

r isCloseToObstacle.

t1

r stop. r turnRight.

r

r

p1

r isCloseToObstacle.

t2

r turnRight. r turnRight.

r

r isCloseToObstacle.

t3

r isClearRoad.

t11

r

r isClearRoad.

t12

r isClearRoad.

t13

r

r

r

r go.

r go.

r go.

r

p2

r

r

r

p3

r

Figure 8. The activity net Scenario.

distance

self delay: 10

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

d

d

oldD

#getDist

request

p1

t1

t2

go

stop

#stop

#go

left

turnLeft

right

turnRight

true true

Figure 9. The role Robot.

The possible model of the role Robot is shown in Figure

9. The role offers information about robot’s position by

means of predicates isClearRoad and isCloseToObstacle.

Moreover, the role offers synchronous ports stop, go, turn-

Right, and turnLeft, that represent commands forwarded to

the subject.

B. Model of Composition

The system is composed of two components that are

shown in Figure 10. The component behavior1 consists of

the role Robot and the activity Scenario—since these objects

communicate using message passing, they have to be en-

capsulated into the same component. The component robot

represents the subject, whose realization is schematically

depicted in Figure 11.

The communication is provided using data passing. The

role Robot represents the initial class c0 of the component

behavior1, so that the object @Robot defines input and out-

put ports. The component interface consists of output ports

⊖request, ⊖left, and ⊖right. We can see that appropriate

synchronous ports only put a piece of data to these ports.

The component robot has input ports corresponding to the

output ports of the component behavior1—their interfaces

are compatible. Let us investige the following situation.

behavior1

distance

request

robot

distance
left

right right

left
request

behavior2

distance

request
left

right

Figure 10. The robot system composition.

The activity @Scenario requests turning right—it calls the

synchronous port @Robot.turnLeft, which puts a value

true to the output port behavior1⊖left. This value is

carried through behavior1⊖left
D
⇁ robot⊕left to the

component robot, where performs advisable operations.

The role @Robot checks actual robot’s distance to the

obstacle every 10 time units by requesting new data—it

carries a symbol #getDist through behavior1⊖request
D
⇁

robot⊕request to the component robot. The component

robot gets a new information about the distance and carries

it back through robot⊖distance
D
⇁ behavior1⊕distance.

answer

#getDist

request

...

#go

(#distance, d)

#stop

left
true

right

true

Figure 11. The subject component—an abstract view.

Anytime we need to exchange the model of behavior (for

example, the actions change from turning right to turning

left), we simply clone the existing component behavior1,

the new component named behavior2 will be created, we

modify its realization and connect it through ports (see the

component behavior2 in Figure 10).

VIII. CONCLUSION AND FUTURE WORK

This paper dealt with the usability of the OOPN and

DEVS formalisms in the system development. The formal-

ism of OOPN allows to define workflow scenarios and offers

an interface for workflows synchronization. Nevertheless, it

lacks a hierarchy followed by simple way to model items

exchanges on the fly. Therefore, it was combined with the

formalisms of DEVS, which offers hierarchized component

approach—the OOPN model is split up into components

linked together by the compatible interface. It preserves

314Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

the advantages of using OOPN for behavior modeling and

makes it possible to hierarchize models.

This paper is part of the work dealing with system devel-

opment and deployment using specific methodology and tool

support. The application framework PNtalk, which satisfies

required features, has been developed [19]. So far, it allows

a communication to Smalltalk environment. Nevertheless, it

can be linked to objects of any languages or formalisms

allowing message passing. We plan to extend PNtalk to the

Java and C/C++ platforms.

The proposed approach has one main disadvantage—the

usage of application framework interpreting formal models,

increases requirements on memory size and system perfor-

mance. The future research will aim at efficient represen-

tation of choosed formal models and interoperability with

another product environments. The application framework

will be adapted to these conditions having lesser requirement

for resources.

ACKNOWLEDGMENT

This work has been supported by the European Regional

Development Fund in the IT4Innovations Centre of Excel-

lence project (CZ.1.05/1.1.00/02.0070) and by BUT FIT

grant FIT-S-14-2486.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “System design with Object oriented
Petri nets formalism,” in The Third International Conference
on Software Engineering Advances Proceedings ICSEA 2008.
IEEE Computer Society, 2008, pp. 421–426.

[2] R. Kočı́ and V. Janoušek, “OOPN and DEVS formalisms for
system specification and analysis,” in The Fifth International
Conference on Software Engineering Advances. IEEE Com-
puter Society, 2010, pp. 305–310.

[3] R. Kočı́ and V. Janoušek, “Modeling and simulation-based
design using Object-oriented Petri nets: a case study,” in
Proceeding of the International Workshop on Petri Nets and
Software Engineering 2012, vol. 851. CEUR, 2012, pp. 253–
266.

[4] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer-Verlag, 2005.

[5] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engi-
neering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute. Kluwer Academic
Publishers, 2005.

[6] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie,
Model Driven Architecture with Executable UML. Cam-
bridge University Press, 2004.

[7] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, ser. 17 (MS-17). John Wiley & Sons,
2003.

[8] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computer-
ized tool for Object oriented Petri nets modelling, ser. Lecture
Notes in Computer Science. Springer Verlag, 1997, vol.
1333, pp. 591–610.

[9] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[10] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling
and Simulation. Academic Press, Inc., London, 2000.

[11] R. Kočı́ and V. Janoušek, “Object oriented Petri nets in
software development and deployment,” in ICSEA 2013, The
Eighth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2013, pp. 485–490.

[12] R. Kočı́ and V. Janoušek, “Towards Design Method Based on
Formalisms of Petri Nets, DEVS, and UML,” in ICSEA 2011,
The Sixth International Conference on Software Engineering
Advances, 2011, pp. 299–304.

[13] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using
hierarchical binary Petri nets to build robust mobile robot
applications: RoboGraph,” in IEEE International Conference
on Robotics and Automation, 2008, pp. 1372–1377.

[14] C. Rust, F. Stappert, and R. Kunnemeyer, “From Timed
Petri nets to interrupt-driven embedded control software,” in
International Conference on Computer, Communication and
Control Technologies (CCCT 2003), 2003, pp. 124–129.

[15] O. Bayo-Puxan, J. Rafecas-Sabate, O. Gomis-Bellmunt, and
J. Bergas-Jane, “A GRAFCET-compiler methodology for
C-programmed microcontrollers, In Assembly Automation,”
Assembly Automation, vol. 28, no. 1, pp. 55–60, 2008.

[16] R. Valk, “Petri nets as token objects: an introduction to
Elementary object nets.” in Jorg Desel, Manuel Silva (eds.):

Application and Theory of Petri Nets; Lecture Notes in
Computer Science, vol. 120. Springer-Verlag, 1998.

[17] D. Moldt, “OOA and Petri nets for system specification,” in
Object-Oriented Programming and Models of Concurrency.
Italy, 1995.

[18] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling
dynamic architectures using nets-within-nets,” in Applications
and Theory of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, 2005, pp. 148–167.

[19] R. Kočı́. PNtalk system. [Online]. Available:
http://perchta.fit.vutbr.cz/pntalk2k [retrieved: August, 2014]

[20] A. GoldBerk and D. Robson, Smalltalk 80: The Language.
Addison-Wesley, 1989.

[21] V. Janoušek and R. Kočı́, “PNtalk: concurrent language with
MOP,” in Proceedings of the CS&P’2003 Workshop. Warsaw
University, Warsawa, PL, 2003, pp. 271–282.

315Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

