
Towards a Maturity Model in Software Testing Automation

Ana Paula C. C. Furtado, Silvio R. L. Meira
Informatics Center – Cin

Federal University of Pernambuco – UFPE
Recife, PE, Brazil

{apccf, srlm}@cin.ufpe.br

Marcos Wanderley Gomes
SOFTEXRECIFE
Recife, PE, Brazil

marcos@recife.softex.br

Abstract—The practice of testing software is one of the ways to
produce software with quality for demanding clients in the
software market. The automation of Software testing may be
seen as a solution for how to test the greatest amount of
software within a project, due to the fact that the more the
software is built, the larger the scope of testing is. Therefore,
organizations that seek to guarantee that their software
projects are being built according to the demands of their
clients should follow an automation approach to testing. Thus,
this paper puts forward a description of work in progress on
the development of a maturity model for automating software
testing that is being developed as part of a doctoral thesis.
Besides presenting the overall expected structure of the
maturity model, the plan for validating it is also set out.

Keywords-software testing; automation; maturity models.

I. INTRODUCTION

Software Testing is an essential activity in today´s world
of software development, given that customers are more and
more rigorous about the quality of products being delivered
to the market. It is necessary to test in order to minimize the
risks of finding faults in the software while in clients’
production environment.

Within this context, automating software testing appears
as an alternative to manual tests in order to cover a broader
scope of the functionalities tested within a shorter period of
time. According to International Software Testing
Qualification Board (ISTQB) [1], test automation is the use
of software to execute or support testing activities, such as
test management, test case, test execution and assessing
results. Nevertheless, the automation of testing is an activity
that can be introduced in order to gain productivity from the
team and additional quality in the artifacts generated.

Another relevant perspective from which to approach
excellence in software development is to use maturity
models to support the continuous improvement of the
processes within an organization. There are maturity models
that cover the entire scope of development activities, such as
Capability Maturity Model Integration for Development
(CMMI-DEV) [2] and MPS.BR [3] (the acronym in
Portuguese for Improving Software Processing: a Brazilian
model) which is a Brazilian model that was developed with a
view to the global software community considering it better
suited to its needs. Nevertheless, there are three other models
that were built specifically to build more discipline into

testing, namely Testing Maturity Model – TMM [4], Test
Maturity Model Integration – TMMI [5] and MPT.BR [6]
(the acronym in Portuguese for Improving Test Processing: a
Brazilian model), and thereby to support the introduction of
testing in a more disciplined and prescribed manner.

However, it is observed that none of them discuss testing
automation as an issue within maturity models.
Organizations that seek to automate their testing have no
support from maturity models which would help them to
understand what the best practices of automation are and
how to introduce these into their organizations.

Therefore, this paper sets out the overall structure of a
maturity model for automating software testing that is being
developed as part of a doctoral research study.

This paper is organized as follows: the next section gives
an overview of the discipline of software testing and its main
concepts. Section 3 gives the background to maturity models
and comments on what they offer in terms of automating
software testing. Section 4 explains the framework for the
maturity model and Section 5 makes concluding remarks and
suggests future lines of study.

II. SOFTWARE TESTING BACKGROUND

According to ISO/IEEE [7], testing is a set of activities
conducted to facilitate discovery and/or evaluation of
properties of one or more test items. Testing activities can
include planning, preparation, execution, reporting, and
management activities, insofar as they are directed towards
testing.

Meyers [8] states that software testing is the process of
executing a program with the intent of finding errors. The
book, A Guide to Advanced Software Testing [9], states that
testing can also be considered a support activity: it is
meaningless without the development processes and does not
produce anything in its own right: nothing developed entails
nothing to test.

All such statements give a general idea of the definition
of software testing and essentially lead to the same overall
objective of software testing which is not to find every
system/software bug that exists, but rather to uncover
situations that could negatively impact the business.
Nevertheless, note that the cost of finding and fixing bugs
can rise considerably during the development life cycle.
Therefore, the earlier in testing that bugs which are judged

282Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

likely to have moderate or serious impacts on later stages are
identified and fixed, the better.

On the other hand, ISTQB [1] declares test automation as
the use of software to perform or support test activities, e.g.,
test management, test design, test execution and results
checking. According to ISO/IEEE [7], automated testing is
often considered to be mainly concerned with conducting
tests on scripted tests rather than having testers conduct tests
manually. However, many additional test tasks and activities
can be supported by software-based tools.

The activity of automating tests assumes that tools are
used, and, according to Hass [9], the purpose of using tools
for testing is to get as many as possible of the noncreative,
repetitive, and boring parts of the test activities automated.
The purpose is also to exploit the possibility of tools for
storing and arranging large amounts of data.

Automation may help solve problems, especially those
caused by:

• Work that is to be repeated many times;
• Work that it is slower to do manually; and
• Work that it is safer to do with a tool.

Another goal when introducing automation techniques
into the discipline of testing is to increase the productivity of
the team. Otherwise the cost of introducing automated
practices would not be compensated for. Figure 1 is a
graphical representation of the comparison of the cost of
manual and automated testing.

Figure 1. The cost of testing, by Hass [9].

Therefore, this section presented the main concepts of
software testing used for this research. The next section
comments on maturity model concepts used as references to
implement a testing maturity model in automation.

III. SOFTWARE MATURITY MODELS

According to Prado [10], maturity can be defined as "a
way to measure the stage that an organization is at in its
ability to manage its projects." The main objective is to help
improve the way software is being built.

In order to suggest a maturity level for automated testing,
the main maturity models studied were CMMI-DEV [2],
TMMI [5] and MPT.BR [6], which will be explained in the
following sections.

A. TMMI

TMMI [5] is a maturity model that was produced by the
TMMI Foundation which used TMM [4] as a reference. It
aims to work as a complementary model to CMMI-DEV [2]
and, therefore, it is organized in maturity levels, as presented
in Figure 2.

Figure 2. TMMI Maturity Levels [5].

The framework of the model consists of 16 process areas.
However, the model states “TMMI does not have a specific
process area dedicated to test tools and/or test automation”.
The model comments that test tools are treated as a
supporting resource (practices) and are therefore, part of the
process area where they provide support.

B. MPT.BR

MPT.BR [6] approaches the enhancement of the testing
process by using the best software testing practices
throughout the product lifecycle. MPT.BR uses guidelines on
how best to improve the software testing process throughout
the lifecycle of the software.

It was developed to be introduced as a complement of
MPS.BR [3], which focuses on software processing, but pays
scant attention to testing disciplines.

The MPT.BR reference model presents five maturity
levels, representing the stages for evolving a test process in
the context of an organization. The maturity levels are shown
on Table I.

The levels comprise 16 processes areas, one of which,
AET (which is the acronym in Portuguese for Test Execution
Automation), that specifically addresses testing automation,
the objective of which is to establish and maintain a strategy
for automating test execution activity, by defining its
objective, defining a framework and assessing the Return on
Investments (ROI).

There is another process area, called GDF (which stands
for tools management), that mentions testing tools. Its
objective is to manage the identification, analysis, selection
and deployment of tools to support testing activities, in

283Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

general, within an organization. This process area does not
mention any specific tool; it talks about the necessity to plan
organizationally, to instantiate and to manage the use of tools
within a project.

TABLE I. MPT.BR PROCESSES AREAS

Maturity Level Objective

1 – Partially
Managed

This contains the minimal requirements that a
company needs to meet in order to demonstrate
that the discipline of testing is applied to
projects and that this takes place in a planned
and monitored manner.

2 – Managed

This takes a broader view in which the scope of
the project starts to be controlled by the
management of change process. In addition,
software testing patterns are defined and
processes are monitored and controlled.

3 – Defined

At this level, testing becomes organizational.
Defined software processes are adopted, quality
Assurance is institutionalized in order to
support process definition, responsibilities for
test organization are defined and a
measurement program is institutionalized in the
organization. At this level, the software testing
lifecycle is associated with the development
one, where static and acceptance testing are
formalized and systematic procedures are
applied for test closure.

4 – Defect
Prevention

This focuses on preventing defects and
systematically improving the quality of the
product. At this level, the organization has a
process for managing defects, in which defects
found are monitored.

5 – Automation
and Optimization

The fifth maturity level sets out to establish a
process for testing that continuously improves
tests and automates them.

C. CMMI-DEV

CMMI-DEV [2] is a model that consists of best practices
that address development activities applied to products and
services. It addresses practices that cover the product’s
lifecycle from conception through delivery and maintenance.

The structure of the model comprises 22 process areas
organized in 5 maturity levels, which are:

1. Initial;
2. Managed;
3. Defined;
4. Quantitatively Managed; and
5. Optimizing.
CMMI is a maturity model that can be applied by means

of staged or continuous representation. In the former, the
organization can improve a set of related processes by
incrementally addressing successive sets of process areas.
The latter enables organizations to improve processes
corresponding to individual process areas, by making it
possible to choose the ones that best fit the organizational
environment.

Both representations use the same set of process areas,
and there are 2 that specifically talk about testing, as shown
in Table II.

TABLE II. CMMI PROCESS AREAS OF TESTING

Process Area Description.

Verification
The purpose of Verification (VER) is to ensure
that selected work products meet their specified
requirements.

Validation

The purpose of Validation (VAL) is to
demonstrate that a product or product
component fulfills its intended use when placed
in its intended environment.

Both process areas talk about practices on how to
guarantee quality by means of testing activities (static and
dynamic testing), but there are no recommendations on how
to conduct automated practices for testing activities.

D. Automation Approach on Maturity Models

This section combines the maturity models that are used
as main references to build the MPTA.BR. Table III
summarizes the maturity models together with the approach
of automation contained in each, if present.

TABLE III. MATURITY MODELS AND AUTOMATION APPROACH

Maturity
Model

Automation Approach

CMMI
No automation approach defined, there are two process
areas that talk about testng, namely, VER and VAL.

TMMI
Automation can be done in any process area but there is no
guidance on how to do it.

MPT.BR
Level 5 presents two process areas, one of which is AET
which talks about automation and GDF which mentions
tools, in general, including automated ones.

The next section will present the proposal of the work in
progress for developing a maturity model for automation

IV. MPTA.BR

The Maturity Model MPTA.BR (the acronym in
Portuguese for Improving the Test Automation Process: a
Brazilian model) aims to be complementary to MPT.BR, as
it provides guidance to be used when developing automation
processes within an organization.

In the current marketplace, maturity models, standards,
methodologies, and guidelines exist that can help an
organization improve the way it does business. According to
CMMI-DEV [2], “the quality of a system or product is
highly influenced by the quality of the process used to
develop and maintain it.”

The idea to develop a maturity model on automation
arose from both technical research and a bibliographic
review as well as from demand in the software development
industry. Research specifically undertaken in organizations
that have achieved a maturity level on MPT.BR [11] shows
that they are interested in applying automation techniques to
their testing processes.

MPTA.BR will follow the structure of MPT.BR, where
each maturity level consists of a set of process areas, which
can be understood as a group of related practices that, when
implemented together, satisfy a specific objective. Each
maturity level is also associated with generic practices that
are applied to each process area.

284Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

A. Maturity Levels

The maturity levels were influenced by the organization
of MPT.Br, together with a classification of tools for
automation defined by Hass [9]. This describes an
evolutionary track recommended for a company that aims to
introduce testing automation processes. The maturity levels
are:

1. Managed: its objective is to introduce the
automation of planning and monitoring activities of
the test project as well as configuration management
practices.

2. Designed: This maturity level focuses on the
definition of automated practices in test design and
debugging activities, as well as troubleshooting and
static analysis tools.

3. Executed: The objective of this level is to automate
data generation, simulation, emulation, fault-
sending, fault-injection and test case execution.

4. Analyzed: The objective is to use tools to support a
comparison of results and indicators.

The suggested model improves the concepts presented in
the other models to include specific guidance on how to
introduce test automation in an organization.

B. Validation of MPTA.BR

The validation of the model is planned to occur through
the following processes of Case Study and Survey.

The case study is run by adopting the model in selected
and volunteer organizations following the steps below:

1. Making an initial diagnosis to identify gaps and to
assess the automation practices that exist (if any) in
the organizations;

2. Building an action plan to introduce the practices of
the model in the organization;

3. Running a pilot project; and
4. Assessing the pilot project to identify if the intended

objectives of the model were achieved, in fact, with
the support of MPTA.BR.

On the other hand, a survey with specialists can be
conducted by selecting a group of experienced professionals,
both from the academic world and industry. Thereafter, it is
necessary to run a survey in order to assess their opinion on
the effectiveness of the model with regard to helping to
introduce automation practices in organizations.

Both methods of validation can run in parallel and after
collecting the results from both, the positive and negative
aspects of the model will be assessed and the improvement
opportunities consolidated in order to generate the final
version of the model which the doctoral research study sets
out to do.

Certain limitations to validate the model can be observed,
such as the difficulty to find an organization to run the case
study and to select/find the correct specialist to execute the
survey.

V. CONCLUSION AND FUTURE WORK

It has been observed that software testing automation can
be used to support organizations to achieve higher levels of

quality in the products being developed by the software
industry. Maturity models that are being used world-wide
give little, or almost no guidance on how to implement
automation in testing processes.

This work in progress is part of a proposal for a doctoral
thesis that is being developed and was prompted by prior
research and a review of the literature besides which it was
noted from personal experience and observations that there is
a demand from the software industry for a model of this
nature. The objective is to propose guidelines using a
maturity model on software testing automation in order to
help organizations gradually introduce automation practices.

One of the threats that may arise from this research is
related to the fact that automation might not be the solution
for an organization´s needs and its introduction may make
the process heavier than necessary.

Another relevant threat is that even defining MPTA.BR
as the model to be implemented might make it more difficult
than expected to run study cases in the real world
environment because it is hard to convince organizations to
introduce practices of a model that is under construction.

Automation may not be the solution for all software
development projects because its incorrect use may lead to
an increase in cost and not make sense in the end. As to
future research, this model will be detailed with the
information necessary and this will include making detailed
descriptions of its structure and processes areas.

REFERENCES

[1] ISTQB, “Standard Glossary of Tearms Used in Software
Testing”, Version 2.2, October 2012.

[2] CMMI-DEV, “CMMI for Development”, Version 1.3,
CMU/SEI-2010-TR-033, Software Engineering Institute,
2010.

[3] MPS.BR, “Improving Software Processing: a Brazilian model
”, Softex, Available from

http://www.softex.br/mpsbr/guias/, 2014.08.11

[4] TMM, “Test Maturity Model”, Illinois Institute of
Technology, Available from http://science.iit.edu/computer-
science/research/testing-maturity-model-tmm 2014.08.11

[5] TMMI, “Test Maturity Model Integration” Release 1.0. TMMi
Foundation, Ireland. Available from
http://www.tmmi.org/pdf/TMMi.Framework.pdf 2014.08.11.

[6] Softex Recife, “MPT - Improving Test Processing: a Brazilian
model”. Available in http://mpt.org.br/mpt/wp-
content/uploads/2013/05/MPT_captured on Apr. 27th 2014.
Portuguese Version Only.

[7] ISO/IEEE 29119 – Part I International Standard, “Software
and Systems Engineering/Software Testing, Concepts and
Definitions, First Edition, 2013.

[8] J. Glenford Myers, “The Art of Software Testing,” John
Wiley and Sons, ISBN 0-471-04328-1, 1979

[9] A. Hass, “A guide to Advanced software testing,” Artech
House, INC.2008

[10] D. Prado, “Project Management in Organizations”, 2 ed. Belo
Horizonte: Editora de Desenvolvimento Gerencial, 2003.
Portuguese Version Only.

[11] A. Furtado, M. Gomes, E. Andrade, I. de Farias Junior,
“MPT.BR: A Brazilian Maturity Model for Testing” The 12th
International Conference on Quality Software (QSIC), August
2012, pp. 220-229, ISSN 1550-6002, ISBN: 978-1-4673-
2857-9, DOI 10.1109/QSIC.2012.53

285Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://en.wikipedia.org/wiki/Illinois_Institute_of_Technology
http://en.wikipedia.org/wiki/Illinois_Institute_of_Technology
http://dx.doi.org/10.1109/QSIC.2012.53

