
Functional Testing Criteria Applied in a Database Project

Dianne Dias Silva, Edmundo Sérgio Spoto, Leandro Luís Galdino de Oliveira

Instituto de Informática (INF)

Universidade Federal de Goiás (UFG)

Goiânia, Brazil

Emails: {diannesilva, edmundo, leandroluis}@inf.ufg.br

Abstract—This paper reports the application of the functional

testing criteria for a database project in an IT company,

aiming to explore the main features that exist in the project of

the company. The paper presents a set of required elements

based on the functional testing and the results of test cases

analyzed in the project in question. The article also presents

the criteria that were most effective in detecting faults in the

organization of the database project.

Keywords-Software Testing; Database Testing; Functional

Software Testing; Functional Testing Criteria in a Database

Project.

I. INTRODUCTION

Gradually, software has come to play a relevant activity
in everyday society, so its reliability can not be ignored. The
reliability criteria are specified by parameters of quality and
as a result, sets of Software Quality Assurance (SQA)
activities can be defined by supportting the software
development process.

In this context, the activity of software testing should be
started in parallel with the software design, requiring good
planning, since the determination of testing criteria to be
used, the definition of Test Cases (TC) and mass test data,
come from this stage of the development cycle.

The testing criteria determine the Required Elements
(RE), which must be tested because in general, the
exhaustive testing is not feasible. Also, the RE are associated
with testing techniques that explore different aspects and
functionality of the software, relating to the functional
technique (Equivalence Class Partitioning and Boundary
Value Analysis), the statement structure of the project code
belonging to the structural technique (Based-on-Control-
Flow and Based-on-Data-Flow) and typical faults inserted
into the software during its implementation caused by error
based techniques (Error Seeding and Mutation Analysis) [5].

In addition, the growing usage of database applications in
both small and large organizations, requires that relevant
characteristics of database project, as cardinality, domain
attributes, functional dependency, among others, are treated.

However, the techniques, strategies and tools for testing
application database are scarce. Chays et al. [6] presented a
number of important features of database project testing to
be explored both in the development and the in the operation
stages of the project.

The testing criteria for database projects used in this
paper were chosen from the set of the testing criteria
presented by Souza [10] and from the criteria used by the
functional testing technique suggested by Carniello [1].

Although promising, the criteria proposed in these
studies have not been validated in real database project. Thus,
in this paper, we report an experiment using these criteria in
a database project of an Information Technology (IT)
development company.

The experiment helped to demonstrate the importance of
these criteria in the improvement of the database project. The
chosen criteria was shown to contribute to the detection of
different types of faults in the analyzed database project,
enhancing the quality of applications that use the database.

Besides testing the criteria in real application, we also
investigated which criteria have higher chances to contribute
to the detection of specific database project faults.

Thus, this study aimed to:

 Use the RE functional testing criteria (Equivalence
Class Partitioning and Boundary Value Analysis)
and also the criteria generated by Souza [10] through
the restrictions of the relational model based
schemes (Structural Relationships, Domain
Attributes, Keys, Referential Integrity, Semantic
Integrity and Functional Dependency) in a database
project of an IT company;

 Build and run the corresponding TC and;

 Measure the strength of each criterion, emphasizing
the importance in relation to the detection of faults in
the project in question.

This paper is organized as follows. Section 2 presents the
main concepts and terminology in the context of software
testing for database project, as well as the criteria explored in
this work. Section 3 shows a case study to be explored with
the functional testing criteria on database project. Section 4
presents the results obtained. Section 5 presents the
conclusion and future work.

II. BACKGROUND OF FUNCTIONAL TESTING IN A

DATABASE PROJECT

The database testing techniques are applied during the
creation of a database application, aiming to evaluate six
levels of integrity which are: the Structural Relationships, the
Domain Attributes, the Keys, the Referential Integrity, the
Semantic Integrity and the Functional Dependency.

252Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The functional testing criteria (Equivalence Class
Partitioning and Boundary Value Analysis), have been
adapted to test the attributes of the tables (Domain Attributes
criterion) in order to check valid and invalid values on the
domains used by the project, which would result in eight
testing criteria for the database project.

The following are the definitions and terminology
adopted for each criteria of the functional testing in a
database project. In Section A, the functional testing criteria
is presented before introducing the adaptations for their use
in database projects.

A. Functional Testing Technique

The functional testing is a technique used in the creation
of RE in order to exercise the values of the domain of each
attribute of the tables in the database project [9][14]. Thus,
the functional testing contributes to the improvement of the
creation of the tables and also forces the creation of checks
for each of the attribute types, in order to respect the
database constraints. Functional testing can be done using
the Data Manipulation Language (DML) or in conjunction
with the database application software [5][10].

The functional testing technique contributes to detect
faults that occur when specifying the boundaries of values
that can be assigned to each attribute [13]. Moreover, an
elaborate specification obtained by the user in the analysis
phase is critical to identify these faults.

Therefore, the functional testing criteria are based on the
database specification to generate the RE which are used to
produce the corresponding TC. However, the generated TC
must test the criteria without affecting other database
constraints that are not related to the criteria being checked
[1][11].

Then, it is understood that the database specification is
used both to build a program and to contribute to the
generation of RE-based on the specification criteria, and
subsequently indicate mechanisms for the production of TC.

In the database project, presented in the case study, we
used both the Equivalence Class Partitioning and Boundary
Value Analysis as criteria to test tables attributes. These
criteria are presented in the following two sections.

1. Equivalence Class Partitioning Criteria

The Equivalence Class Partitioning criteria is a black box
testing technique that divides the input domain (of the
attributes) through the specification conditions of a given
data type classes, i.e., equivalence classes, of which TC are
derivative [13].

Once the equivalence classes have been established, it
can be assumed, with some certainty, that any member of a
class can be considered a representative of it, and every
member value should behave similarly, i.e., if one member
causes a fault, then any other will also cause the same fault.
Thus, the criteria reduces the input domain to a passive size
to be treated during the testing activities [5].

An equivalence class represents a set of valid states
(expected inputs) or invalid entries (not expected) to the
entry conditions, here represented by the attributes of the
database tables [7].

The usage of the equivalence classes is composed by two
phases: identification of equivalence classes and the
generation of the corresponding TC [8].

When an input attribute of an equivalence class results in
[13]:

 Use of Intervals: One valid and two invalid class are
defined, i.e., an invalid value would be well below
the lower limit and well above the upper limit;

 Use of Specific Value: One valid and two invalid
class are defined; i.e., the value (valid) itself and a
lower value, and other higher (invalid);

 Use of an Element of a Set: A valid class (within the
set) and an invalid (outside the set) are defined;

 Use Boolean: A valid class (T or F) and invalid one
(other than T or F) are defined.

Thus, partitioning into equivalence classes for the
attributes of the tables involved, aims to produce TC who
discover several classes of errors and thereby reduce the total
number of TC required to satisfy the criteria [8][13].

However, this criterion can also be classified as a
systematic method for the assessment of requirements, in
addition to restricting the number of existing TC [3][4].

And besides that, another black box testing technique
called Boundary Values Analysis criteria uses the
approaches of Equivalence Class Partitioning, being seen as
complementary, thus making it more systematic [13].

2. Boundary Value Analysis Criteria

The Boundary Value Analysis criteria checks more
rigorously the boundaries associated with the conditions of
the input attributes, i.e., exercising the boundary values [5].

And according to Myers [8], it can be said that the TC,
which explores the boundary conditions, has a higher
probability of finding faults. This criterion exercise the
conditions of entry, and also derived the TC output to the
domain when necessary [7].

The guidelines for the Boundary Value Analysis are
similar to Equivalence Class Partitioning criteria as the
following [13]:

 If an input condition to specify an interval
determined by the values A and B, TC must be
designed with values A and B, just above and just
below A and B respectively;

 If an input condition specify multiple values, TC are
created to exercise minimum and maximum values.
Values just below and just above the minimum and
maximum are tested;

 Application to output conditions, the first and second
guide;

 If the internal data structures of the program have
identified limits, must be projected to TC to exercise
this data structure at its boundary.

Finally, if a tester apply all these guidelines, the test itself,
and is more systematically, it will be complete, having a
greater likelihood of fault detecting.

B. Functional Testing Specific of the Database Projects

The functional testing in a database project is to validate
the specification through the DML statements, which

253Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

contribute in detecting various problems in the construction
of the database project, making this type of testing becomes
difficult for the following reasons [2]:

 The construction of the database to test (choice of
schemes and values) involves some important and
relevant factors in the generation of TC, to meet each
RE of the criteria. The selection of data is essential
to getting a good set of TC, since it will be the
entrance to any Structured Query Language (SQL)
statements;

 The applications are not just a set of statements, in
preparing the database testing. Therefore, the data
should be useful to the greatest possible number of
instructions, for loading test data with different
information for each query has a high cost;

 The information generated for testing may be
modified during the execution of SQL statements.
Consequently, when designing a database to assist
the test, it is necessary to consider the order in which
SQL statements are executed and whether they will
modify the data to be input for subsequent
executions with a view that relations are persistent
variables;

 As in imperative languages, SQL statements can be
parameterized by variables and constants and when
designing the test plan, these inputs should also be
considered in addition to the test data provided by
the same functional testing criteria of database
project;

 The adequacy of the data test unit generated it is
necessary to check whether the test unit really covers
all possible situations and whether the output
obtained by applying the test plan satisfies the
requirements for which the database has been
designed in such a case.

Anyway, the functional testing of the database project
involves the following steps [6]:

 Extraction of information from database schema;

 Generation of test data and filling in the database
testing;

 Generation of TC as input for database;

 Validation of the state of the database and exit after
execution.

To exercise the test in database project, some criteria
may be used, aiming to cover different fault types.

C. Functional Testing Criteria in a Database Project

The specific criteria for database have used features
exercising relations represented in the database. Thus, some
criteria require the generation of TC that exercise the
attributes of the same relations and other criteria that
exercise the attributes of different relations, which forces the
production of TC that involves a number of DML statements
in one or more connections to the test.

In this work, we use the term Relation instead of Table,
to keep the terminology relational database. Taking into
account that the functional testing approaches consider the
domain variables based on the system specification in order

to work out a database application and other characteristics
of the database are investigated through based criteria in: the
Structural Relationships, the Domain Attributes, the Keys,
the Referential Integrity, the Semantic Integrity and the
Functional Dependency [10].

1. Based-on-Structural-Relationships Criterion

The Based-on-Structural-Relationships criterion has two
sub-criteria that exercise multiple relations simultaneously
during the test: all-maximum-cardinality and all-the-
minimum-cardinality. Given two Relations A and B, then the
Based-on-Structural-Relationship criterion must generate TC
that exercises the cardinality relationships between A and B
in order to verify their specifications [10].

Definition 1: A test data set T satisfies the subcriteria all-
the-maximum-cardinality constraints of the structural
relationships criteria (one-to-one, one-to-many, many-to-one
and many-to-many) between two Relations A and B if the
actions of cardinality between A and B are met by application.

The sub-criteria all-maximum-cardinality is called
exercised when T satisfy the criteria, ensuring that:

 Relation A has a one-to-one relationship with
Relation B or;

 Relation A has a (zero or many)-to-one relationship
with Relation B or;

 Relation A has a one-to-many relationship with
Relation B or;

 Relation A has a many-to-many relationship with
Relation B.

Definition 2: A test data set T satisfies the sub-criteria
all-minimum-cardinality if the structural constraints of
relationship (total and partial participation) are exercised
between the Relation A and Relation B and if the actions of
minimum cardinality between A and B are met by the
database application.

The sub-criteria all-minimum-cardinality is considered to
exercise when T satisfy the criteria, ensuring that there exists
at least one relationship between A and B, total or partial.

2. Based-on-Domain-Attributes Criterion

Souza [10] defined the Based-on-Domain-Attributes
criterion: all-domain-attributes, since is the same exercising
the attributes of the same relation.

Definition: A test data set T satisfies the sub-criteria all-
domain-attributes if all domain constraints (Check, Data
Types and Allow Nulls) of the attributes of a relation are
satisfied.

The sub-criteria all-domain-attributes of a relation is
called exercised when T satisfies the criteria, ensuring that
the values of the attributes domain of this relation:

 Whether checked all valid and invalid conditions for
each attribute, respecting its data type;

 The conditions specified in accordance with Check
(valid and invalid situations in relation to clause
Check) clause were satisfied;

 Comply with conditions of null or not null values
established by the Allow Nulls (null or not null)
clause.

254Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

3. Based-on-Keys Criterion

In the Based-on-Keys criterion, defined by Souza [10],
there is a need for exercising existing rules in Database
Management Systems (DBMS) in which all Primary Keys
(PK) must be unique and not null. The sub-criteria were
established: all-primary-keys.

Definition: A test data set T satisfies the sub-criteria all-
primary-keys if all restrictions related to PK of a relation are
satisfied.

The sub-criteria all-the-primary-keys is called exercised
when T satisfy the criteria, ensuring that:

 Occurring uniqueness of the value of PK;

 The PK value is not null.

4. Based-on-Referential-Integrity Criterion

The Based-on-Referential-Integrity criterion has as sub-
criteria for the exercise of another relation: all-foreign-keys.
This means that the references between the relations must
satisfy the constraints between non-verbal relationships of
two or more relations [10].

Definition: A test data set T satisfies the sub-criteria all-
foreign-keys if the referential integrity constraints, Foreign
Key (FK) and relationship between relations, or a
relationship between A and B are satisfied.

The sub-criteria all-foreign-keys is called exercised when
T satisfy the criteria, ensuring that:

 A tuple in Relation A, referenced by FK, belongs to
other Relation B be the result of an existing tuple in
the relationship between relations A and B;

 A set of attributes FK in the scheme of the Relation
A is a FK of the relationship that references the
Relation B;

 The attributes of FK of the Relation A have the same
domain as the attributes of the PK of Relation B.

5. Based-on-Semantic-Integrity Criterion

Souza [10] defined the Based-on-Semantic-Integrity
criterion: all-semantic-attributes. Being that it exercises the
actions of semantic attributes and allowed values transitions
valid values are in the same relation.

Definition: A test data set T satisfies the sub-criteria all-
semantic-attributes if all semantic integrity constraints
(between attributes and Check of dependent attributes) of a
relationship are satisfied and the dependent attributes are in
the same relation.

The sub-criteria all-semantic-attributes is called
exercised when T to satisfy the criteria, ensuring that:

 The value attribute of a relation satisfies the
semantic condition depending if the attribute may be
the same relation or in a different relation.

The Semantic Integrity is presented here as the
complement of Functional Dependency when it falls on the
semantics of the attribute in question.

For example, a date of birth of a parent regarding the date
of birth of a descendant or the salary of an employee should
not exceed the salary of the manager of the employee.

6. Based-on-Functional-Dependency Criterion

The Based-on-Functional-Dependency criterion, defined
by Souza [10], exercises the attributes distinct between the
same relation or different relations to which it belongs. The
sub-criteria was established: all-attributes-functionally-
dependent.

Definition: A test data set T satisfies the sub-criteria all-
attributes-functionally-dependent if the restriction of
functional dependency between attributes of one or more
relations is satisfied.

The sub-criteria all-attributes-functionally-dependent is
called exercised when T satisfy the criteria, ensuring that an
attribute of a:

 Relation B uniquely determines another attribute of
Relation A and actions occur in distinct dependency
relations;

 Relation can also be dependent on another attribute
in the same relation. This can occur whenever there
is information of an attribute that are formed by the
values of other attributes.

III. CASE STUDY

In partnership with Laboratory of Quality Milk (LQL)
belonging to the Food Research Center, Veterinary School of
the Federal University of Goiás (Universidade Federal de
Goiás), at Goiânia, was developed the Panel of Quality Milk
(PQL) solution, which aims to provide customers the LQL a
set of milk strategic information analyzed in the laboratory,
plus a knowledge base produced by researchers at the
institution [12].

The goal of this solution is to encourage continuous
learning and the improvement of the final quality of the
Brazilian milk, leading strategic real time information to the
agents of the milk chain.

For dairy, the solution helps reducing operational costs,
increasing profitability and opening new markets, promoting
the improvement of the quality of the purchased milk yield
and production.

Moreover, the operation of the PQL is provided by
information extraction from milk samples (results of analysis)
were collected and sent to the laboratory as well as those
identifications its (producers, farms, animals and dairy
products) directly from the LQL database.

The extraction of such data is performed daily at
scheduled times, forming a database constituted by historical
milk testing, which will be subject to statistical analyses by
the PQL tool. These analyzes are presented to dairy through
a website through authenticated access.

However, the integration architecture of the system is
distributed in two locations: LQL (Database and Extractor)
and PQL (Database, Integrator, Controllers and Web
Browsers).

Finally, the application consists of:

 Registers (Online Help, Cities, Farms, Dairy, Paper,
People, Producers, Fixed Price Table,
Bonus/Punishment Table, Errors Types, Users and
Milk Volume);

255Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 Settings (Fat X CCS, Histograms, Lactose X CCS,
Protein X CCS, Industrial Performance, Tank
Volume X CCS, Animal Volume X CCS and About
System);

 Panels grouped in versions: Basic (Collection and
Recollect with a Compliance IN62), Standard
(History of Quality, Producer Mirror, Indicators of
Routes and Route Mirror), Advanced (Decision
Cube, Errors Cube, Distance and Volume and
Distance Mirror) and Full (Analysis of Income,
Statement of Producer, Pay Per Quality and View
Cluster).

A. Database of PQL Project

The DBMS employed in PQL Project was PostgreSQL
was due to the fact that LQL make use of it and also the large
data volume that the software will behave. Moreover, this
DBMS is free, high performance, highly scalable platform.

The structure of this database includes tables, fifty eight,
and eight of these were selected because they are essential
and relate to virtually all other tables that make up the
software. They are: analysiserror, analysisresult, baseprice,
farm, routefarm, monthclusterfarm, userroles and person.

After this assignment, their relationships with other
tables that make up the PQL database were identified and
mapped, as the following:

 analysiserror: animal, client, farm and sampleerror;

 analysisresult: animal, client, farm, sampleerror,
casein, cbt, ccs, esd, est, fat, ibc, proteins and urea;

 baseprice: dairy, farm and price;

 farm: city, farmer, milkorigin, person1, person2 and
lqlcode;

 routefarm: dairy, farmcode and route;

 monthclusterfarm: farm and monthcluster;

 userroles: roles and users;

 person: city.
They still used the Entity Relationship Diagram (ERD) to

recognize these relationships, with the intention of presenting
the dependencies between tables that have gone through
database functional testing with their respective domains and
specificities.

A testing technique with their respective criteria was
established to derive their due RE provided the generation of
TC and the extraction of its expected results.

Then, a specific and isolated environment testing was
structured and also given a load on database project for the
tables involved in this testing activity were populated.

Upon execution of the TC, a comparison between
expected results and obtained results was performed aiming
to verify the effectiveness of the criteria employed in the
functional testing of the database project.

B. Exploited Criteria

Among the functional testing specific of the database
project criteria presented in Section 2, not all were tested.
For example, it was not possible to test only Based-on-
Semantic-Integrity criterion, because this characteristic was
not included in the Business Plan of PQL Project.

Some examples of RE, description of TC, Inputs and
Expected Results applying these criteria, which were
abstracted from the document TC project of the PQL project,
i.e., the test specification of the same, are shown in Table I.

TABLE I. EXAMPLES OF FUNCTIONAL TESTING CRITERIA IN A

DATABASE PROJECT

Functional

Criteria
RE TC Input

Expected

Results

Based-on-
Structural-

Relationships

Analyze the

sample

result of the
animal.

Modify the

date of the

test result
of an

animal.

Analysis

of results
of animal

“57” the

date
“2012-

05-23” to

“2012-
07-02”.

Occurrence

Remove an
animal that

has a result

of analysis.

All

animals

that have
analysis

results.

Not

Occurrence

Based-on-

Domain-

Attributes
(Equivalence

Class

Partitioning
and Boundary

Value

Analysis)

Specify the

creation
date of a

farm route.

Enter a
valid date

in the

creation of
a farm

route.

Date =
2011-05-

05.

Occurrence

Enter a
valid null in

the creation

of a farm
route.

Date =
null.

Not
Occurrence

Based-on
Keys

Check the

consistency
of the PK

of a farm.

Insert a

single PK

on a farm.

PK =

943.
Occurrence

Insert a null

PK on a

farm.

PK =
null.

Not
Occurrence

Based-on-
Referential-

Integrity

Analyze the

sample

error of the
animal.

Insert a

parsing

error for a
nonexistent

animal.

Error
Analysis

“193” for

the
animal

nonexiste

nt “0”.

Not

Occurrence

Remove an

animal that

has the
error

analysis.

Animal
which

has error

analysis.

Not

Occurrence

Based-on-

Functional-

Dependency

Determine

the client's
name and

dairy.

Modify the

name of the
client and

dairy.

Dairy =
Parmalat

Brazil

S/A Food
Industry.

Occurrence

Modify the

name of the

client and
dairy to a

null value.

Dairy =

null.

Not

Occurrence

The Based-on-Domain-Attributes criterion was exercised
in conjunction with Equivalence Class Partitioning and
Boundary Value Analysis criteria because both evaluate the

256Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

specificities of the attributes that make up the database
project tables.

Thus, the Based-on-Domain-Attributes criterion was
exercised along with the functional technique being
Equivalence Class Partitioning and Boundary Value
Analysis criteria, because of them assessing the specificity of
each of the attributes that make up a database table.

The functional testing criteria of the database project,
explored in this paper are shown in Table II.

TABLE II. FUNCTIONAL TESTING CRITERIA IN A DATABASE PROJECT

Functional Criteria Functional Subcriteria TC Exercises

Based-on-Structural-
Relationships

all-maximum-cardinality
all-minimum-cardinality

Maximum Cardinality;
Minimum Cardinality.

Based-on-Domain-

Attributes

(Equivalence Class
Partitioning and

Boundary Value

Analysis)

all-semantic-attributes

Occurrence of a Do-

main;

Allow Null Value.

Based-on-Keys all-primary-keys
PK;

Allow Null Value.

Based-on-
Referential-Integrity

all-foreign-keys
FK;
Permit Null Key.

Based-on-Functional-

Dependency

all-attributes-dependent-

functionally
Dependent Attribute.

Thus, other criteria database demonstrates aspects of
verifying how it was built and even though the current
DBMS preserve these properties, they were included only for
verification.

According to the tables of the database and the
established performance criteria yielded a model capable of
revealing the RE needed to obtain their corresponding TC.

TABLE III. EXTRACTION MODEL OF THE FUNCTIONAL TESTING

CRITERIA IN A DATABASE PROJECT

Functional Testing Criteria

Equivalence Class Partitioning

Condition
For each attribute of a Table, Attribute values with sequential
domains: Li until Ls.

Group 1

RE01 – Valid value until Ls ranging from Li (Li <= Attribute

<= Ls);
RE02 – Invalid value below the L (Attribute < Li);
RE03 – Invalid value higher than Li (Attribute > Ls).

Condition
For each attribute a table attribute belonging to a set of values:

Attribute ∈ {a, b, c, d}.

Group 2
RE04 – Valid within the set value (Attribute ∈ {a, b, c, d});
RE05 – Invalid value out of the set (Attribute ∉ the set {a, b,
c, d}: {e}).

Boundary Value Analysis

Condition
For each attribute of a table, with attribute values in the domain

limit L.

Group 3
RE06 – Valid value equal to the limit of L (L = Attribute);
RE07 – Invalid value lower next to L (Attribute < L);
RE08 – Invalid value near the top L (Attribute > L).

Based-on-Domain-Attributes

Condition
For each attribute of a table, the field mapping: Data Type and
Allow Nulls.

Group 4

RE09 – Data Type (Attribute of type Numeric);
RE10 – Data type (Attribute of type Date/Time);
RE11 – Data type (Attribute of type String);
RE12 – Allow Nulls (Attribute Null);
RE13 – Allow Nulls (Attribute Not Null).

Based-on-Keys

Condition For each key of a table, the mappings of keys: PK.

Group 5
RE14 – PK (Candidate Key Simple);
RE15 – PK (Candidate Key Composite).

Based-on-Structural-Relationship

Condition
For each ratio of a table, the mappings of relations:

Relationship, Cardinality and Dependence.

Group 6

RE16 – Relations (Relations Association and Dependence);
RE17 – Cardinality (Relationship of Cardinality 1 – 1);
RE18 – Cardinality (Relationship of Cardinality 1 – N);
RE19 – Cardinality (Relationship of Cardinality N – N);
RE20 – Dependence (Specialization);
RE21 – Dependence (Generalization);

Based-on-Referencial-Integrity

Condition For each key of a table, the mappings of keys: FK.

Group 7
RE22 – FK (Relationship cardinality);
RE23 – FK (Dependence).

Based-on-Functional-Dependency

Condition For each attribute of a table, the field mapping: Check.
Group 8 RE24 – Check (Extend Relationship).

Therefore, the organization of these criteria is as shown
in Table III, considering the specificities of both functional
testing criteria as the for database criteria.

IV. OBTAINED RESULTS

Results for functional testing criteria in a database project
used in this study were obtained through test analysis based
on the coverage percentage for the quantity of RE exercised
by the TC.

Altogether, there were 443 RE, generating 425 TC is
needed in this step. Therefore, it was found that all the TC
has been run and the database project also acquired that is a
100% coverage for the criteria.

Still, were achieved the results of the functional testing
criteria (Equivalence Class Partitioning and Boundary Value
Analysis) employees in Based-on-Domain-Attributes
criterion. Therefore, all TC related in the criteria were
executed and, furthermore, achieved a 100% coverage.

The results stemmed from the implementation of a
specific functional testing in a database project through the
exercise of the analyzed criteria to be presented in Table IV.

TABLE IV. RESULTS OF THE TEST RUN

Functional Testing Criteria RE TC Defects

Based-on-Domain-Attributes (Equivalence

Class Partitioning and Boundary Value
Analysis)

171 171 9

Based-on-Keys 28 21 0

Based-on-Structural-Relationships 124 113 0

Based-on-Referential-Integrity 100 100 0

Based-on-Functional-Dependency 20 20 0

Grand Total 443 425 9

In general, it is observed that the other specific criteria of
database testing help verify that the project meets specified
correctly to ensure a good quality of the generated
information.

The types of fields date, number, text, email and website
were verified through Based-on-Domain-Attributes criterion
along with functional testing criteria Equivalence Class

257Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Partitioning and Boundary Value Analysis, which
consequently showed the faults in a database project.

Finally, the Boundary Value Analysis criteria detected
most of the faults identified in the database project because a
large amount of these faults is in the limits of the domains of
its attributes.

V. CONCLUSION AND FUTURE WORK

According to functional testing criteria on a database
project, there was a high efficiency degree in detection of
faults during the execution of TC for the RE generated in
PQL's Reports. All functional testing criteria applied reached
a coverage of 100% in relation the RE.

Nine faults were detected over the following criteria,
Equivalence Class Partitioning (three faults) and Boundary
Value Analysis (six faults) together with Based-on-Domain-
Attributes criterion.

The Equivalence Class Partitioning criteria contributed to
the definition of TC by the class of faults, reducing the total
number of TC generated in the PQL's Project. The Boundary
Value Analysis criteria allowed to observe most faults tend
to occur at the borders of the domain.

Furthermore, because the Based-on-Keys, Based-on-
Structural-Relationships, Based-on-Referential-Integrity and
Based-on-Functional-Dependency criterion contributing with
corrections in existing restrictions on a project database, so
no fault was detected during the execution of the TC. The
Based-on-Semantic-Integrity criterion was not used in this
project considering that the documentation does not make
any reference to these dependencies.

Finally, the combination of Based-on-Domain-Attributes
criterion also provides Equivalence Class Partitioning and
Boundary Value Analysis criteria by exploring a high level
of faults detection, just treating the specific attributes. And
thus, can be utilized in the database project.

For future work, an object of study with the purpose of
applying the criteria presented is being constructed, such as
the Based-on-Functional-Dependency and Based-Semantic-
Integrity. These criteria can improve the detection of failures
a project database.

REFERENCES

[1] A. Carniello, Test Structure Based on Use-Case, FEEC/UNICAMP,
Campinas, 2003.

[2] A. D. Suarez, A. S. Simão, J. C. Maldonado, and P. C. Masiero,
“Using an SQL Coverage Measurement for Testing Database
Applications”, In: ACM SIGSOFT Software Engineering Notes, New
York, pp. 253-262, 2004.

[3] A. L. Domingues, Assessment Criteria and Test Tools for OO
Programs, ICMC/USP, São Carlos, 2002.

[4] A. M. Vincenzi, E. F. Barbosa, J. C. Maldonado, M. E. Delamaro, M.
Jino, and S. R. S. Souza, Introduction to Software Testing, Teaching
Notes, ICMC-USP, São Carlos, 2004.

[5] A. M. Vincenzi, J. C. Maldonado, and S. C. Fabbri, Introduction to
Software Testing: Functional Testing, Rio de Janeiro: Elsevier, 2007.

[6] D. Chays, E. J. Weyuker, F. I. Vokolos, P. G. Frankl, and S. Dan, “A
Framework for Testing Database Applications”, In Proc. of the ACM
SIGSOFT Intl. Symp. On Software Testing and Analysis, Vol. 25
Issue 5, August 2000, pp. 49-59.

[7] G. J. Myers, Software Reliability Principles and Practices, 1st ed.
New York: John Wiley & Sons, INC., p. 360, 1976.

[8] G. J. Myers, T. Badgett, and T. M. Thomas, The Art of Software
Testing. 2nd ed., New York: John Wiley & Sons, INC., 2004.

[9] I. Burnstein, Pratical Software Testing: A Process Oriented
Approach, New York: Springer-Verlag, p. 709, 2002.

[10] J. P. Souza, Functional Testing Application DB Based on UML
diagram, UNIVEM, Marília, 2008.

[11] J. Tian, Software Quality Engineering, Texas: John Wiley & Sons,
INC., p. 412, 2005.

[12] Milk Panel, http://www.paineldoleite.com.br/site/ Aug/Sept 2014.

[13] . S. Pressman, Software Engineering, 6th ed., São Paulo: McGraw-
Hill, p. 720, 2006.

[14] W. E. Lewis, Software Testing and Continuous Quality Improvement,
2nd ed., Florida: CRC Press LLC, p. 534, 2004.

258Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://www.paineldoleite.com.br/site/

