ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Mapping of State Machines to Code: Potentials and Challenges

Mehrdad Saadatmand
Milardalen Real-Time Research Centre (MRTC),
Milardalen University,
Visterds, Sweden
mehrdad.saadatmand @mdh.se
& Alten AB,
Sweden

mehrdad.saadatmand @alten.se

Abstract—There is a big number of testing methods which are
based on the state machine formalism. State machines serve
as a strong means in behavior modeling of computer systems.
However, this strength is lost as we go down the abstraction
level from models to code. This is essentially due to the inherent
semantic gap between state machine models and code, and that
it is generally a challenging task to track states and transitions
at runtime. In this paper, we discuss the benefits and challenges
of having a mechanism for mapping state machines to code. The
main intention with such a mechanism is to enable tracking of
state changes at runtime. As we explain in this paper, the mapping
provides for several important testing features such as verifying
the actual runtime behavior of the system against its state
machine models. Its importance becomes further emphasized
remembering that model-based static analysis techniques rely on
models as the source of information and design assumptions,
and therefore, any mismatch between the actual behavior of the
system and its models can also imply invalidation of the analysis
results.

Keywords—State Machines; Runtime Verification; Behavioral
Modeling.

I. INTRODUCTION

Applying Model-Based Development (MBD) methodology
[11[2] helps to cope with the ever-increasing complexity
of computer systems. It does so by raising the abstraction
level, enabling analysis at earlier phases of development and
automatic code generation. In Model-Based Testing (MBT),
models serve as an explicit representation of the intended
behavior of a system from which test cases are generated [3]
[4]. Test cases are then executed to detect failures and to verify
if the intended and actual behavior of a system differ.

State machines [5] serve as a modeling formalism for be-
havioral description of different types of systems (particularly
reactive systems) and are used extensively in model-based
testing techniques. State machine models can thus capture
the expected behavior of a system. In testing the behavioral
aspects, it is necessary to be able to determine whether the
runtime behavior of the system is in compliance with its spec-
ified behavior represented and described using state machine
models. This is regardless if the code is manually developed or
automatically generated from system models. For this purpose,
there needs to be a mechanism to establish a mapping between
state machines and code in order to verify that the code at
runtime is actually behaving correctly according to the state
machine model in terms of its internal states and transitions.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

Antonio Cicchetti
Milardalen Real-Time Research Centre (MRTC),
Milardalen University,
Visterds, Sweden
antonio.cicchetti@mdh.se

In [6], we have introduced and developed an approach for
testing the behavior of automotive embedded systems, by com-
paring against the Timed Automata (TA) [7][8] specification
models that are used to describe the internal behavior of system
components, modeled using EAST-ADL language [9] (the term
state machine is used in this paper as a synonym to also refer
to a timed automaton whenever the main concern is only the
states and transitions in the model regardless of the timing
specifications). In the approach, timed automata models are
analyzed to identify if different properties hold or not. As a
result, a trace is generated consisting of a sequence of states
and transitions serving as a witness or counter-example of
the performed analysis. To verify the actual behavior of the
system, it is then checked at runtime if the system traverses
and goes through the exact order of states and transitions as in
the trace file. To achieve this, as part of the approach we have
defined a mechanism for mapping state machines to code. The
mapping is currently done manually, which is not that scalable
especially when the size of code grows. In this paper, we focus
on the mapping mechanism and discuss its importance and
the capabilities it provides for testing the behavior of systems
based on our findings in [6]. We introduce our specific way of
implementing the mapping mechanism along with its features
and limitations. Moreover, other different possible solutions
to implement such a mapping mechanism and the related
challenges are also described and identified. In short, the main
intention with this paper is to highlight the benefits of having
a mapping mechanism between state machine models and
code (as part of our research project results); particularly that
establishing such a mapping can require early design decisions
and following certain rules in the code to enable tracking states
and transitions at runtime.

The remainder of the paper are structured as follows. In
Section II, background context and motivation of this work is
presented. Related work and possible solutions for the mapping
mechanism, along with the challenges and potentials of having
such a mapping mechanism are discussed in detail in Section
III. Finally, Section IV concludes the paper and there, we also
discuss the future directions of this work.

II. BACKGROUND & MOTIVATION

This work has been performed in the scope of the the
Combined Model-based Analysis and Testing of Embedded
Systems (MBAT) European project [10] consisting of 38
project partners. One of the main goals in MBAT is to provide

247

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

a more efficient and effective Verification & Validation solution
for embedded systems by exploiting the synergy between
model-based analysis and testing. Brake-By-Wire (BBW) sys-
tem from Volvo is one of the industrial use-cases that are
addressed in MBAT. In a BBW system, mechanical parts and
hydraulic connections between the brake pedal and each wheel
brake are replaced by electronic sensors and actuators. Anti-
lock Braking System (ABS) is usually an inherent functionality
provided by BBW systems [11] whose purpose is to prevent
the locking of wheels by controlling braking based on slip
rate. There is a threshold for the slip rate beyond which the
brake actuator is released and no brake is applied (otherwise
the requested brake torque is used).

<<designFunctionType>>
FunctionalDesignArchitecture

Structure

<<designFunctionPrototype>>
+ Brake Pedal Sensor

- g yp ~desig pe>>
+ Brake Torque Calculator -+ Global Brake Controller

Position PositionPercent] PedalPercent DriverReqTorq| WheelTorque GlobalTorque
|WheelRpm

<<designFunctionPrototype>> | <<designFunctionPrototype>>

+ Wheel Sensor
RequestedTorque

[|]Romnon SpeedRme|]* WheelSpeed ABSTorque [}——{] BrakeTorque TorqueCmd|

<<designFunctionPrototype>>
£ ABS + Wheel Actuator

Figure 1. Components composing a BBW system [6].

The system is modeled using EAST-ADL. In Figure 1, a
simplified model of the system for only one wheel is depicted.
The internal behavior of system components are captured and
represented using Timed Automata (TA). Since BBW is a
real-time system with different timing requirements, the use
of TA models enable to also include timing specifications.
Considering the purpose of a BBW system, it is generally con-
sidered as a safety-critical, distributed real-time (embedded)
systems. A timed automata model, designed in UPPAAL tool
[12], describing the internal behavior of the ABS component
of BBW system is shown in Figure 2. In this model, y is a
clock whose specification on the states indicates the amount of
time units that can be spent in each state (non-deterministically,
between 0 and the specified value) before a transition has to be
made to the next state. These timing specifications are naturally
derived from high level timing requirements of the BBW
system and its components. The values in the TA model here
are just samples, and the exact values for each implementation
of the BBW system might be different.

O y<7

v<st v==0[] AsigTL

[$torqueABS =0}
Exit @‘

/\mu/rqw:AEs:s»vheerrurqueAes+o]

y<8
AsigT3

y>=1[v=36*R*$wABS]

s>20]
Entry CheckSpeed
AsigT2
e

7

<4 [S=SABSTRIMOONT | g 5<=200]

CalcslpRate
¥

Figure 2. Timed automata model of the ABS component [6].

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

A. Testing Goals

We have developed a testing methodology [6] in order
to verify the runtime behavior of the BBW system against
the desired behavior represented in the form of state machine
and automata models. To do so, test cases are generated from
automata models as UPPAAL trace files. These traces serving
as abstract test cases are then transformed into concrete ones,
which are essentially executable test scripts. By executing
the concrete test cases the runtime behavior of the system is
verified in terms of state changes. In other words, it is checked
that the order of states of the system at runtime matches what
is specified in the models.

Some of the steps that constitute the approach are as
follows:

e Based on the automata models, C/C++ enumera-
tions (enum) that represent each state machine and
their internal states are generated. These enumer-
ation structures are stored in a C/C++ file along
with the definition of a helper function -called
set_state (StateMachine, State). The file is
then included in the implementation code of the target
application (i.e., to be tested).

e The states in the automata model are mapped to the
code using the above helper function. This is done by
adding calls to the set_state () helper function at
places in the code where a state change occurs. The
helper function basically logs the new state belonging
to the specified state machine and thus enables to keep
track of state changes at runtime.

e According to the automata model, a test script is
generated which verifies that the order of state changes
(logged using the helper function) match the model.
If so, then the result of the test is determined as pass,
otherwise a fail verdict is decided.

This helps to gain more confidence that the behavior of the
system is actually as specified and expected at the modeling
level. One of the motivations behind our approach is that the
models are used for different types of model-based analysis. If
the runtime behavior of the system deviates from and does not
match the behavioral models, the result of the analyses that
have been performed assuming such behavioral models will
be violated and not valid anymore.

III. STATE MACHINE MAPPING
A. Challenges

To provide a mechanism for tracking state changes at
runtime, the set_state (StateMachine, State) helper
function that was introduced in the previous section is used
to map state machine models to code. This mapping step is
needed to keep track of different states and how they change
at runtime, which is currently done in a manual way. Figure 3
shows how this mapping is done by annotating the code and
adding calls to the helper function in it. The code shown here
is C/C++ code for the ABS component written on OSE Real-
Time Operating System (RTOS), which is a commercial and
industrial real-time operating system developed by Enea [13].
OSE offers the concept of direct and asynchronous message
passing for communication and synchronization between tasks
using send and receive APIs.

248

ICSEA 2014 : The Ninth International Conference on Software Enginee

0S_PROCESS (ABS_pIOC)

c const SIGSELECT sigsel[]={
t WheelSpeedSignal sig;

, WHEEL_SPEED_SIG};

set_state_wtime (ABS,Entry); <.

sig=(struct WheelSpeedSignal *)recéive(sigsel);

WABS= sig->WheelSpeed; -

v=3E*R*WABS; // f the wi

set_state_wtime (ABS,CheckSpeed) ; <

if (v>0){
set_state_wtime(ABS,CaLcSlipRate): <
s=(v-wABS*R) * /v

ye=1

ud;‘,i] ©v>=

radi heel (cons

Entry

}
if (v==0)
{

ring Advances

O
;’ N

v==0] o1
“

[StorqueABS=0},
\

/
1[v=1§'rt=;mas]O/

Che(kSneed\

v>0[] W

CaicSlpRate

/oo P
S e « ©
/ A
asgT2 [/
Ay
y<a [s=(v-SwABS*R)*100/v] v

/,-1{L0|:ueAB =guheelTorqueABS+0)

s<=20[)

y<8
<5 AsgT3

set_state_wtime (ABS,AsigTl);
break;

}

sEt_state_wtime (ABS,Exit) i<

Figure 3. Mapping of states to the code (ABS function) [6].

As mentioned, the mapping step is currently done man-
vally. While this works fine for systems with a small code
base, it has a big impact for the scalability of the general
approach. From this perspective, the manual mapping step
can be considered a bottleneck in the automation of the
whole approach. Therefore, there is a need and big interest
in automating the mapping step by finding a solution to map
state machine models to code in order to track state changes
at runtime.

B. Potentials

So far, it was discussed how having such a mapping
mechanism can help to track the runtime behavior of the
system with respect to its internal state changes. Information
on internal state changes basically provides an insight about
execution flow in the system. On the other hand, state machines
used in the modeling phase represent the desired and expected
behavior of the system. The mapping mechanism enables to
compare the actual versus expected behavior and identify vio-
lations. Moreover, it also becomes possible to identify at which
state and during which transition a violation has occurred. This,
in turn, can help with debugging and better pinpointing the
root cause of the problem than the case where there is no
such mapping; hence identifying the vicinity and localization
of potential defects. We have discussed and demonstrated these
features in detail in [14], as a method for checking architectural
consistency.

Moreover, having the mapping mechanism and being able
to track state changes at runtime brings along other interesting
testing capabilities. One of such capabilities is to verify timing
properties and clock constraints in real-time systems. We have
introduced and demonstrated it in [15]. The idea is basically
that not only each state change is recorded, but they are also
time stamped. This way, it becomes possible to measure the
time difference between each pair of states during the actual
execution of the system and at runtime. This information
is then used to compare the timing behavior of the system
versus the timing and clock constraints that are specified in

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

the timed automata models. For example, a clock constraint
can be defined in the timed automata model specifying that the
system may spend time and remain in a state only for a certain
period of time and then it has to make the transition to the
next state. Such timing requirements are of great importance
in designing real-time systems, but are also hard to actually
test at such granularity and level of detail. Timed automata
are a formal way of capturing such timing requirements
and constraints, which are then used also for analyzing the
temporal correctness of the system design. However, despite
performing static analysis, at runtime situations may still occur,
which lead to the violation of assumptions that have been taken
into account for performing the analyses; hence invalidation
of the analysis results [16][17]. This further emphasizes the
need to be able to actually test a system with respect to its
extra-functional properties; and particularly in this case, timing
properties which are not as easy and straightforward to perform
as functional testing. The approach we have introduced in [15]
is one solution towards this purpose, which is based on the state
machine mapping mechanism in order to test clock constraints
in real-time systems.

C. Related Work & Possible Solutions

There is not much discussion in the literature on establish-
ing a mapping and relationship between state machines and
code for the purposes mentioned in this paper. Walkinshaw
et al. in [18] discuss the problem of rarely maintaining state
machine models during software development by emphasizing
and drawing attention to their importance and role in state-
based testing techniques. They introduce an approach based
on symbolic execution to reverse engineer state transitions
from code. However, what we discussed here can be con-
sidered as opposite of their approach and with the purpose
of tracking state changes at runtime; which their introduced
reverse engineering approach does not provide. Moreover, the
mapping from the direction of state machine models to code
and then runtime tracking of state changes helps to identify
situations where the behavior of code deviates from what is

249

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

specified by the model as the correct behavior. In contrast,
merely extracting state machine models from the code just
creates the model of how the code behaves, which can contain
and represent a wrong behavior. What might be possible
here is to reverse engineer state machine model of the code
and then compare it with a designed state machine model
representing the correct and expected behavior that the system
should conform to. In [19], the DiscoTect method and tool are
introduced. DiscoTect engines observe and filter system events
during execution and at runtime to discover and construct
the architecture of the system based on derived states and
transitions. The ultimate goal in DiscoTect is to highlight
inconsistencies between the implementation and intended ar-
chitecture by providing the discovered architecture, which can
then be compared with intended one. SMArTIC [20] is also
an architecture and method for specification mining which is
similar to DiscoTect, particularly that the discovered system
specification is derived in the form of a finite state automaton.
Other examples of such dynamic analysis techniques that
derive state machine models from actual program executions
are ADABU [21] and GK-tail [22]. The latter aims to capture
the interplay between data values and component interactions
by annotating state machine models with conditions on data
values. FSMGen tool which is introduced in [23] utilizes a
symbolic execution technique to statically analyze TinyOS
program codes in order to derive state machine models of the
system. The advantage that static analysis methods have over
dynamic ones (e.g., the ones mentioned above) is that dynamic
approaches can capture and analyze only particular runs of an
application, while applications can generally have an infinite
number of execution traces. All these mentioned approaches
try to construct state machine models from code. However,
as described earlier, in this paper, our focus is on the other
direction which is from existing models (used in model-based
analysis) to code and establishing mapping between them.

Another approach to enable tracking of state changes at
runtime could be to implement or generate the code in the
form of a state machine. In other words, the code is originally
designed and written in the form of states and transitions;
i.e., an implementation and code representation of the state
machine. The Windows Workflow Foundation [24] provides
tracking APIs, which make it (easily) possible to implement
such an approach as demonstrated in [25]. Another example
of this approach could be to have a variable to keep the
current state and a switch-case structure (in C/C++) to choose
execution blocks based on its value. In [26], where we have
presented a more complete and extended version of our testing
methodology, this approach is used. In other words, the code
contains necessary variables to keep track of different states at
runtime. A feature of this mapping approach is that if the code
is automatically generated from the models, it can be made
to insert and include the necessary variables to keep track of
states and transitions as part of the code generation process.

Finally, automation of the manual mapping approach that
was introduced in previous sections of the paper can serve
as another solution. This requires an ’intelligent’ tool, which
goes through the code and tries to identify parts that match a
state from the model (e.g., based on the guards, actions, and
other information in the state machine model). The accuracy
of such a tool needs to be considered carefully. For this reason,
it may be made as a semi-automatic tool with user interactions

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

to confirm whenever, for example, several matching points are
detected for a state (false positives). A feature of this approach
though is that it can be very helpful when there is already some
code available (as opposed to the code generation approach
discussed above), for instance, in legacy systems.

An advantage of the mapping approach in general is that
the instrumentation of the code that is done to achieve the
mapping can be done just to test the system and removed after-
wards from the final product and before the actual deployment.
The impacts of such instrumentation and how it may affect test
results, particularly, in real-time systems need to also be taken
into account, as we have discussed with more details in [15].
Moreover, it should be investigated if a state change always
corresponds to only one location in the code, particularly when
the target system is parallel or distributed, e.g., in multicore
scenarios. In other words, the mapping in some systems might
not always be one-to-one but also one-to-many.

IV. CONCLUSION

In this paper, we discussed the idea of mapping state
machine models to code to enable tracking state changes at
runtime. Moreover, the advantages and potentials that such
a mapping can offer for testing were also presented along
with the possible implementation solutions as well as the
challenges that exist in implementing it. A manual estab-
lishment of mapping between state machines and code is
currently being considered as part of a testing methodology for
the Volvo’s Brake-By-Wire use-case in the MBAT European
project. However, the main challenge is that while such a
manual mapping might work for a small system, it will not be
scalable for systems with large code bases, and therefore, needs
to be automated. In summary, the main goal of this paper has
been to highlight the benefits and uses of having the mapping
mechanism, discuss its feasibility, and encourage research on
methods for automatic establishment of the mapping as well
as its further use in testing.

V. ACKNOWLEDGEMENTS

This work has been supported by the MBAT European
Project [10] and also through the ITS-EASY industrial research
school [27]. The research leading to these results has received
funding from the ARTEMIS Joint Undertaking under grant
agreement no 269335 (see Article I1.9. of the JU Grant
Agreement) and from the Swedish Governmental Agency
for Innovation Systems (VINNOVA). We would also like to
thank Raluca Marinescu and Dr. Cristina Seceleanu for their
technical tips and support for this work.

REFERENCES

[11 B. Selic, “The pragmatics of model-driven development,” Software,
IEEE, vol. 20, no. 5, Sept 2003, pp. 19-25.

[2] J. Bezivin, “On the unification power of models,” Software Systems
Modeling, vol. 4, no. 2, 2005, pp. 171-188.

[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliability
journal, vol. 22, no. 5, Aug. 2012, pp. 297-312.

[4] A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel, M. Baumgartner,
B. Sostawa, R. Zolch, and T. Stauner, “One evaluation of model-based
testing and its automation,” in Proceedings of the 27th international
conference on Software engineering, ser. ICSE, New York, USA, 2005,
pp. 392-401.

[5] T.S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Softw. Eng., vol. 4, no. 3, May 1978, pp. 178-187.

250

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Copyright (c) IARIA, 2014.

R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and P. Pet-
tersson, “EAST-ADL Tailored Testing: From System Models to Ex-
ecutable Test Cases,” Milardalen University, Technical Report ISSN
1404-3041 ISRN MDH-MRTC-278/2013-1-SE, August 2013.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183 — 235.

J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in In Lecture Notes on Concurrency and Petri Nets, ser. Lecture
Notes in Computer Science vol 3098, W. Reisig and G. Rozenberg,
Eds. Springer—Verlag, 2004.

The ATESST Consortium, “EAST-ADL Profile
www.atesst.org, Accessed: August 2014.

MBAT Project: Combined Model-based Analysis and Testing of Em-
bedded Systems, http://www.mbat-artemis.eu/home/, Accessed: August
2014.

S. Anwar, “An anti-lock braking control system for a hybrid electro-
magnetic/electrohydraulic brake-by-wire system,” in American Control
Conference, 2004. Proceedings of the 2004, vol. 3, 2004, pp. 2699—
2704.

G. Behrmann, R. David, and K. G. Larsen, “A tutorial on Uppaal
4.0, http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.
pdf, November 2006.

Enea, http://www.enea.com, Accessed: August 2014.

M. Saadatmand, D. Scholle, C. W. Leung, S. Ullstrom, and J. F.
Larsson, “Runtime verification of state machines and defect localization
applying model-based testing,” in Workshop on Software Architecture
Erosion and Architectural Consistency (SAEroCon) - Proceedings of
the WICSA 2014 Companion Volume, ser. WICSA 14 Companion.
ACM, 2014, pp. 6:1-6:8.

M. Saadatmand and M. Sjodin, “Testing of timing properties in real-
time systems: Verifying clock constraints,” in Software Engineering
Conference (APSEC, 2013 20th Asia-Pacific, vol. 2. TEEE-CPS, Dec
2013, pp. 152-158.

S. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring of real-
time systems,” in Real-Time Systems Symposium, 1991. Proceedings.,
Twelfth, dec 1991, pp. 74 -83.

M. Saadatmand, A. Cicchetti, and M. Sjodin, “Design of adaptive
security mechanisms for real-time embedded systems,” in Proceedings
of the 4th international conference on Engineering Secure Software and
Systems, ser. ESS0S’12. Eindhoven, The Netherlands: Springer-Verlag,
2012, pp. 121-134.

N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe, “Automated
discovery of state transitions and their functions in source code,” Journal
of Software Testing, Verification & Reliabality, vol. 18, no. 2, Jun. 2008,
pp. 99-121.

H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “Discotect:
A system for discovering architectures from running systems,” in Pro-
ceedings of the 26th International Conference on Software Engineering,
ser. ICSE "04. Washington, DC, USA: IEEE, 2004, pp. 470-479.

D. Lo and S.-C. Khoo, “SMATITIC: Towards Building an Accurate,
Robust and Scalable Specification Miner,” in Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. SIGSOFT ’06/FSE-14. New York, NY, USA: ACM,
2006, pp. 265-275.

V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining Object
Behavior with ADABU,” in Proceedings of the 2006 International
Workshop on Dynamic Systems Analysis, ser. WODA *06. New York,
NY, USA: ACM, 2006, pp. 17-24.

D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic generation of
software behavioral models,” in Software Engineering, 2008. ICSE °08.
ACM/IEEE 30th International Conference on, May 2008, pp. 501-510.

N. Kothari, T. Millstein, and R. Govindan, “Deriving state machines
from tinyos programs using symbolic execution,” in Information Pro-
cessing in Sensor Networks, 2008. IPSN *08. International Conference
on, April 2008, pp. 271-282.

Microsoft Windows Workflow Foundation, http://msdn.microsoft.com/
en-us/vstudio/jj684582.aspx, Accessed: August 2014.

To use State Tracking with WorkflowApplication,

/wf.codeplex.com/wikipagetitle=Tracking%20states %20with%
20WorkflowApplication, Accessed: August 2014.

Specification.”

http:

ISBN: 978-1-61208-367-4

[26]

[27]

R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and P. Pet-
tersson, “A model-based testing framework for automotive embedded
systems,” in 40th Euromicro Conference on Software Engineering and
Advanced Applications. Verona, Italy: CPS-IEEE, August 2014.

ITS-EASY post graduate industrial research school for embedded soft-
ware and systems, http://www.mrtc.mdh.se/projects/itseasy/, Accessed:
August 2014.

251

