
Refactoring of Simulink Diagrams via Composition of Transformation Steps

Quang Minh Tran, Benjamin Wilmes
Berlin Institute of Technology

Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany

E-Mail: {quang.tranminh,benjamin.wilmes}@dcaiti.com

Christian Dziobek
Daimler AG

Mercedes-Benz Cars Development
Sindelfingen, Germany

E-Mail: christian.dziobek@daimler.com

Abstract—Model-based design has been increasingly adopted
by the industry, especially the automotive industry, for the
development of embedded software. Today, Matlab/Simulink
by The MathWorks is widely employed as a modeling tool in
which embedded software is modeled as data flow diagrams
consisting of blocks and signals. While refactoring has be-
come an established technique for improving the structure of
code in textual programming languages, refactoring Simulink
diagrams is relatively unexplored. This paper introduces a
technique for specifying and implementing refactoring oper-
ations for Simulink diagrams by composing elementary and
composite transformation steps. How the transformation steps
can be leveraged to specify and implement complex refactoring
operations is demonstrated based on the two refactoring
examples Replace Goto/From With Explicit Signals and Merge
Subsystems. Our prototypical implementation of a refactoring
extension for Simulink is also briefly described.

Keywords-Simulink; Refactoring; Transformation

I. INTRODUCTION

The model-based design (MBD) paradigm has been
widely adopted by the automotive industry to develop em-
bedded software, with Matlab/Simulink [1] by The Math-
Works being the defacto standard modeling tool. Using
Simulink, software functionality is modeled as data flow dia-
grams by connecting functional blocks via data-carrying sig-
nals. Additional concepts of the Simulink modeling language
address practical needs, like the readability of large models.
For instance, model fragments can be hierarchically grouped
into logical units called subsystems and related signals can
be grouped into structured bus signals. The adoption of
MBD using Simulink leads to models being central artifacts
in development. Due to the continuously increasing software
complexity and short development cycles, the creation and
maintenance of models have become highly intensive and
time-consuming activities.

Refactoring is an established restructuring technique
which implies changing the structure of a development
artifact without changing its observable behavior. Semi-
automated or interactive refactoring operations have been in-
tegrated into textual programming environments like Eclipse
or Visual Studio. However, at present, refactoring is practi-
cally non-existent in the Simulink Editor. The missing sup-
port for refactoring in Simulink has two potentially severe

consequences. First, the model quality may be compromised
if quality-improving model changes are not done due to
tight development time, even if the modeler is aware of
the structural deficits. Second, refactoring a huge Simulink
model manually can be very labor-intensive and error-prone.

Thus, in this paper, we present a modular technique for
refactoring Simulink diagrams based on the composition
of predefined transformation steps. While the focus of this
paper is on the underlying refactoring mechanism, we refer
to a previous publication of ours for a wider spectrum of
useful refactoring operations for Simulink diagrams [2].

The paper is structured as follows. In Section II, we
present our meta-model for Simulink models, which serves
as the basis for defining transformation steps. Our mech-
anism for composing transformation steps is described in
Section III. How even complex refactoring operations can
be specified and realized by utilizing primitive but powerful
transformation steps is shown in Section IV. Insight into our
prototypical implementation of the concept as an extension
of the Simulink Editor is provided in Section V, followed by
a summary of related work in Section VI, and our conclusion
in Section VII.

II. SIMULINK META-MODEL FOR REFACTORING

The development of a refactoring technique for Simulink
diagrams inevitably requires the existence of a meta-model.
Unfortunately, to date, no official meta-model for Simulink
diagrams has been published. Hence, we defined our own
Simulink meta-model which, for the purpose of refactoring,
implicitly meets the following criteria:

1) All necessary structural properties of diagrams that are
required by refactorings should be captured, including
model hierarchy, signal properties and bus structure

2) Support for incomplete diagrams, such as those with
unconnected signals, since some refactorings can be
triggered at any time during the modeling

3) Layout information must be captured because the
execution of a refactoring operation should preserve
the layout as much as possible

4) Establish a degree of granularity that enables local
structural changes during a refactoring operation with-
out affecting irrelevant model parts

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Block

ModelBlock

GainBlock ...

SubsystemBlock

#name : string
-position : point

BusCreatorBlock

-isAtomic : bool RealPort
#portNumber : int

Inport

Outport

AbstractPort
-position : point

VirtualPort

Segment
-label : string
-points

* in

* out

*
contains

contains
*

*

*

SignalProperty
0..1

busChild *

*
contains

Figure 1. Excerpt of our meta-model for Simulink diagrams

Figure 1 shows an excerpt of our meta-model as class
diagram. In this meta-model, Block is the superclass for
all other block types. A Block has a unique name in its
hierarchical scope and an ordered list of Inport and Outport
instances. Its position is stored in the field position. A
Subsystem is a block that can contain child blocks including
other subsystems. An entire model is also a Subsystem.

Regardless of whether a signal is completely connected,
i.e., constituting an uninterrupted path from one source block
to one or more destination blocks, it is divided into one or
more segments. A segment connects a source and a target
port - which can be of the following types: A real port
belongs to a block and is either an inport (for an incoming
signal) or outport (for an outgoing signal). A virtual port is
either a branching point of a signal or an end point of an
incompletely connected signal. Both real ports and virtual
ports have an (x, y) position. In contrast to a virtual port, a
real port has a port number. A segment is called unconnected
if its source is a virtual port but not a branching point, or
its target is a virtual port.

III. TRANSFORMATION STEPS AND THEIR COMPOSITION

Instead of formulating each refactoring operation individ-
ually, we have set the goal to define basic transformation
and modification steps that can be aggregated for specifying
and implementing complex refactoring operations. As a
result, on top of the meta-model in Section II, we have
identified a collection of transformation steps (see Table
I). A transformation step modifies an instance of the meta-
model, i.e., a Simulink model. While defining the steps, we
had to address the following key questions:

How powerful in terms of the effect should a
transformation step be?

The use of a powerful transformation step reduces the
complexity of a refactoring specification but is more difficult

Category Transformation Steps

Elementary

addBlock(blockType, [pos])
addInportBlock(destSubsys,[pos])
addOutportBlock(destSubsys,[pos])
copyBlock(block, destSubsys, [pos])
replaceBlock(block, newBlockType)
deleteBlock(block)
addSegment(srcPort, targetPort)
rerouteSegmentToNewTargetPort(seg, newTargetPort)
rerouteSegmentToNewSourcePort(seg, newSourcePort)
branchSegmentToNewTargetPort(seg, newTargetPort)

Composite

moveBlocks(blocks, destSubsys, [pos])
deleteBlockWithSignals(block)
addCrossHierarchicalSignal

(sourcePort, targetPorts)
rerouteSegmentCrossHierarchicallyToNewTargetPort

(sourcePort, newTargetPort)
branchSegmentCrossHierarchicallyToNewTargetPort

(seg, newTargetPort)

Table I
EXCERPT OF THE TRANSFORMATION STEPS COLLECTION WITH THE

STEPS BEING DISCUSSED IN MORE DETAIL MARKED BOLD

to reuse. For instance, there are two possible ways to
define the transformation step deleteBlock that deletes a
block. One way is, if a block is removed, its incoming
and outgoing segments remain and become unconnected
segments. A more powerful version of deleteBlock would
also remove the incoming and outgoing segments. The
former is especially useful if after the deletion, the references
to the now unconnected segments are still needed - if, for
instance, the segments are rerouted to other blocks in a
following transformation step. For the sake of reusability, we
have decided to keep basic transformation steps as granular
as possible. If necessary, more powerful versions are defined
by composing more fine-grained steps, such as deleteBlock-
WithSignals, which is realized by using deleteBlock and
then deleting the incoming and outgoing segments using
deleteSegment.

How can transformation steps be composed to
define more complex transformation steps?

We distinguish between elementary and composite trans-
formation steps. An elementary step modifies an instance
of the meta-model without using other transformation steps,
while a composite step consists of an ordered list of (pos-
sibly elementary or composite) child steps. Performing an
elementary step directly changes an instance of the meta-
model. A composite step can be performed by executing
each step in the list in the specified order. Back to the
previous example, deleteBlock is an elementary step while
deleteBlockWithSignals is a composite step.

How should a step affect the layout?
Layouting of Simulink models ultimately addresses the

positioning of blocks and signals in the Simulink Editor.
Since the layout plays a crucial role for the readability of a
Simulink diagram and layouting thus needs to be considered
by refactoring operations, transformation steps can receive

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Precondition: sameSubsystem(srcPort,targetPort)
∧¬ targetPort.hasIncomingSegment

1: function ADDSEGMENT(srcPort,targetPort, [name])
2: p ← srcPort.containingSubsystem
3: newSeg ← new Segment(name)
4: newSeg.source ← srcPort
5: newSeg.target ← targetPort
6: srcPort.outSegs ← srcPort.outSegs ∪ {newSeg}
7: targetPort.inSeg ← newSeg
8: p.childSegments ← p.childSegments ∪ {newSeg}
9: end function

Figure 2. Algorithm for elementary transformation step addSegment

layout information from parent composite transformation
steps. If layout information is not provided, predefined
layout heuristics or Simulink itself determine the layout. For
an improved layout after refactoring, the automatic layouting
algorithm for Simulink diagrams [3] can be used.

Based on these basic principles, we show by examples
how elementary and composite steps modify an instance of
the meta-model. Figure 2 depicts (informal) pseudo code for
the elementary step addSegment that adds a new segment
from a source port srcPort to a target port targetPort. It pre-
sumes that srcPort and targetPort are in the same subsystem
and targetPort does not have an incoming segment. If these
conditions are satisfied, a new segment newSeg is created. A
name is given depending on the type of refactoring in which
this step is used. The segment’s start and end ports are set
to srcPort and targetPort, respectively. Additionally, the new
segment is added to the collection of outgoing segments of
srcPort and assigned to targetPort as the incoming segment.
Finally, newSeg is added to the current subsystem.

Figure 3 shows the algorithm for addCrossHierarchi-
calSignal which adds (possibly cross-hierarchical) signals
from a source port to one or several target ports. Unlike
addSegment, addCrossHierarchicalSignal is a composite
transformation step because it makes use of other trans-
formation steps such as addSegment, addOutportBlock and
addInportBlock. Note that the algorithm contains control
structures, as well as other commands, and is not purely
a list of transformation steps as indicated before. Due to
space limitations, we abstract from implementation details
here. As mentioned, the steps’ algorithms as described in
this paper are executed on an instance of the meta-model.
Each call of an elementary transformation step is registered
in an ordered step list which is then executed step by step
on the real Simulink model.

The precondition of addCrossHierarchicalSignal states
that the list of target ports must have at least one element
and all target ports must be in the same subsystem. If
a precondition is not satisfied, the entire refactoring in
which this step is used will not be applied. If satisfied,
it determines the subsystem where a forward constructed
signal from source to target and a backwards constructed
signal from target to source would meet (least common
subsystem). Then, the signal is forwarded from the source

Precondition: sameSubsystem(targetPorts) ∧ targetPorts 6= ∅
∧ ∀ tp ∈ targetPorts: ¬tp.hasIncomingSegment

1: function ADDCROSSHIERARCHICALSIGNAL
(srcPort,targetPorts)

2: leastSub ← getLeastCommonSubsystem(srcPort,targetPorts)
3: curPort ← srcPort
4: curSubsys ← curPort.containingSubsystem
5: while curSubsys 6= leastSub do
6: outBlock = addOutportBlock(curSubsys)
7: ret = addSegment(curPort,outBlock.inport)
8: curPort ← curSubsys.outportOf (outBlock)
9: curSubsys ← curPort.containingSubsystem

10: end while
11: subsysPath ← getSubsystemPath(targetPorts(1),leastSub)
12: for p ∈ sortByHierarchyTopDown(subsysPath) do
13: inBlock = addInportBlock(p)
14: addSegment(curPort,p.inportOf(inBlock))
15: curPort ← inBlock.outport
16: end for
17: for tp ∈ targetPorts do
18: addSegment(curPort,tp)
19: end for
20: end function

Figure 3. Algorithm for composite transformation step addCrossHierar-
chicalSignal

port up to the ancestor and from there down to the subsystem
containing the target ports by creating outport blocks, inport
blocks and signals for the intermediate subsystems. Finally,
in the subsystem containing the target ports, branching
signals are added from the newly added inport block to the
target blocks. Note that addCrossHierarchicalSignal avoids
redundant blocks and signals by creating a single signal path
from the source port to the parent subsystem of the target
ports before branching it to the target ports.

IV. SPECIFICATION OF REFACTORINGS

The transformation steps can be leveraged to formulate
refactoring operations, as shown next using two examples:
(1) Replace Goto/From With Explicit Signals creates explicit
(possibly cross-hierarchical) signals from the source Goto
block to all associated From blocks, (2) Merge Subsystems
merges two subsystems into a single subsystem. These two
refactorings are part of our Simulink refactoring catalog [2].

A. Replace Goto/From With Explicit Signals

Motivation: An advantage of data flow diagrams such
as Simulink is that the data flow between blocks is explicit
thanks to visual signal connections. However, Simulink pro-
vides Goto/From blocks as a means to define implicit, non-
visual signal connections between blocks that may reside on
different model levels - usually to reduce the visual complex-
ity. Similar to the Goto construct in imperative programming
languages, the use of Goto/From blocks, especially of global
scope, may dramatically reduce the understandability of
the model because tracing the data flow becomes more
difficult. Goto/From blocks can be replaced by explicit signal
connections without changing the behavior of the model.
This can be a tedious task when done manually.

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Subsystem

1.5

Replace Goto/From

1
A

2

[A]

[A]

1

2

Goto From

From1

Subsystem

1.5

1

2

1

2

1Signal
Conversion

x

x

y

y

z

z

Figure 4. Example for refactoring Replace Goto/From with Explicit Signals

Mechanics: Figure 6 shows (informal) pseudo code for
Replace Goto/From with Explicit Signal. Take a look at
Figure 4 for an example.

As first operation, the function buildSubsystemList is
called to obtain a list of the corresponding From blocks’
parent subsystems. This list is used for signal forwarding
while avoiding redundant signal paths at the same time.
Then, the transformation step replaceBlock is used to replace
the Goto block with a Signal Conversion block. Signal
Conversion blocks are used here solely for preserving signal
names. More specifically, if the incoming signal of the Goto
block has a different name than the signal names leaving
the From blocks, the use of Signal Conversion blocks would
allow these names to continue to exist after the refactoring.

Next in the algorithm, subsystemList is iterated. In each
iteration, the From blocks within the current subsystem are
replaced by Signal Conversion blocks. Finally, the composite
transformation step addCrossHierarchicalSignal is used to
foward signals to the Signal Conversion blocks.

B. Merge Subsystems

Motivation: During creation and maintenance of a
Simulink model, reorganizing activities are frequent. In
particular, it is often necessary to combine functionalities
residing in separate subsystems into a single subsystem.
With the current modeling support of the Simulink Editor,
the modeler would have to cut and paste the content of one
subsystem into the other subsystem. Then, the signals must
be reconnected to re-establish the initial signal relationships.
If lots of signals must be connected manually, this activity
becomes both labor-intensive and error-prone.

Mechanics: While Figure 5 provides an example of this
refactoring, Figure 7 shows (informal) pseudo code for
merging two subsystems A and B. The precondition speci-
fies that A and B must be non-atomic (virtual) subsystems.
This restriction exists since merging atomic subsystems may
change the behavior of the model.

In essence, the algorithm uses suitable transformation
steps to move the content of B to A (line 18), adjust the

Precondition: -
1: function REPLACEGOTOFROMWITHEXPLICITSIGNALS

(gotoBlock)
2: fromBlocks ← gotoBlock.fromBlocks
3: inSeg ← gotoBlock.inSeg
4: subsystemList ← buildSubsystemList(fromBlocks)
5: gotoConverter ← replaceBlock

(gotoBlock,’SignalConversion’)
6: curOutport ← gotoConverter.outport
7: for s ∈ sortByHierarchyTopDown(subsystemList) do
8: targetPorts ← ∅
9: for fromBlocks ∈ s do

10: for fromBlock ∈ fromBlocks do
11: fromConverter ← replaceBlock

(fromBlock,’SignalConversion’)
12: targetPorts ← targetPorts ∪ fromConverter.inport
13: end for
14: end for
15: targetRootPort ← addCrossHierarchicalSignal

(curOutport,targetPorts)
16: curOutport ← targetRootPort
17: end for
18: end function

Figure 6. Algorithm for refactoring Replace Goto/From With Explicit
Signals

signal connections (line 23, 26, 32, and 35) and finally delete
B (line 37). Before the actual transformation, some book
keeping needs to be done. In particular, inSegsOfB contains
all incoming segments of B. Hash tables inMap and outMap
are used to keep track of the references between inport
and outport blocks of B to the source ports of the signals
reaching them for reconnecting signals.

For inMap, if an inport block inpBlock of B has an
incoming segment entering B at the inport corresponding to
inpBlock, we store the mapping between inpBlock and the
source port of that incoming segment returned by getSrcPort.
In this context, the source port is returned by getSrcPort,
which checks if the root source of the segment is an outport
of A. If yes, we go into A and retrieve the source of
the signal within A. Otherwise, the source port is the root
source of the segment and is located on the common parent
subsystem of A and B. For outMap, if an outport block
outBlock of B has an outgoing segment leaving B at the
outport corresponding to outBlock, we store the mapping
between outBlock and the segment.

For transformation, moveBlocks(B.content,A) moves B’s
content to A. inMap is used to reestablish incoming signal
connections to the blocks that used to be in B. In particular,
for each inport block inpBlock stored in inMap, if the
source port of inpBlock is in A, inpBlock is replaced by a
Signal Conversion block before connecting the source port
to the inport of that Signal Conversion block. Otherwise, the
source port is connected to the inport of A corresponding to
inpBlock. Then, using outMap, the initial outgoing segments
of B are rerouted to the outports of A corresponding with
the outport blocks being moved from B. Finally, the initial
incoming segments of B and B itself are removed.

It should be noted that the decision of which of the two
subsystems to be merged serve the role of A and B in the

143Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

10
1

2
1

1

1

1.5

+

+

A
1

1
2

inX

inY

x

y
z

2

+

+2

outZ

inB

a

b
c outC

B
AB

10

1

inX

inY

2
inB

1
outZ

outC

1

2
1

+

+

x

y
z

Signal
Conversion

2

1.5

+

+
b

c3

Merge
A with B

a
2

Figure 5. Example for refactoring Merge Subsystems

Precondition: ¬A.isAtomic ∧ ¬B.isAtomic
1: function MERGESUBSYSTEMS(A,B)
2: inSegsOfB ← B.inSegments
3: inpBlocksInB ← B.inportBlocks
4: for inpBlock ∈ inpBlocksInB do
5: inport ← B.inportOf (inpBlock)
6: if inport.hasIncomingSegment then
7: inMap.value(inpBlock) ← getSrcPort(inpBlock,A)
8: end if
9: end for

10: outBlocksInB ← B.outportBlocks
11: for outBlock ∈ outBlocksInB do
12: outport ← B.outportOf (outBlock)
13: if outport.hasOutgoingSegment then
14: outSeg ← outport.outSegment
15: outMap.value(outBlock) ← outSeg
16: end if
17: end for
18: moveBlocks(B.content, A)
19: for inpBlock ∈ inMap.keys do
20: srcPort ← inMap(inpBlock)
21: if srcPort.containingSubsystem = A then
22: converter ← replaceBlock

(inpBlock,’Signal Conversion’)
23: addSegment(srcPort, converter.inport)
24: else
25: targetPort ← A.inportOf (inpBlock)
26: addSegment(srcPort,targetPort)
27: end if
28: end for
29: for outBlock ∈ outMap.keys do
30: outport ← A.outportOf (outBlock)
31: outSeg ← outMap.value(out)
32: rerouteSegmentToNewSource(outSeg,outport)
33: end for
34: for seg ∈ inSegsOfB do
35: deleteSegment(seg)
36: end for
37: deleteBlocks(B)
38: end function

Figure 7. Algorithm for refactoring Merge Subsystems

algorithm affects the port order of the inports and outports
within the resulting merged subsystem. This is due to the
way Simulink automatically assigns port numbers when a
port is added or deleted. However, since the port order does
not affect the behavior, the refactoring does not change the
model behavior. We have also defined a refactoring operation
called Reorder Ports that can be used to rearrange the port
order of inports or outports of a subsystem. If required, this
refactoring can be used to achieve the desired port order.

V. IMPLEMENTATION

We have implemented a prototype in Matlab’s m language
that integrates refactoring support directly into Simulink

Editor. Specifically, a refactoring operation can be directly
triggered in Simulink Editor via a menu item or shortcut.
Based on the Template design pattern [4], the prototype
implements a generic workflow of refactorings as a graphical
wizard. The behavior of a specific refactoring operation
such as the required graphical dialogs for user input and
the (interactive) specification of transformation steps can be
easily defined and integrated into the prototype.

The meta-model in Section II is implemented as Matlab
classes. The elementary and composite transformation steps
in Section III are provided in the form of Matlab functions.
In addition, the prototype also contains a collection of
Matlab functions for model analysis that are useful for
refactoring purposes. For instance, the functions getLeast-
CommonSubsystem used from Figure 3 and buildSubsystem-
List from Figure 6 are stored in a special collection since
they are needed by multiple refactorings. The functions for
transformation steps and model analysis serve as a high-level
and compact API for formulating refactoring operations.

The prototype also features a graphical preview that shows
the list of transformation steps to be executed in a tree.
Moreover, it shows the Simulink diagram before and after a
refactoring operation.

We have tested our prototype on several industrial
Simulink models from the automotive domain at Daimler.
The biggest time factor turned out to be the time required
to convert a Simulink model into an instance of the meta-
model. In an extreme case, for a model of about 20,000
blocks and a refactoring operation that affects almost the
entire model, the parsing time took roughly 10 minutes. For
most models and operations, however, the parsing time was
just a matter of seconds. The transformation itself usually
took only seconds, or at most, a few minutes.

VI. RELATED WORK

In textual programming, refactoring has become a stan-
dard technique for restructuring code without changing its
observable behavior [5], such as for object-oriented lan-
guages [5] and functional languages [6]. Modern Integrated
Development Environments (IDEs) like Eclipse, NetBeans
and Visual Studio offer built-in support for refactoring.

In model-based development, UML models have been
targeted for refactoring support [7]. Refactoring of data flow

144Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

diagrams such as Simulink, however, is only scantly re-
searched. Sui et al. [8] propose an implementation approach
for an automated refactoring tool aimed at visual dataflow
programming languages. However, the focus of their paper
is rather on the tool architecture aspect than on specifying
refactoring operations modularly.

The current version of Simulink Editor does not provide
refactoring support. Tools such as Model Advisor [9] or
Model Examiner [10] can automatically detect violations of
modeling guidelines and do provide, to a limited extent,
so-called repair scripts for repairing guideline violations.
Nonetheless, the focus of these tools is on automated detec-
tion of guideline violations and not on providing complex
refactoring operations with possible user input or interaction.

The approach which is most related to our work has
been developed in the MATE project [11]. It is an approach
to visual specification and transformation for Simulink and
Stateflow models based on graph transformation techniques.
Specifically, modeling guideline violations and possible re-
pair scripts are formulated in the graphical specification
language called Story Driven Modeling (SDM). It turned
out, however, that a purely visual specification language,
such as SDM, is not powerful enough for complex real
specification scenarios such as those including regular ex-
pressions, complex mathematical calculations and complex
navigation through a network of linked objects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced our technique for
specifying and implementing complex refactoring operations
for Simulink diagrams based on the composition of trans-
formation steps. The concept has been successfully imple-
mented as a prototype that integrates refactoring support
into Simulink Editor. Using the infrastructure provided by
the prototype, we were able to implement many refactoring
operations from our catalog [2] with little effort.

As the next step, we plan to extend our catalog and
tool with further useful refactoring operations. Our future
work will also address the automated identification of model
constructs for which the application of certain refactorings
is recommendable - so-called model smells, in analogy to
code smells known from code refactoring [5]. There exist
several techniques for Clone Detection in a Simulink dia-
gram, as explored by Deissenboeck et al. [12] and Petersen
[13], which could be used to identify similar or identical
fragments in a Simulink diagram and suggest applicable
refactoring operations for eliminating them. Moreover, we
plan to evaluate the developed techniques and tool in real
development environments at Daimler.

In addition, having automated transformation and refac-
toring techniques for Simulink models on hand, advanced
applications are rendered possible. For instance, Simulink
models could be automatically optimized by search-based
algorithms using our transformation steps, as suggested for

code [14], with respect to measurable model quality criteria,
which already exist for Simulink diagrams [15].

REFERENCES

[1] The MathWorks, “Matlab/Simulink,” http://www.mathworks.
de/products/simulink/ [Last access: 11/06/2013].

[2] Q. M. Tran and C. Dziobek, “An approach to design
and maintenance of Simulink models by using transforma-
tions/refactorings and generation operations,” in Proceedings
of the Model-Based Development of Embedded Systems Work-
shop (MBEES), 2013, pp. 1–12.

[3] L. Klauske and C. Dziobek, “Improving modeling usability:
Automatic layouting for Simulink,” in Proceedings of the
2010 MathWorks Automotive Conference, 2010, pp. 1–8.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[5] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[6] H. Li, “Refactoring Haskell programs,” Ph.D. dissertation,
University of Kent, 2006.

[7] G. Sunyé, D. Pollet, Y. L. Traon, and J.-M. Jézéquel, “Refac-
toring UML models,” in Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, 2001, pp. 134–148.

[8] Y. Y. Sui, J. Lin, and X. T. Zhang, “An automated refactoring
tool for dataflow visual programming language,” SIGPLAN
Notices, vol. 43, no. 4, pp. 21–28, Apr. 2008.

[9] The MathWorks, “Model Advisor,” http://www.mathworks.
de/de/help/simulink/ug/consulting-the-model-advisor.html
[Last access: 11/06/2013].

[10] Model Engineering Solutions, “Model Examiner,”
http://www.model-engineers.com/de/model-examiner.html
[Last access: 11/06/2013].

[11] I. Stürmer, I. Kreuz, W. Schäfer, and A. Schürr, “The MATE
approach: Enhanced Simulink and Stateflow model transfor-
mation,” in Proceedings of the 2007 MathWorks Automotive
Conference, 2007, pp. 1–9.

[12] F. Deissenboeck et al., “Clone detection in automotive model-
based development,” in Proceedings of the 30th International
Conference on Software Engineering, 2008, pp. 603–612.

[13] H. Petersen, “Clone detection in Matlab Simulink models,”
Master’s thesis, Technical University of Denmark, DTU In-
formatics, 2012.

[14] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based
software engineering: Trends, techniques and applications,”
ACM Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61, 2012.

[15] J. Scheible and H. Pohlheim, “Automated model quality rating
of embedded systems,” in Proceedings of the 4th SQMB
Workshop, 2011, pp. 1–10.

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

