
Static Analysis Techniques and Tools: A Systematic
Mapping Study

Vinícius Rafael Lobo de Mendonça
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: viniciusmendonca@inf.ufg.br

Cássio Leonardo Rodrigues
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: cassio@inf.ufg.br

Fabrízzio Alphonsus A. de M. N. Soares
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: fabrizzio@inf.ufg.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

Abstract—The main disadvantage of static analysis tools is
their high false positive rates. False positives are errorsthat either
do not exist or do not lead to serious software failures. Thus, the
benefits of automated static analysis tools are reduced due to the
need for manual interventions to assess true and false positive
warnings. This paper presents a systematic mapping study to
identify current state-of-the-art static analysis techniques and
tools as well as the main approaches that have been developed
to mitigate false positives.

Keywords-automatic static analysis; false positive; systematic
mapping study.

I. I NTRODUCTION

There are two Verification and Validation (V&V) ap-
proaches: dynamic and static [1]. The first approach is char-
acterized by software implementation and defect detection
through assessment of program outputs, which is similar to
software testing. In the second approach, program execution is
not required, and identification of potential faults is carried out
through evaluation of software source codes, design diagrams,
requirements, etc. Inspections and code reviews are types of
techniques used in static analysis but, in general, they are
performed by human. The focus of this work is the evaluation
of techniques and tools used to perform automated static
analysis.

Automated static analysis vocabulary includes the following
terms: false positives, true positives and false negatives. A false
positive occurs when a tool alerts to the presence of a non-
existent fault. A false negative occurs when a fault exists,but
it is not detected due to the fact that static analysis tools are
not perfectly accurate and may not detect all errors. Finally, a
true positive occurs when a tool produces a warning to indicate
the presence of a real defect in the product under analysis.

Examples of automated static analysis tools are Find-
Bugs [2], PMD [3] and CheckStyle [4]. The disadvantage of
these tools is that they produce a high rate of false positives,

whereas developers are only interested in true errors, which
are the ones that require correction. False positive alertslead to
an increase in process costs, because their detection is usually
done by human intervention. This consumes precious time that
could be used for the correction of real faults [5]. Regardless
of such disadvantage, static analysis tools are very useful
for carrying out initial verification and validation activities
compared to other quality assurance procedures, especially due
to their low implementation cost.

We conducted a Systematic Mapping Study (SMS) of static
analysis techniques and tools to investigate how they avoid
false positives. A comprehensive data extraction process and
classification of the primary studies provided answers to our
research questions. The remaining of this paper is organized as
follows: Section II describes the methodology used to conduct
the systematic mapping and shows the results obtained in each
phase. Section III reveals main results and answers to the
research questions defined in Section II. Finally, Section IV
shows our conclusions and implications for future studies.

II. BACKGROUND

This paper shows the development of a systematic map
based on the process presented by Petersen [6]. It is composed
of the following steps: i) definition of research questions,ii)
analysis of relevant studies, iii) study selection, iv) keywording
of abstracts, v) data extraction, and vi) mapping process
(Figure 1). To increase the reliability of our proposed SMS,
some of the guidelines provided by Kitchenham et al. [7] were
followed, such as the use of control studies to assess search
string quality and Quality Assessment Strategy [8].

A. Research Questions

Our systematic mapping identifies relevant papers on static
analysis. We aim to understand the behaviour of automated
static analysis tools as well as find out which of the proposed
methods mitigate false positives, if any.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Process Steps

Definition of
Research Quest ions

Outcomes

Study Scope

Conduction of
Research

All Papers

Selection of Papers Relevant Papers

Keywording of
Abstracts

Qual i ty Assessment
S t ra tegy

Classification Scheme

Data Extract ion
and Mapping Processes

Systematic Map

Figure 1. Steps of a Systematic Mapping Study - Adapted
from [6].

Each question is answered according to the following crite-
ria: Population, Intervention, Control and Results. The criteria
comparison is not applicable to this research, so it was not
used. Information on each of them is found in [7]. Our research
questions are:

• RQ1: Which static analysis tools and approaches are used
to reduce false positives?

• RQ2: Which types of warnings are emitted by the tools
and which static analysis methods are employed?

• RQ3: Should various static analysis techniques be used
in combination to reduce false positives?

B. Search Strategy, Data Sources and Study Selection

The search strategy involved the creation of a string to
operate upon scientific digital libraries for the selectionof
primary studies. The digital libraries selected were: ACM,
IEEE, Engineering Village (Compendex) and SpringerLink.
The search string presented in Figure 2 was applied to search
engines by using the advanced search mechanism and, in some
cases, it was tailored for a specific search engine. The papers
used as controls are listed in Table I, it was developed from
generic terms found in the control articles used. Static analysis
does not have a broad vocabulary, similar terms are usually
found in papers, resulting in small search string. The general
search string is as follows:

((static analysis OR bug finding OR static code analysis OR find bug
OR analysis static) AND (false positive OR warnings))

Figure 2. The general search string.

After excluding control articles and their repeated retrievals,
the string used in databases returned 615 primary studies,
all of them catalogued in a specialized tool, named State of
the Art through Systematic Review (StArt) [9]. The results
extracted from StArt revealed that ACM retrieved the highest

rate of primary studies (52%), followed by Engineering Village
(23%), IEEE (17%) and SpringerLink (8%). The main data
retrieved from each primary study was stored using the JabRef
tool [10] for further classification.

TABLE I. CONTROL PAPERS

Title Citation Consultation Database
CA1 Which Warnings Should I

Fix First?
[11] ACM

CA2 Finding Bugs is Easy [5] ACM
CA3 Comparing Bug Finding

Tools with Reviews and
Tests

[12] SpringerLink

CA4 A Comparison of Bug
Finding Tools for Java

[13] IEEE

CA5 Static Code Analysis [14] IEEE

The inclusion criteria for this study are:

• IC1: Primary studies analysing the warnings emitted by
static analysis tools;

• IC2: Primary studies proposing methods/tools to reduce
false positives;

• IC3: Primary studies comparing static analysis
tools/methods;

The exclusion criteria are:

• EC1: Primary studies on static analysis that do not assess
warnings or reduce false positives;

• EC2: Primary studies that are repeated retrievals or con-
tain a maximum of two pages;

• EC3: Primary studies that cannot be accessed;
• EC4: Primary studies that do not use static analysis;
• EC5: Primary studies that are not written in English or

Portuguese.

The primary studies underwent two other stages of selection.
In the second stage, EC2, EC3 and EC5 were applied. This
action ensured a significant reduction in the number of studies,
after which 270 studies remained. In the third and last stage,
each study’s title and abstract were assessed by applying EC1

and EC4, eliminated respectively 40% and 33% of the primary
studies, remaining 64 papers for quality assessment strategy
(Figure 3).

1s t Phase
Identif ication of relevant studies

 for database searching
6 1 5

Exclusion of primary studies after
 application of the exclusion criteria

2nd Phase 2 7 0

Exclusion of primary studies after
 review of t i t le and abstract

3 rd Phase 6 4

Qual i ty assessment s t ra tegy4 th Phase 5 1

Figure 3. Four stages for selection of primary studies

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

C. Quality Assessment Strategy and Classification of Selected
Studies

After application of the previous steps, 64 papers were
selected. Aiming at increasing and ensuring the quality of
the developed work, we decided to assess the quality of
the selected primary studies based on the criteria created by
Dybå and Dingsøyr [8]. These criteria are composed of eleven
question but we use only eight since three of them are out of
the scope of our work (questions 5, 6 and 9). Information on
each of them is found in [8]. It was assigned 1 when the
primary study satisfies the criterion and 0 otherwise. Observe
that criteria 1 and 2 are considered exclusion criteria since a
primary study not satisfying them implies it should be dropped
of. Table II presents the final results of the quality assessment.
Among 51 articles, 9 (17%) received the maximum score
(8) indicating that only a few number of primary studies are
concerned to document the stages of the development of their
research. 90% of the primary studies collected data to answer
the research question, but only 40% of the work are worried
to validate the collected data, and 41% are worried to show
the results clearly. Observe that the lack of such information
makes difficult to draw conclusions about these research areas.
Primary studies were classified into three classes, identified
after reading the 51 remaining papers: research type, approach
type, and types of false positive errors.

In the first class, works were classified based on the types
of research: validation research, evaluation research, solution
proposal, philosophical papers, opinion papers and experience
papers. Information on each of them is found in [6]. The
second class was defined to answer RQ1. Therefore, a clas-
sification scheme was developed based on the terminology
used in the primary studies. The types of approaches identified
were: comparative study, algorithm, new tool, improve existing
tool, ranking error, hybrid approach, technique and method.
A main approach type was defined for each primary study,
which means that it may or may not contain features of other
less relevant types of approaches. The characteristics of each
approach type are:

• Comparative Study (CS): A primary study that compares
static analysis approaches to identify cases in which
application of an approach is better than another;

• Algorithm (A): A primary study that proposes a new
algorithm that may or may not be used in combination
with a static analysis tool to reduce false positives;

• New Tool (TL): A primary study that proposes a new tool
which may be more effective than existing tools or used
in combination with other tools to identify false positives
not yet detected;

• Improve Existing Tool (IT): A primary study that pro-
poses an improvement of an existing tool. For instance,
a new bug pattern;

• Ranking Error (RE): A primary study that proposes a new
ranking or an improved technique to rank error reports;

• Hybrid Approach (HA): A primary study that combines
static and dynamic approaches to reduce the disadvan-

tages of each technique aiming at false positive mitiga-
tion;

• Technique (T): A primary study that aims to find a
solution to a specific problem [15];

• Method (M): A primary study that searches for a general
solution to a problem [15].

The third class is related to false positive errors. It was
developed to identify the primary focus of our study. Errors
were classified as interface fault, data fault, cosmetic fault,
initialization fault, control fault, and computation fault. This
classification was created by Basili and Selby [16], where one
can find more information on each class of fault. However,
most of the 64 selected studies mention the false positives
generated by static analysis tools in a general way. Thus, a
new error category was created: extensive study. The primary
studies that identify more than 10 error types were also
included in this category. Studies containing 2-9 defects were
classified into several categories. Also, when more than one
defect of the same type was detected, only one would be
considered. Most primary studies aimed at reducing false
positives of various types. This is a relevant result, because the
purpose of our systematic mapping is to provide an overview
of the research field.

D. Data Extraction and Mapping Processes

The JabRef and spreadsheets were used in the remaining 51
primary studies to create a three-class classification: research
type, error type, and approach type. Figure 4 shows that 25
out of 51 (49%) primary studies were classified as solution
proposals. This indicates that many proposed new approaches
or improvements for existing ones aimed at reducing false
positive alerts emitted by static analysis tools. However,none
of them was classified as validation research, indicating that
there is no experimental validation of the proposed approaches.

Figure 4. The classification of selected papers in relation
research classes

Regarding the types of approaches identified, there were
a variety of proposed solutions to problems, mainly methods
(18.91%) and new tools (16.21%), which are shown in Fig-
ure 5). This indicates that many researchers, who were not
satisfied with existing tools, proposed new ones as well as
prototypes to assist developers. Some works also presented

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE II. R ESULTS OF SYSTEMATIC MAPPING STUDY

QUALITY EVALUATION AND THE AMOUNT OF THE FALSE

POSITIVES ACHIEVED IN EACH PRIMARY STUDY

Paper RE AI CO RD DC DA FI VA RS TFP A FPR(%)
[17] 1 1 1 1 1 0 1 0 6 S T 63%
[18] 1 1 1 1 1 0 0 1 6 ND T 0%
[19] 1 1 1 1 1 1 1 1 8 S T 20%
[20] 1 1 1 1 1 0 0 1 6 S T BCI 13%
[21] 1 1 1 1 1 0 0 1 6 S T IINC
[22] 1 1 1 1 1 1 1 1 8 S RE 19%
[23] 1 1 1 1 1 1 1 1 8 S RE BCI 0%
[24] 1 1 0 1 1 0 0 1 5 S RE IINC
[25] 1 1 1 1 1 0 1 1 7 S M IINC
[26] 1 1 0 1 1 0 1 1 6 SB M 0%
[27] 1 1 0 1 1 1 1 1 7 S M IINC
[28] 1 1 1 1 1 1 0 1 7 S M IINC
[29] 1 1 1 1 1 1 1 0 7 S M 32%
[30] 1 1 1 1 1 1 1 1 8 S M BCI 74%
[31] 1 1 0 1 1 0 1 1 6 S M IINC
[32] 1 1 0 1 1 1 1 0 6 S M BCI 0%
[33] 1 1 1 1 1 1 0 1 7 S M IINC
[34] 1 1 0 1 0 0 0 0 3 S M 34%
[35] 1 1 0 1 1 1 1 1 7 C M IINC
[36] 1 1 1 1 0 0 1 0 5 S IT 15%
[37] 1 1 1 1 1 1 1 1 8 S IT IINC
[38] 1 1 1 1 0 0 0 1 5 S IT BCI 0%
[39] 1 1 0 1 1 0 0 1 5 S IT IINC
[40] 1 1 1 1 1 1 1 1 8 S IT IINC
[41] 1 1 0 1 1 1 1 1 7 S TL BCI 0%
[42] 1 1 0 1 1 0 0 0 4 S TL IINC
[43] 1 1 1 1 1 0 0 0 5 IB TL IINC
[44] 1 1 1 1 1 1 1 1 8 BO TL IINC
[45] 1 1 1 0 1 0 0 1 5 S TL IINC
[46] 1 1 0 1 1 0 0 0 4 S TL IINC
[47] 1 1 1 1 1 1 1 1 8 C TL IINC
[48] 1 1 1 1 1 0 0 0 5 D TL IINC
[49] 1 1 0 1 1 0 0 0 4 S TL IINC
[50] 1 1 0 1 1 1 0 0 5 S TL IINC
[51] 1 1 0 1 1 0 0 0 4 CS
[52] 1 1 0 1 1 0 0 0 4 CS
[53] 1 1 0 1 1 0 0 1 5 CS
[54] 1 1 0 1 0 0 0 0 3 CS
[55] 1 1 1 1 1 0 0 0 5 CS
[56] 1 1 0 1 1 0 1 0 5 CS
[57] 1 1 1 0 1 0 0 1 5 DR A BCI 0 %
[58] 1 1 0 1 1 0 0 1 5 DR A IINC
[59] 1 1 1 1 1 0 0 1 6 S A IINC
[60] 1 1 0 1 1 0 0 0 4 S A BCI 20%
[61] 1 1 0 1 1 1 0 1 6 S A IINC
[62] 1 1 1 1 1 0 0 0 5 S A BCI 38%
[63] 1 1 0 0 1 0 0 1 4 S HA IINC
[64] 1 1 0 1 1 1 0 0 6 S HA IINC
[65] 1 1 1 1 1 1 0 0 6 S HA IINC
[66] 1 1 1 1 1 1 0 1 7 S HA IINC
[67] 1 1 0 1 1 0 0 0 4 S HA IINC
RS 51 51 28 49 46 20 21 32 * * * *

Acronyms

RE: RESEARCH VA: VALUE SB: STRING BUG
AI: AIM RS: RESULT C: CONCURRENCE
CO: CONTEXT TFP: TYPE OF FALSE POSITIVE IB: INTEGER BUG
RD: RESEARCH DESIGN A: APPROACH BO: BUFFER OVERFLOW
DC: DATA COLLECTION FPR: FALSE POSITIVE RATE RC: DATA RACE
DA: DATA ANALYSIS S: SEVERAL BCI: BEST CASE IS
FI: FINDINGS ND: NULL DEFERENCE IINC: IT IS NOT CLEAR

improvements for the FindBugs tool [2], which is used for
static analysis of Java programs. Most primary studies suggest
ways to mitigate false positives of various types (Figure 5).
The fact that a large number of research proposals focus on
the many kinds of errors exposed by static analysis contributes
to the provision of a variety of mitigation techniques.

A bubble chart was designed to display the intersection
of two classes: approach type and types of false positives
(Figure 5). According to Petersen et al. [6], the bubble chart
was effective in the sense that it gave an overview of the
research field and produced a map of results.

III. M AIN FINDINGS

In this section, we present the answers to the three proposed
research questions based on the primary studies found.

A. Answer to RQ1 – Tools and Approaches

With respect the tools, it can be observed that a significant
number of static analysis tools is used by researchers trying
to reduce false positives, i.e., there is not a consensus that the
tool A is better or worse than the tool B, or whether it is

better to use an open source tool or a commercial tool. Some
authors believe that the use of tools is not mutually exclusive
because if tool A finds more real faults of “null deference”
than a tool B, but B is better than A on detecting real faults
of “buffer overflow”, then the correct choice should be to
combine both tools taking the advantage of both. This strategy
aims to potentiating the strengths of each tool, increasingthe
amount of real defects found, and also the precision, because
if more than one tool reports a same warning on the same
line, this may indicates that the probability of the warning
corresponds to a true positive is greater than the one reported
by a single tool.

The collected data indicate that 16.21% of the papers
propose a new static analysis tool, the majority without
any comparison with other existing tool to demonstrate the
effectiveness of the proposed approach. From this percentage,
just 25% seek to mitigate defects in a comprehensive way, the
other 75% remaining seek to reduce false positive of a specific
class. This large concentration of new tools with a focus on
some specific defect demonstrates a possible deficiency of
existing tools for detecting such defects. The main defects
found are “data fault” and “initialization fault” representing
together 50% of the works proposed of improved tool.

There are also 12.16% of the studies which present hybrid
techniques by combining dynamic and static analysis. Accord-
ing to Aggarwal and Jalote [45], IT community believes that
the static and dynamic approaches are complementary. Static
analyzers are faster and simpler to use than dynamic ones.
Moreover, they also help to identify problems earlier in the
development process, when the cost to correct them is lower
but, in general, static analyzers generate large amounts offalse
positives and false negatives. On the other hand, dynamic
analyzers are accurate and generate few false positives, but
to test all possible conditions in a program with thousands of
line of code is practically impossible. During the systematic
mapping were found works which use both approaches in a
complementary way to reduce the drawbacks of each other.

Among the tools used or cited in the primary studies, those
that stand out are: FindBugs and Checkstyle. Both are used
together with PMD by the quality platform SonarQube for the
calculation of part of its static metrics, but SonarQube does
not seek to reduce false positives.

B. Answer to RQ2 – The types of false positive errors

We also tried to identify specific classes of false positives
warnings but the majority of the works (33.78%) fell down in
the generic classification of false positives, i.e., the information
is not available. The fact that significant amount of work de-
velops techniques or tools to mitigate various false positives is
something negative demonstrating the existence of a large gap
in this research area to be filled. 20% of the proposed methods
provided generic methods which are palliative solutions, not
solving the problem of the high rate of false positive efficiently.

Table II shows a summary of the type of false positive,
the technique and the false positive rate of the 51 primary
studies investigated. Excluding the comparative studies that do

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 5. Bubble chart – Types of Approaches× Types of False Positives

not investigate the effectiveness of a specific approach, 63%
of the remaining works do not make clear how the proposed
approach was efficient, they just mention that the false positive
rate was reduced without any evidences. But, how much is the
reduction? Without this information, the proposed approach
has no change to be addopted on real software development
environments. Therefore, improve the way the experiments are
conducted on these research area is of fundamental importance
to provide such an evidences.

Maybe the real solution does not treats in reduce the rate
of false positives, but reducing the amount of certain typesof
false positives. Treating this problem broadly, your solution
may be far from being achieved. One approach might be to
assign a weight or priority for each type of false positive,
characteristic established in some bug-finding tools (FindBugs,
PMD, and Checkstyle are some of them).

In this manner, bugs with greater weight, hence higher
priority should be given greater attention and other bugs with
lower priority can be observed or subsequently depending on
how much low is your priority should be ignored. Currently,
we live in a scenario that programs are getting ever larger,
exceeding millions of line of code, so the task of analyzing the
warnings emitted by bug finding tools, should be performed
in a smarter way, reducing the human effort and time on this
activity. To do this, we think an important step is to valorize
the types of false positives but, among existing tools, there is
no consensus between the weight or priority, and similar or
identical bugs may have different values in different tools.

C. Answer to RQ3 – Application of Static Analysis Tools

The answer to reduce false positives rate might be resumed
in one word: combine. It is not necessary to create something
new or improve something that already exists, but the strategy
should be to combine static analysis tools and/or dynamic
and static tools and to conduct significant empirical studies to
identify the best combination of tools to reduce drawbacks and
to increase benefits. Unfortunately, the task is not so easy since

there are several technical details to be overcome to createa
meta static analysis tool, such as, how to combine different
warning’s prioritization classification in a single meta tool;
how to manage different output formats; and so on.

Rutar et al. [13] is an example of primary study which
uses this approach. They utilizes tools in conjunction with
applications of different sizes. Each tool performs a different
balancing to equilibrate the real location of errors, the gener-
ation of false positives and true positives and, consequently,
there is little overlap among the generated warnings. These
different approaches of balancing can involve the necessity
of using multiple tools in the verification of an application.
Then, Rutar et al. [13] suggested the development of a meta-
tool, which combines the results of different tools for searching
errors.

IV. F INAL CONSIDERATIONS

This paper showed the development of a systematic map-
ping study on static analysis approaches and tools aiming
at reducing the number of false positives generated. After
the selection of 51 studies, the mapping combined protocol
processes developed by Petersen et al. [6] and Kitchenham et
al. [7]. The selected works provided a variety of static analysis
approaches, including proposals for improving existing tools.
FindBugs stands out in the sense that many primary studies
not only use it, but also discuss how it may be improved.

Among the retrieved studies, there was a lack of works on
the types of false positive errors and the tools that generate
them. This kind of research would help developers identify the
tools that best serve their needs. The mapping also revealed
studies that use hybrid approaches, which combine static and
dynamic analyses techniques. Furthermore, a combination of
different static analysis approaches proved more efficientthan
their isolated use.

Based on the mapping results and due to a lack of validation
research on the subject, we propose a large-scale experimental
study aiming at finding answers to open questions. This would

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

contribute to advancements in the use of static analysis tools
in the early stages of the development cycle, as well as
identification of the types of defects that should be treated
by other verification and validation techniques. Moreover,the
development of a methodology for combining static analysis
approaches and tools is also recommended for future research.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informática
– INF/UFG, Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – CAPES – Brasil, and Fundação de Amparo à
Pesquisa do Estado de Goiás – FAPEG – Brasil, which support
this work.

REFERENCES

[1] I. Sommerville, S. Melnikoff, R. Arakaki, and E. de An-
drade Barbosa, Software Engineering. ADDISON WESLEY
BRA, 2008, [retrieved: Oct., 2013]. [Online]. Available:
http://books.google.com.br/books?id=ifIYOgAACAAJ

[2] FindBugs, [retrieved: Oct., 2013]. [Online]. Available:
http://findbugs.sourceforge.net/

[3] PMD, [retrieved: Oct., 2013]. [Online]. Available: pmd.sourceforge.net/
[4] CheckStyle, [retrieved: Oct., 2013]. [Online]. Available:

http://checkstyle.sourceforge.net
[5] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”SIGPLAN Not.,

vol. 39, no. 12, pp. 92–106, 2004.
[6] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-

ping studies in software engineering,” in12th International Conference
on Evaluation and Assessment in Software Engineering, vol. 17, 2008,
p. 1.

[7] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[8] T. D. Aě and T. D. Aÿyr, “Empirical studies of agile software devel-
opment: A systematic review,”Information and Software Technology,
vol. 50, pp. 833–859, 2008.

[9] StArt, [retrieved: Oct., 2013]. [Online]. Available:
http://lapes.dc.ufscar.br/tools/start-tool

[10] JabRef, [retrieved: Oct., 2013]. [Online]. Available:
http://jabref.sourceforge.net/

[11] S. Kim and M. D. Ernst, “Which warnings should i fix first?”in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC-FSE’07. New York,
NY, USA: ACM, 2007, pp. 45–54.

[12] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug
finding tools with reviews and tests,” inProceedings of the 17th IFIP
TC6/WG 6.1 international conference on Testing of Communicating
Systems, ser. TestCom’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 40–55.

[13] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding
tools for java,” in Proceedings of the 15th International Symposium
on Software Reliability Engineering, ser. ISSRE’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 245–256.

[14] P. Louridas, “Static code analysis,”Software, IEEE, vol. 23, no. 4, pp.
58–61, 2006.

[15] L. Nascimento, D. Viana, P. Silveira Neto, D. Martins, V. Garcia, and
S. Meira, “A systematic mapping study on domain-specific languages,”
in ICSEA’12, The Seventh International Conference on Software Engi-
neering Advances, 2012, pp. 179–187.

[16] V. Basili and R. Selby, “Comparing the effectiveness ofsoftware testing
strategies,”Software Engineering, IEEE Transactions on, vol. SE-13,
no. 12, pp. 1278–1296, 1987.

[17] M. G. Nanda and S. Sinha, “Accurate interprocedural null-dereference
analysis for java,” inProceedings of the 31st International Conference
on Software Engineering, ser. ICSE’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 133–143.

[18] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,”Electron. Notes Theor. Comput. Sci., vol. 217, pp. 5–21,
Jul. 2008.

[19] Lucia, D. Lo, L. Jiang, and A. Budi, “Active refinement ofclone
anomaly reports,” inProceedings of the 2012 International Conference
on Software Engineering, ser. ICSE’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 397–407.

[20] S. S. Heckman, “Adaptively ranking alerts generated from automated
static analysis,”Crossroads, vol. 14, no. 1, pp. 7:1–7:11, Dec. 2007.

[21] S. Heckman and L. Williams, “A model building process for identifying
actionable static analysis alerts,” inProceedings of the 2009 Interna-
tional Conference on Software Testing Verification and Validation, ser.
ICST’09. Washington, DC, USA: IEEE Computer Society, 2009,pp.
161–170.

[22] A. Vetro, M. Morisio, and M. Torchiano, “An empirical validation of
findbugs issues related to defects,” Durham University – Grey College,
Durham, Apr., pp. 144–153.

[23] E. Bodden and K. Havelund, “Aspect-oriented race detection in java,”
IEEE Trans. Softw. Eng., vol. 36, no. 4, pp. 509–527, Jul. 2010.

[24] G. Liang, L. Wu, Q. Wu, Q. Wang, T. Xie, and H. Mei, “Automatic
construction of an effective training set for prioritizingstatic analysis
warnings,” inProceedings of the IEEE/ACM international conference on
Automated software engineering, ser. ASE’10. New York, NY, USA:
ACM, 2010, pp. 93–102.

[25] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” inProceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 81–90.

[26] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “Brick: A binary
tool for run-time detecting and locating integer-based vulnerability,”
in Availability, Reliability and Security, 2009. ARES’09. International
Conference on, 2009, pp. 208–215.

[27] D. Babi? and A. J. Hu, “Calysto: Scalable and precise extended static
checking,” 2008.

[28] C. Csallner and Y. Smaragdakis, “Check ’n’ crash: combining static
checking and testing,” inProceedings of the 27th international confer-
ence on Software engineering, ser. ICSE’05. New York, NY, USA:
ACM, 2005, pp. 422–431.

[29] A. Fehnker, R. Huuck, and S. Seefried, “Concurrency, compositionality,
and correctness,” D. Dams, U. Hannemann, and M. Steffen, Eds.
Springer-Verlag, 2010, ch. Counterexample guided path reduction for
static program analysis, pp. 322–341.

[30] F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda,
H. Tokuoka, T. Imoto, and Y. Miyazaki, “Dc2: A framework for
scalable, scope-bounded software verification,” inAutomated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on,
2011, pp. 133–142.

[31] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 481–490.

[32] S. Lu, S. Park, and Y. Zhou, “Detecting concurrency bugsfrom the
perspectives of synchronization intentions,”Parallel and Distributed
Systems, IEEE Transactions on, vol. 23, no. 6, pp. 1060–1072, 2012.

[33] A. Tomb and C. Flanagan, “Detecting inconsistencies via universal
reachability analysis,” inProceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ser. ISSTA’12. New York,
NY, USA: ACM, 2012, pp. 287–297.

[34] A. C. Nguyen and S.-C. Khoo, “Discovering complete api rules with
mutation testing,” inMining Software Repositories (MSR), 2012 9th
IEEE Working Conference on, 2012, pp. 151–160.

[35] J. Hoenicke, K. R. Leino, A. Podelski, M. Schäf, and T. Wies, “Doomed
program points,”Form. Methods Syst. Des., vol. 37, no. 2-3, pp. 171–
199, Dec. 2010.

[36] C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crasher:A hybrid analysis
tool for bug finding,”ACM Trans. Softw. Eng. Methodol., vol. 17, no. 2,
pp. 8:1–8:37, May 2008.

[37] B. Chimdyalwar and S. Kumar, “Effective false positivefiltering for
evolving software,” inProceedings of the 4th India Software Engineering
Conference, ser. ISEC’11. New York, NY, USA: ACM, 2011, pp. 103–
106.

[38] H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error ranking for
findbugs,” inSoftware Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference on, 2011, pp. 299–308.

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://books.google.com.br/books?id=ifIYOgAACAAJ
http://findbugs.sourceforge.net/
pmd.sourceforge.net/
http://checkstyle.sourceforge.net
http://lapes.dc.ufscar.br/tools/start-tool
http://jabref.sourceforge.net/

[39] A. Shi and G. Naumovich, “Field escape analysis for dataconfidentiality
in java components,” inSoftware Engineering Conference, 2007. APSEC
2007. 14th Asia-Pacific, 2007, pp. 143–150.

[40] Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering false alarms of
buffer overflow analysis using smt solvers,”Inf. Softw. Technol., vol. 52,
no. 2, pp. 210–219, Feb. 2010.

[41] E. Bodden, P. Lam, and L. Hendren, “Finding programmingerrors
earlier by evaluating runtime monitors ahead-of-time,” inProceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, ser. SIGSOFT’08/FSE-16. New York, NY, USA:
ACM, 2008, pp. 36–47.

[42] F. Otto and T. Moschny, “Finding synchronization defects in java
programs: extended static analyses and code patterns,” inProceedings
of the 1st international workshop on Multicore software engineering,
ser. IWMSE’08. New York, NY, USA: ACM, 2008, pp. 41–46.

[43] Q. Chen, L. Wang, and Z. Yang, “Heat: An integrated static and
dynamic approach for thread escape analysis,” inComputer Software
and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE
International, vol. 1, 2009, pp. 142–147.

[44] A. Shi and G. Naumovich, “Improving data integrity witha java
mutability analysis.” inAPSEC. IEEE Computer Society, 2007, pp.
135–142.

[45] A. Aggarwal and P. Jalote, “Integrating static and dynamic analysis
for detecting vulnerabilities,” inComputer Software and Applications
Conference, 2006. COMPSAC’06. 30th Annual International, vol. 1,
2006, pp. 343–350.

[46] D. Kong, Q. Zheng, C. Chen, J. Shuai, and M. Zhu, “Isa: a source
code static vulnerability detection system based on data fusion,” in
Proceedings of the 2nd international conference on Scalable information
systems, ser. InfoScale ’07, 2007, pp. 55:1–55:7.

[47] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and
P. Balachandran, “Making defect-finding tools work for you,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ser. ICSE’10. New York, NY, USA: ACM,
2010, pp. 99–108.

[48] M. Al-Ameen, M. Hasan, and A. Hamid, “Making findbugs more
powerful,” in Software Engineering and Service Science (ICSESS), 2011
IEEE 2nd International Conference on, 2011, pp. 705–708.

[49] C. Le Goues and W. Weimer, “Measuring code quality to improve
specification mining,”Software Engineering, IEEE Transactions on,
vol. 38, pp. 175–190, 2012.

[50] P. Anderson, “Measuring the value of static-analysis tool deployments,”
Security Privacy, IEEE, vol. 10, pp. 40–47, 2012.

[51] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of bug fixes,”
in Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, ser. SIGSOFT’06/FSE-14, 2006,
pp. 35–45.

[52] C. Cifuentes and B. Scholz, “Parfait: designing a scalable bug checker,”
in Proceedings of the 2008 workshop on Static analysis, ser. SAW’08,
2008, pp. 4–11.

[53] Z. Ding, H. Wang, and L. Ling, “Practical strategies to improve test
efficiency,” Tsinghua Science and Technology, vol. 12, pp. 250–254,
2007.

[54] V. Pessanha, R. J. Dias, J. a. M. Lourenço, E. Farchi, andD. Sousa,
“Practical verification of high-level dataraces in transactional memory
programs,” inProceedings of the Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging, ser. PADTAD’11. New
York, NY, USA: ACM, 2011, pp. 26–34.

[55] S. Heckman and L. Williams, “On establishing a benchmark for eval-
uating static analysis alert prioritization and classification techniques,”
in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, ser. ESEM’08, 2008,
pp. 41–50.

[56] S. Kim and M. D. Ernst, “Prioritizing warning categories by analyzing
software history,” in Proc. of Int’l Workshop on Mining Software
Repositories (MSR’2007, 2007, p. 27.

[57] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis,“Residual
investigation: predictive and precise bug detection,” inProceedings of
the 2012 International Symposium on Software Testing and Analysis,
ser. ISSTA’12. New York, NY, USA: ACM, 2012, pp. 298–308.

[58] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan, B.Alpern, R. D.
Johnson, A. Kershenbaum, and L. Koved, “Saber: smart analysis based
error reduction,”SIGSOFT Softw. Eng. Notes, vol. 29, pp. 243–251,
2004.

[59] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang, “Sound and precise analysis
of parallel programs through schedule specialization,” inProceedings of
the 33rd ACM SIGPLAN conference on Programming Language Design
and Implementation, ser. PLDI’12. New York, NY, USA: ACM, 2012,
pp. 205–216.

[60] D. Babíc, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” inProceedings of the
2011 International Symposium on Software Testing and Analysis, ser.
ISSTA’11, New York, NY, USA, 2011, pp. 12–22.

[61] W. Han, M. Ren, S. Tian, L. Ding, and Y. He, “Static analysis of format
string vulnerabilities,” inSoftware and Network Engineering (SSNE),
2011 First ACIS International Symposium on, 2011, pp. 122–127.

[62] W. H. K. Bester, C. P. Inggs, and W. C. Visser, “Test-casegeneration and
bug-finding through symbolic execution,” inProceedings of the South
African Institute for Computer Scientists and InformationTechnologists
Conference, ser. SAICSIT’12. New York, NY, USA: ACM, 2012, pp.
1–9.

[63] A. Avancini and M. Ceccato, “Towards security testing with taint
analysis and genetic algorithms,” inProceedings of the 2010 ICSE
Workshop on Software Engineering for Secure Systems, ser. SESS’10.
New York, NY, USA: ACM, 2010, pp. 65–71.

[64] S. Keul, “Tuning static data race analysis for automotive control soft-
ware,” in Source Code Analysis and Manipulation (SCAM), 2011 11th
IEEE International Working Conference on, 2011, pp. 45–54.

[65] N. Ayewah and W. Pugh, “Using checklists to review static analysis
warnings,” inProceedings of the 2nd International Workshop on Defects
in Large Software Systems: Held in conjunction with the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2009), ser. DEFECTS’09. New York, NY, USA: ACM, 2009, pp.
11–15.

[66] J. Lawall, J. Brunel, N. Palix, R. Hansen, H. Stuart, andG. Muller,
“Wysiwib: A declarative approach to finding api protocols and bugs
in linux code,” in Dependable Systems Networks, 2009. DSN ’09.
IEEE/IFIP International Conference on, 2009, pp. 43–52.

[67] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,” inStatic Analysis,
ser. Lecture Notes in Computer Science, R. Cousot, Ed. Springer Berlin
Heidelberg, 2003, vol. 2694.

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

	Introduction
	Background
	Research Questions
	Search Strategy, Data Sources and Study Selection
	black Quality Assessment Strategy and Classification of Selected Studies
	Data Extraction and Mapping Processes

	Main Findings
	Answer to RQ1 – Tools and Approaches
	Answer to RQ2 – The types of false positive errors
	Answer to RQ3 – Application of Static Analysis Tools

	Final Considerations
	References

