ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Static Analysis Techniques and Tools: A Systematic
Mapping Study

Vinicius Rafael Lobo de Mendonca Céssio Leonardo Rodrigues
Instituto de Informatica Instituto de Informatica
Universidade Federal de Goias, UFG Universidade Federal de Goias, UFG
Goiania-GO, Brazil Goiania-GO, Brazil
e-mail: viniciusmendonca@inf.ufg.br e-mail: cassio@inf.ufg.br
Fabrizzio Alphonsus A. de M. N. Soares Auri Marcelo Rizzo Vincenzi
Instituto de Informatica Instituto de Informatica
Universidade Federal de Goias, UFG Universidade Federal de Goias, UFG
Goiania-GO, Brazil Goiania-GO, Brazil
e-mail: fabrizzio@inf.ufg.br e-mail: auri@inf.ufg.br

Abstract—The main disadvantage of static analysis tools is whereas developers are only interested in true errors,hwhic
their high false positive rates. False positives are errorthat either gre the ones that require correction. False positive desatsto
do not exist or do not Iead. to serious software failures. Thusthe an increase in process costs, because their detectionagiyusu
benefits of automated static analysis tools are reduced due the d by h int tion. Thi : finte th
need for manual interventions to assess true and false posi¢ one by human intervention. . IS consumes precious time tha
warnings. This paper presents a systematic mapping study to could be used for the correction of real faults [5]. Regassile
identify current state-of-the-art static analysis techngues and of such disadvantage, static analysis tools are very useful
tools as well as the main approaches that have been developedfor carrying out initial verification and validation actiigs
to mitigate false positives. compared to other quality assurance procedures, es|yesie|

to their low implementation cost.

Keywords-automatic static analysis; false positive; systematic We conducted a Systematic Mapping Study (SMS) of static
mapping study. analysis techniques and tools to investigate how they avoid
false positives. A comprehensive data extraction proceds a
classification of the primary studies provided answers to ou

There are two Verification and Validation (V&V) ap-research questions. The remaining of this paper is orgadmize
proaches: dynamic and static [1]. The first approach is chésllows: Section Il describes the methodology used to cahdu
acterized by software implementation and defect detectithie systematic mapping and shows the results obtained n eac
through assessment of program outputs, which is similar phase. Section Ill reveals main results and answers to the
software testing. In the second approach, program exercistio research questions defined in Section Il. Finally, Sectin |
not required, and identification of potential faults is @adrout shows our conclusions and implications for future studies.
through evaluation of software source codes, design diagra
requirements, etc. Inspections and code reviews are types o Il. BACKGROUND
techniques used in static analysis but, in general, they areThis paper shows the development of a systematic map
performed by human. The focus of this work is the evaluatidsased on the process presented by Petersen [6]. It is cothpose
of techniques and tools used to perform automated staditthe following steps: i) definition of research questioiis,
analysis. analysis of relevant studies, iii) study selection, iv)\weyding

Automated static analysis vocabulary includes the foltgwi of abstracts, v) data extraction, and vi) mapping process
terms: false positives, true positives and false negativéslse (Figure 1). To increase the reliability of our proposed SMS,
positive occurs when a tool alerts to the presence of a n@ome of the guidelines provided by Kitchenham et al. [7] were
existent fault. A false negative occurs when a fault exists, followed, such as the use of control studies to assess search
it is not detected due to the fact that static analysis toms astring quality and Quality Assessment Strategy [8].
not perfectly accurate and may not detect all errors. Rinall)
true positive occurs when a tool produces a warning to indicd®: Résearch Questions
the presence of a real defect in the product under analysis. Our systematic mapping identifies relevant papers on static

Examples of automated static analysis tools are Findnalysis. We aim to understand the behaviour of automated
Bugs [2], PMD [3] and CheckStyle [4]. The disadvantage dftatic analysis tools as well as find out which of the proposed
these tools is that they produce a high rate of false positivenethods mitigate false positives, if any.

I. INTRODUCTION

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 72

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Process Steps Outcomes rate of primary studies (52%), followed by Engineering &Gje
(23%), IEEE (17%) and SpringerLink (8%). The main data
Definition of J retrieved from each primary study was stored using the JabRe
Research Questions | "] Study Scope tool [10] for further classification.
Conduction of |] All Papers TABLE |. CONTROL PAPERS
Research
/ # Title Citation | Consultation Databasg
. CA: Which Warnings Should [[11] ACM
Selection of Papers |- Relevant Papers Fix First?
CAs Finding Bugs is Easy [5] ACM
- CA3 Comparing Bug Finding [12] SpringerLink
Quality Assessment Tools with Reviews and
Strategy Tests
/ CA, | A Comparison of Bug| [13] IEEE
Keywording of — - Finding Tools for Java
Abstracts +» Classification Scheme CAs; | Static Code Analysis [14] EEE
Data Extraction |} g qiematic Map The inclusion criteria for this study are:
and Mapping Processep

_ _ . o ICy: Primary studies analysing the warnings emitted by
Figure 1. Steps of a Systematic Mapping Study - Adapted gtatic analysis tools;

from [6]. « ICy: Primary studies proposing methods/tools to reduce
false positives;

ICs: Primary studies comparing static analysis

. L]
Each question is answered according to the following crite- tools/methods:

ria: Population, Intervention, Control and Results. Thieeda) -
comparison is not applicable to this research, so it was not! Ne exclusion criteria are:
used. Information on each of them is found in [7]. Our researc « EC,: Primary studies on static analysis that do not assess

questions are: warnings or reduce false positives;
« RQ;: Which static analysis tools and approaches are usecd EC,: Primary studies that are repeated retrievals or con-
to reduce false positives? tain a maximum of two pages;
« RQ:: Which types of warnings are emitted by the tools « EC;: Primary studies that cannot be accessed,;
and which static analysis methods are employed? « EC,: Primary studies that do not use static analysis;
« RQs: Should various static analysis techniques be useds ECs: Primary studies that are not written in English or
in combination to reduce false positives? Portuguese.
B. Search Strategy, Data Sources and Study Selection The primary studies underwent two other stages of selection

{8 the second stage, ECEGC; and EG were applied. This

operate upon scientific digital libraries for the selectioh action er_1$ured asigqificant re_duction in the numberof sty

primary studies. The digital libraries selected were: ACI\/I"lfter which 270 studies remained. In the third and last stage
lg’ach study’s title and abstract were assessed by applying EC

IEEE, Engineering Village (Compendex) and SpringerLin . i .
The search string presented in Figure 2 was applied to sea?m _EQ’ e"m'f“"?ted respectively 40% a_”d 33% of the primary
gles, remaining 64 papers for quality assessment gyrate

engines by using the advanced search mechanism and, in sg; e 3)
cases, it was tailored for a specific search engine. The pap pgu ’
used as controls are listed in Table |, it was developed from
generic terms found in the control articles used. Statidysig| | 1st phasds, 'dentification of relevant studies | o) ¢

P | for database searching
does not have a broad vocabulary, similar terms are usualy

The search strategy involved the creation of a string

found in papers, resulting in small search string. The ganer v
search string is as follows: ond Phasds] EXclusion of primary studies after | [[*
application of the exclusion criteria

((static analysis OR bug finding OR static code analysis OR Ifiig
OR analysis static) AND (false positive OR warnings))

A 4

Exclusion of primary studies after
. . 3rd Phasef-» . £ titl d ab 64
Figure 2. The general search string. review of title and abstract
. . . v
After excluding control articles and their repeated reils, ath Phasdsl Quality assessment strate N
the string used in databases returned 615 primary studigs, Y o

all of them catalogued in a specialized tool, named State of
the Art through Systematic Review (StArt) [9]. The results
extracted from StArt revealed that ACM retrieved the highes

Figure 3. Four stages for selection of primary studies

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 73

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

C. Quality Assessment Strategy and Classification of @elect tages of each technique aiming at false positive mitiga-
Studies tion;

Technique (T): A primary study that aims to find a
solution to a specific problem [15];

Method (M): A primary study that searches for a general

After application of the previous steps, 64 papers were
selected. Aiming at increasing and ensuring the quality of_
the developed work, we decided to assess the quality of solution to a problem [15].

the selected primary studies based on the criteria created bTh hird ¢l . lated to fal . |
Dyba and Dingsgyr [8]. These criteria are composed of eleven e third class is related to false positive errors. It was

guestion but we use only eight since three of them are out ?veloped to identify the primary focus of our study. Errors

the scope of our work (questions 5, 6 and 9). Information S/Here classified as interface fault, data fault, cosmetidt,fau
' ' %itialization fault, control fault, and computation faullhis
Cl

each of them is found in [8]. It was assigned 1 when tH e I

primary study satisfies the criterion and 0 otherwise. Qleser ass}!flt(:jatlon wgsfcreat(_ad by BaS|I|han<|j Selb]}/ f[16|]’ thene on
that criteria 1 and 2 are considered exclusion criteriaesinc 2" fiNd more information on cach class of fau t owever,
primary study not satisfying them implies it should be dregp most of the 64 selected studies mention the false positives

of. Table Il presents the final results of the quality assesdm generated by static analysis tO(_)IS n a_general way. Th_us, a
Among 51 articles, 9 (17%) received the maximum sco ew error category was created: extensive study. The pyimar

(8) indicating that only a few number of primary studies ar.ﬁtl"dies that identify more than 10 error types were also

concerned to document the stages of the development of tH ﬁjqud n this category. StUd'.eS containing 2-9 defeatsaw
research. 90% of the primary studies collected data to answ ssified into several categories. Also, when more than one
the research question, but only 40% of the work are worriéjlffe(_zt of the same _type was (_jetect_ed, only one \.NOUId be
to validate the collected data, and 41% are worried to Sh&ﬁng!dered. M.OSt pnimary s}u;ﬂes aimed at reducing false
the results clearly. Observe that the lack of such inforomati positives of various types. This is a relevant result, beeahe

makes difficult to draw conclusions about these researasare’"'P0S€ of our systematic mapping is to provide an overview

Primary studies were classified into three classes, ide«itiﬁmc the research field.

after reading the 51 remaining papers: research type, approp. Data Extraction and Mapping Processes

type, and.types of false positive error.s.. The JabRef and spreadsheets were used in the remaining 51
In the first class, works were classified based on the typ§§mary studies to create a three-class classificatioares
of research:_validati_on research, e_valuation researdbtim_ type, error type, and approach type. Figure 4 shows that 25
proposal, philosophical papers, opinion papers and expegi ,t of 51 (49%) primary studies were classified as solution
papers. Information on each of them is found in [6]. Thgroposals. This indicates that many proposed new appreache
second class was defined to answer,RQherefore, a clas- o improvements for existing ones aimed at reducing false
sification scheme was developed based on the terminolqgysitive alerts emitted by static analysis tools. Howerene
used in the primary studies. The types of approaches idenhtify¢ them was classified as validation research, indicatirg th

were: comparative study, algorithm, new tool, improve 8@ {here is no experimental validation of the proposed appresic
tool, ranking error, hybrid approach, technique and method

A main approach type was defined for each primary study,| .,

which means that it may or may not contain features of other solution
.. proposal; 25

less relevant types of approaches. The characteristicaalf e | 2s

approach type are:

20

« Comparative Study (CS): A primary study that compares
static analysis approaches to identify cases in which| ;s | ;
application of an approach is better than another; papers; 11

o Algorithm (A): A primary study that proposes a new |1
algorithm that may or may not be used in combination

evaluation

with a static analysis tool to reduce false positives; > ;:per”l ohisophical:1
« New Tool (TL): A primary study that proposes a new tool | | | == ——

which may be more effective than existing tools or used
in combination with other tools to identify false positived-igure 4. The classification of selected papers in relation
not yet detected; research classes
o Improve Existing Tool (IT): A primary study that pro-
poses an improvement of an existing tool. For instance,Regarding the types of approaches identified, there were
a new bug pattern; a variety of proposed solutions to problems, mainly methods
« Ranking Error (RE): A primary study that proposes a ne{l8.91%) and new tools (16.21%), which are shown in Fig-
ranking or an improved technique to rank error reportsyre 5). This indicates that many researchers, who were not
o Hybrid Approach (HA): A primary study that combinessatisfied with existing tools, proposed new ones as well as
static and dynamic approaches to reduce the disadvg@netotypes to assist developers. Some works also presented

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 74

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE Il. RESULTS OF SYSTEMATIC MAPPING STUDY petter to use an open source tool or a commercial tool. Some
QUALITY EVALUATION AND THE AMOUNT OF THE FALSE 5uthors believe that the use of tools is not mutually exctusi
POSITIVES ACHIEVED IN EACH PRIMARY STUDY because if tool A finds more real faults of “null deference”
Paper [RE T AT [cOT RO Toc ToA TR w RS T [A [ere | than a tool B, but B is better than A on detecting real faults
B [T [T [1 [T T oo T 6 N [T 0% of “buffer overflow”, then the correct choice should be to
19] 1 1 1 1 1 1 1 1 8 S T 20%
o T T T T e T e T e T s T T TEamw | combine both tools taking the advantage of both. This siyate
2 T T Tt T T TP T s P s PREL | aims to potentiating the strengths of each tool, increatieg
| L LT o T T oo T s S TREL M amount of real defects found, and also the precision, becaus
o 2 11 otttz 1 o111 1161 ss[mM] ™ if more than one tool reports a same warning on the same
(A NS S A N S D S N N line, this may indicates that the probability of the warning
-ttt corresponds to a true positive is greater than the one egport
ST T T T T Tt s tw—m—| by asingle tool.
o S B S St o The collected data indicate that 16.21% of the papers
[136] 1 1 1 1 0 0 1 0 5 S T 15%
T T T T T T T T T T [T [T T [8 5 [T propose a new static analysis tool, the majority without
38] 1 1 1 1 0 0 0 1 5 S IT BCI 0%
e T T T T o T T T oo T 5 s [T R any comparison with other existing tool to demonstrate the
40] 1 1 1 1 1 1 1 1 8 S IT IINC . .
G S B S S S S S B S =17 effectiveness of the proposed approach. From this pergenta
@ T T o oo s e me 1 just 25% seek to mitigate defects in a comprehensive way, the
N N S A S N 1~ other 75% remaining seek to reduce false positive of a specifi
4 S S S S = 1 class. This large concentration of new tools with a focus on
L S S S S some specific defect demonstrates a possible deficiency of
3 S N N A cs existing tools for detecting such defects. The main defects
N Y S Y N N cs found are “data fault” and “initialization fault” represtmg
e s e together 50% of the works proposed of improved tool.
S ——— e There are also 12.16% of the studies which present hybrid
e T s s eows] techniques by combining dynamic and static analysis. Acor
o T T T ot v o+t <+ teies] ing to Aggarwal and Jalote [45], IT community believes that
BT T+ T+ oo+ = Tm]m] the static and dynamic approaches are complementaryc Stati
[65] 1 1 1 1 1 1 0 0 6 S HA IINC - -
G T T [T T T [T [T [T [0 1T [7 [S T F] I analyzers are faster and simpler to use than dynamic ones.
67] 1 1 0 1 1 0 0 0 4 S HA IINC
IS S 0 N 3 -2 A N ; Moreover, they also help to identify problems earlier in the
[Acronyms] H
—— e — development process, when the cost to correct them is lower
Al: AIM RS: RESULT C: CONCURRENCE 1 i
CO: CONTEXT TFP: TYPE OF FALSE POSITIVE IB: INTEGER BUG bUt,-In general! static analy_zers generate |arge amourfiassef)
DC: DATA COLLECTION FPR, PALSE POSITIVE RATE Re Bamamace % | positives and false negatives. On the other hand, dynamic
DA: DATA ANALYSIS S: SEVERAL BCI: BEST CASE IS s
FI: FINDINGS ND: NULL DEFERENCE IINC: T IS NOT CLEAR analyzers are accurate and generate few false positivés, bu

to test all possible conditions in a program with thousarfds o
line of code is practically impossible. During the systeimat
improvements for the FindBugs tool [2], which is used fomapping were found works which use both approaches in a
static analysis of Java programs. Most primary studies estggcomplementary way to reduce the drawbacks of each other.
ways to mitigate false positives of various types (Figure 5) Among the tools used or cited in the primary studies, those
The fact that a large number of research proposals focus tpat stand out are: FindBugs and Checkstyle. Both are used
the many kinds of errors exposed by static analysis cortebutogether with PMD by the quality platform SonarQube for the
to the provision of a variety of mitigation techniques. calculation of part of its static metrics, but SonarQubesdoe
A bubble chart was designed to display the intersectigibt seek to reduce false positives.
of two classes: approach type and types of false positives
(Figure 5). According to Petersen et al. [6], the bubble thdd- Answer to RQ— The types of false positive errors
was effective in the sense that it gave an overview of thewe also tried to identify specific classes of false positives
research field and produced a map of results. warnings but the majority of the works (33.78%) fell down in
the generic classification of false positives, i.e., theinfation
is not available. The fact that significant amount of work de-
In this section, we present the answers to the three proposetbps techniques or tools to mitigate various false paesitis
research questions based on the primary studies found. something negative demonstrating the existence of a laage g
in this research area to be filled. 20% of the proposed methods
A. Answer to RQ— Tools and Approaches provided generic methods which are palliative solutiors, n
With respect the tools, it can be observed that a significastlving the problem of the high rate of false positive efiitig
number of static analysis tools is used by researchersgtryin Table 1l shows a summary of the type of false positive,
to reduce false positives, i.e., there is not a consenstishiba the technique and the false positive rate of the 51 primary
tool A is better or worse than the tool B, or whether it istudies investigated. Excluding the comparative studiasdo

IIl. M AIN FINDINGS

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 75

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

5 9 12 13 4 9 14 7 TOTAL
—. / s o
33.78%Extensive Study / 4 \\ (;\l /;\‘ / 4\ @ (5) @ 25
LS L W I S Nt L
10.81% Computation Fault @ @ 1 @ 8
N N @ O O 17
22.97% Data Fault I 4) 1 / 2
@ @ s < & :< N o
16.21% Control Fault @ (3 —(3) 1 1
3) —(3) O—0O—O
2.70% Cosmetic Fault @ @ 1
1.35% Interface Faul @ 1
s
12.16% Initialization Fault @ { 4)‘ T @ @ @ 9
>
& S N o S > $*
& & & &0 %\ot" a‘;‘\ 5° @@
e&o ?g,g 1621% & o Y&Q* 4 e
") o, ;-
bl 12.16% & e o 18.91% Q‘_‘#}

{
156% o o)
675% 12.16%

9.45%

Figure 5. Bubble chart — Types of Approacheslypes of False Positives

not investigate the effectiveness of a specific approactqy 63here are several technical details to be overcome to ceeate
of the remaining works do not make clear how the proposetketa static analysis tool, such as, how to combine different
approach was efficient, they just mention that the falsetipesi warning’s prioritization classification in a single metaolo
rate was reduced without any evidences. But, how much is thew to manage different output formats; and so on.
reduction? Without this information, the proposed apphoac Rutar et al. [13] is an example of primary study which
has no change to be addopted on real software developmesds this approach. They utilizes tools in conjunction with
environments. Therefore, improve the way the experimenets applications of different sizes. Each tool performs a défé
conducted on these research area is of fundamental impertapalancing to equilibrate the real location of errors, thaeage

to provide such an evidences. ation of false positives and true positives and, consedyent

Maybe the real solution does not treats in reduce the rdtere is little overlap among the generated warnings. These
of false positives, but reducing the amount of certain tygfes different approaches of balancing can involve the negessit
false positives. Treating this problem broadly, your solut of using multiple tools in the verification of an application
may be far from being achieved. One approach might be Tten, Rutar et al. [13] suggested the development of a meta-
assign a weight or priority for each type of false positivapol, which combines the results of different tools for shamg
characteristic established in some bug-finding tools (Buugs, errors.
PMD, and Checkstyle are some of them).

In this manner, bugs with greater weight, hence higher
priority should be given greater attention and other bugh wi This paper showed the development of a systematic map-
lower priority can be observed or subsequently depending pimg study on static analysis approaches and tools aiming
how much low is your priority should be ignored. Currentlyat reducing the number of false positives generated. After
we live in a scenario that programs are getting ever largéne selection of 51 studies, the mapping combined protocol
exceeding millions of line of code, so the task of analyzimg t processes developed by Petersen et al. [6] and Kitchenham et
warnings emitted by bug finding tools, should be performea. [7]. The selected works provided a variety of static gsial
in a smarter way, reducing the human effort and time on thégproaches, including proposals for improving existinglgo
activity. To do this, we think an important step is to valeriz FindBugs stands out in the sense that many primary studies
the types of false positives but, among existing tools,gher not only use it, but also discuss how it may be improved.
no consensus between the weight or priority, and similar orAmong the retrieved studies, there was a lack of works on
identical bugs may have different values in different tools the types of false positive errors and the tools that geeerat
them. This kind of research would help developers idenkigy t
tools that best serve their needs. The mapping also revealed

The answer to reduce false positives rate might be resunstddies that use hybrid approaches, which combine static an
in one word: combine. It is not necessary to create somethidgnamic analyses techniques. Furthermore, a combinafion o
new or improve something that already exists, but the gjyatedifferent static analysis approaches proved more effictesnt
should be to combine static analysis tools and/or dynantleeir isolated use.
and static tools and to conduct significant empirical steiiie =~ Based on the mapping results and due to a lack of validation
identify the best combination of tools to reduce drawbacls aresearch on the subject, we propose a large-scale expé¢aimen
to increase benefits. Unfortunately, the task is not so easg s study aiming at finding answers to open questions. This would

IV. FINAL CONSIDERATIONS

C. Answer to R@Q— Application of Static Analysis Tools

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 76

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

contribute to advancements in the use of static analysis top19]
in the early stages of the development cycle, as well as
identification of the types of defects that should be treated
by other verification and validation techniques. Moreotlee, [20]
development of a methodology for combining static analysis
approaches and tools is also recommended for future résealt!]

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informatica
— INF/UFG, Coordenacéo de Aperfeicoamento de Pessoall¢f
Nivel Superior — CAPES - Brasil, and Fundacao de Amparo a
Pesquisa do Estado de Goias — FAPEG — Brasil, which suppesi

this work.
[24]
REFERENCES

S. Melnikoff, R. Arakaki, and E. de An-
drade Barbosa, Software Engineering ADDISON WESLEY

BRA, 2008, [retrieved: Oct, 2013]. [Online]. Available: [25]
http://books.google.com.br/books?id=iflYOgAACAAJ
FindBugs, [retrieved: Oct.,, 2013]. [Online].
http://findbugs.sourceforge.net/

PMD, [retrieved: Oct., 2013]. [Online]. Available: prrburceforge.net/
CheckStyle, [retrieved: Oct., 2013]. [Online]. Avdile:
http://checkstyle.sourceforge.net

D. Hovemeyer and W. Pugh, “Finding bugs is easy{GPLAN Not.
vol. 39, no. 12, pp. 92-106, 2004.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Sysitic map-
ping studies in software engineering,” I2th International Conference [27]
on Evaluation and Assessment in Software Engineesiny 17, 2008, (28]
p. 1.

B. Kitchenham and S. Charters, “Guidelines for perfarghSystematic
Literature Reviews in Software Engineering,” Keele Unsisr and
Durham University Joint Report, Tech. Rep. EBSE 2007-0@D72

T. D. A& and T. D. Ayyr, “Empirical studies of agile software devel-[29]
opment: A systematic reviewnformation and Software Technolagy

vol. 50, pp. 833-859, 2008.

[1] 1. Sommerville,
[2] Availabl

(3]
(4]

(5]
(6]

[26]

(7]

(8]

[9] StArt, [retrieved: Oct., 2013]. [Online]. Available:
http://lapes.dc.ufscar.br/tools/start-tool [30]
[10] JabRef, [retrieved: Oct., 2013]. [Online]. Available

http://jabref.sourceforge.net/

S. Kim and M. D. Ernst, “Which warnings should i fix firstah
Proceedings of the the 6th joint meeting of the Europeanwsoé
engineering conference and the ACM SIGSOFT symposium on TBe]
foundations of software engineeringer. ESEC-FSE'07. New York,

NY, USA: ACM, 2007, pp. 45-54.

S. Wagner, J. Jurjens, C. Koller, and P. Trischberg€priparing bug
finding tools with reviews and tests,” iRroceedings of the 17th IFIP (3]
TC6/WG 6.1 international conference on Testing of Comnatinig
Systemsser. TestCom’05. Berlin, Heidelberg: Springer-Verlagp2,

N. Rutar, C. B. Almazan, and J. S. Foster, “A comparisbhug finding

tools for java,” in Proceedings of the 15th International Symposium
on Software Reliability Engineeringer. ISSRE’'04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 245-256.

P. Louridas, “Static code analysisSoftware, IEEEvol. 23, no. 4, pp.
58-61, 2006.

L. Nascimento, D. Viana, P. Silveira Neto, D. Martins, Garcia, and
S. Meira, “A systematic mapping study on domain-specifigleayges,’
in ICSEA’12, The Seventh International Conference on Softvizangi-
neering Advance2012, pp. 179-187.

V. Basili and R. Selby, “Comparing the effectivenesssoftware testing
strategies,”Software Engineering, |IEEE Transactions, orol. SE-13,
no. 12, pp. 1278-1296, 1987.

M. G. Nanda and S. Sinha, “Accurate interprocedural-dateference [37]
analysis for java,” inProceedings of the 31st International Conference
on Software Engineeringser. ICSE'09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 133-143.

P. Emanuelsson and U. Nilsson, “A comparative studydfistrial static
analysis tools,Electron. Notes Theor. Comput. Saiol. 217, pp. 5-21,
Jul. 2008.

[11]

[12]

[13]

[14] [34]
[15] [35]

[16] [36]

[17]

[18] [38]

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

Lucia, D. Lo, L. Jiang, and A. Budi, “Active refinement aflone
anomaly reports,” irProceedings of the 2012 International Conference
on Software Engineeringser. ICSE’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 397-407.

S. S. Heckman, “Adaptively ranking alerts generateahfrautomated
static analysis,'Crossroadsvol. 14, no. 1, pp. 7:1-7:11, Dec. 2007.
S. Heckman and L. Williams, “A model building process fdentifying
actionable static analysis alerts,” Proceedings of the 2009 Interna-
tional Conference on Software Testing Verification anddaion ser.
ICST'09. Washington, DC, USA: IEEE Computer Society, 2008,
161-170.

A. Vetro, M. Morisio, and M. Torchiano, “An empirical lidation of
findbugs issues related to defects,” Durham University -yGlellege,
Durham, Apr., pp. 144-153.

E. Bodden and K. Havelund, “Aspect-oriented race d&tacin java,”
IEEE Trans. Softw. Engvol. 36, no. 4, pp. 509-527, Jul. 2010.

G. Liang, L. Wu, Q. Wu, Q. Wang, T. Xie, and H. Mei, “Autoria
construction of an effective training set for prioritizirgatic analysis
warnings,” inProceedings of the IEEE/ACM international conference on
Automated software engineeringer. ASE’10. New York, NY, USA:
ACM, 2010, pp. 93-102.

S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, ttatic
identification of bug-introducing changes,” Proceedings of the 21st
IEEE/ACM International Conference on Automated Softwangiieer-
ing, ser. ASE’'06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 81-90.

P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “Brick: A bina
tool for run-time detecting and locating integer-basednetdbility,”

in Availability, Reliability and Security, 2009. ARES’09tdmational
Conference on2009, pp. 208-215.

D. Babi? and A. J. Hu, “Calysto: Scalable and precisemrotéd static
checking,” 2008.

C. Csallner and Y. Smaragdakis, “Check 'n’ crash: camig static
checking and testing,” ifProceedings of the 27th international confer-
ence on Software engineeringer. ICSE’'05. New York, NY, USA:
ACM, 2005, pp. 422-431.

A. Fehnker, R. Huuck, and S. Seefried, “Concurrencyngositionality,
and correctness,” D. Dams, U. Hannemann, and M. Steffen, Eds
Springer-Verlag, 2010, ch. Counterexample guided pathiatézh for
static program analysis, pp. 322-341.

F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankararamay, N. Maeda,
H. Tokuoka, T. Imoto, and Y. Miyazaki, “Dc2: A framework for
scalable, scope-bounded software verification,’Aitomated Software
Engineering (ASE), 2011 26th IEEE/ACM International Coerfiee on
2011, pp. 133-142.

S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noisedefect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineeringser. ICSE '11. New York, NY, USA: ACM,
2011, pp. 481-490.

S. Lu, S. Park, and Y. Zhou, “Detecting concurrency bfigen the
perspectives of synchronization intention®arallel and Distributed
Systems, IEEE Transactions,oml. 23, no. 6, pp. 1060-1072, 2012.
A. Tomb and C. Flanagan, “Detecting inconsistenciea universal
reachability analysis,” inrProceedings of the 2012 International Sym-
posium on Software Testing and Analysier. ISSTA'12. New York,
NY, USA: ACM, 2012, pp. 287-297.

A. C. Nguyen and S.-C. Khoo, “Discovering complete aplies with
mutation testing,” inMining Software Repositories (MSR), 2012 9th
IEEE Working Conference 92012, pp. 151-160.

J. Hoenicke, K. R. Leino, A. Podelski, M. Schéf, and T.ed/i“Doomed
program points,"Form. Methods Syst. Desvol. 37, no. 2-3, pp. 171—
199, Dec. 2010.

C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crastenybrid analysis
tool for bug finding,”ACM Trans. Softw. Eng. Methodoliol. 17, no. 2,
pp. 8:1-8:37, May 2008.

B. Chimdyalwar and S. Kumar, “Effective false positifitering for
evolving software,” inrProceedings of the 4th India Software Engineering
Conferenceser. ISEC'11. New York, NY, USA: ACM, 2011, pp. 103—
106.

H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective reraaking for
findbugs,” inSoftware Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference p2011, pp. 299-308.

7

http://books.google.com.br/books?id=ifIYOgAACAAJ
http://findbugs.sourceforge.net/
pmd.sourceforge.net/
http://checkstyle.sourceforge.net
http://lapes.dc.ufscar.br/tools/start-tool
http://jabref.sourceforge.net/

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Copyright (c) IARIA, 2013.

A. Shi and G. Naumovich, “Field escape analysis for datafidentiality
in java components,” isoftware Engineering Conference, 2007. APSEC
2007. 14th Asia-Pacifjc2007, pp. 143-150.

Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering falsdaems of
buffer overflow analysis using smt solversjf. Softw. Technal.vol. 52,
no. 2, pp. 210-219, Feb. 2010.

E. Bodden, P. Lam, and L. Hendren, “Finding programmimgors
earlier by evaluating runtime monitors ahead-of-time,”Aroceedings
of the 16th ACM SIGSOFT International Symposium on Fouadatof

software engineeringser. SIGSOFT'08/FSE-16. New York, NY, USA: [61]

ACM, 2008, pp. 36-47.
F. Otto and T. Moschny, “Finding synchronization dégec¢n java

programs: extended static analyses and code pattern®toiceedings [62]

of the 1st international workshop on Multicore software ieegring
ser. IWMSE’'08. New York, NY, USA: ACM, 2008, pp. 41-46.

Q. Chen, L. Wang, and Z. Yang, “Heat: An integrated staind
dynamic approach for thread escape analysis,Computer Software
and Applications Conference, 2009. COMPSAC’09. 33rd AhtiiaE
International vol. 1, 2009, pp. 142-147.

A. Shi and G. Naumovich, “Improving data integrity wita java
mutability analysis.” inAPSEC
135-142.

A. Aggarwal and P. Jalote, “Integrating static and dyi@ analysis
for detecting vulnerabilities,” inComputer Software and Applications
Conference, 2006. COMPSAC'06. 30th Annual Internationall. 1,
2006, pp. 343-350.

D. Kong, Q. Zheng, C. Chen, J. Shuai, and M. Zhu, “Isa: are®
code static vulnerability detection system based on dasiorfilf in
Proceedings of the 2nd international conference on Scalatfbrmation
systemsser. InfoScale '07, 2007, pp. 55:1-55:7.

M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidd a [66]

P. Balachandran, “Making defect-finding tools work for yoim, Pro-
ceedings of the 32nd ACM/IEEE International Conference aftware
Engineering - Volume ,2ser. ICSE’10. New York, NY, USA: ACM,

2010, pp. 99-108. [67

M. Al-Ameen, M. Hasan, and A. Hamid, “Making findbugs reor
powerful,” in Software Engineering and Service Science (ICSESS), 2011
IEEE 2nd International Conference p@011, pp. 705-708.

C. Le Goues and W. Weimer, “Measuring code quality to riove
specification mining,” Software Engineering, |IEEE Transactions,on
vol. 38, pp. 175-190, 2012.

P. Anderson, “Measuring the value of static-analysisl leployments,”
Security Privacy, |IEEEvol. 10, pp. 40-47, 2012.

S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories o lixes,”
in Proceedings of the 14th ACM SIGSOFT international symposia
Foundations of software engineeringer. SIGSOFT'06/FSE-14, 2006,
pp. 35-45.

C. Cifuentes and B. Scholz, “Parfait: designing a dulaldug checker,”
in Proceedings of the 2008 workshop on Static analysis. SAW’'08,
2008, pp. 4-11.

Z. Ding, H. Wang, and L. Ling, “Practical strategies tmgrove test
efficiency,” Tsinghua Science and Technolpgiol. 12, pp. 250-254,
2007.

V. Pessanha, R. J. Dias, J. a. M. Lourencgo, E. Farchi, Bn&ousa,
“Practical verification of high-level dataraces in trartgatal memory
programs,” inProceedings of the Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debuggisgr. PADTAD'11. New
York, NY, USA: ACM, 2011, pp. 26-34.

S. Heckman and L. Williams, “On establishing a benchofar eval-
uating static analysis alert prioritization and classtf@a techniques,”
in Proceedings of the Second ACM-IEEE international symmposin
Empirical software engineering and measuremeetr. ESEM'08, 2008,
pp. 41-50.

S. Kim and M. D. Ernst, “Prioritizing warning categosidy analyzing
software history,” inProc. of Intl Workshop on Mining Software
Repositories (MSR’20022007, p. 27.

K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakigesidual
investigation: predictive and precise bug detection,Pioceedings of
the 2012 International Symposium on Software Testing aralyAis
ser. ISSTA12. New York, NY, USA: ACM, 2012, pp. 298-308.

D. Reimer, E. Schonberg, K. Srinivas, H. SrinivasanAtpern, R. D.
Johnson, A. Kershenbaum, and L. Koved, “Saber: smart anabigsed
error reduction,”SIGSOFT Softw. Eng. Notesol. 29, pp. 243-251,
2004.

ISBN: 978-1-61208-304-9

[60]

[63]

IEEE Computer Society, 2007, pp.
[64]

[65]

[59] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang, “Sound and meeinalysis

of parallel programs through schedule specializationPiaceedings of
the 33rd ACM SIGPLAN conference on Programming LanguagégbDes
and Implementationser. PLDI'12. New York, NY, USA: ACM, 2012,
pp. 205-216.

D. Babi, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” Froceedings of the
2011 International Symposium on Software Testing and Aisalger.
ISSTA'11, New York, NY, USA, 2011, pp. 12-22.

W. Han, M. Ren, S. Tian, L. Ding, and Y. He, “Static anadyef format
string vulnerabilities,” inSoftware and Network Engineering (SSNE),
2011 First ACIS International Symposium, @011, pp. 122-127.

W. H. K. Bester, C. P. Inggs, and W. C. Visser, “Test-cgsaeration and
bug-finding through symbolic execution,” iRroceedings of the South
African Institute for Computer Scientists and Informatifechnologists
Conferenceser. SAICSIT'12. New York, NY, USA: ACM, 2012, pp.
1-9.

A. Avancini and M. Ceccato, “Towards security testingthwtaint
analysis and genetic algorithms,” iBroceedings of the 2010 ICSE
Workshop on Software Engineering for Secure Systeers SESS'10.
New York, NY, USA: ACM, 2010, pp. 65-71.

S. Keul, “Tuning static data race analysis for autor®tcontrol soft-
ware,” in Source Code Analysis and Manipulation (SCAM), 2011 11th
IEEE International Working Conference 0R011, pp. 45-54.

N. Ayewah and W. Pugh, “Using checklists to review stadinalysis
warnings,” inProceedings of the 2nd International Workshop on Defects
in Large Software Systems: Held in conjunction with the ACGISDFT
International Symposium on Software Testing and Analyk%STA
2009) ser. DEFECTS'09. New York, NY, USA: ACM, 2009, pp.
11-15.

J. Lawall, J. Brunel, N. Palix, R. Hansen, H. Stuart, a&d Muller,
“Wysiwib: A declarative approach to finding api protocolsdabugs

in linux code,” in Dependable Systems Networks, 2009. DSN '09.
IEEE/IFIP International Conference 9r2009, pp. 43-52.

T. Kremenek and D. Engler, “Z-ranking: Using statiatianalysis to
counter the impact of static analysis approximations Siatic Analysis
ser. Lecture Notes in Computer Science, R. Cousot, Ed. @priBerlin
Heidelberg, 2003, vol. 2694.

78

	Introduction
	Background
	Research Questions
	Search Strategy, Data Sources and Study Selection
	black Quality Assessment Strategy and Classification of Selected Studies
	Data Extraction and Mapping Processes

	Main Findings
	Answer to RQ1 – Tools and Approaches
	Answer to RQ2 – The types of false positive errors
	Answer to RQ3 – Application of Static Analysis Tools

	Final Considerations
	References

