
Measuring Design Quality of Service-Oriented Architectures

Based on Web Services

Michael Gebhart

Gebhart Quality Analysis (QA) 82 GmbH

Karlsruhe, Germany

michael.gebhart@qa82.de

Abstract—For achieving a flexible and maintainable IT,

companies increasingly design their IT architecture in a

service-oriented manner using web services. As the

effectiveness of this transition is influenced by the design of the

architecture, patterns and best-practices have been evolved

that are expected to be considered during the development

process. However, reviewing the architecture regarding these

guidelines is complex and time-consuming as a lot of

interpretation and calculation has to be performed. This article

introduces an approach for efficiently measuring design

quality with a focus on the service layer, thus the service

interface and service component design. To illustrate the

approach, services of an automotive scenario are developed

using a product that integrates the introduced concepts.

Keywords-soa; web service; design; quality; metrics

I. INTRODUCTION

The ability to realize new business requirements within
shortest time has become a critical success factor for
companies. This requires the IT to be both flexible and
maintainable, which constitute main drivers for service-
oriented architecture (SOA) projects [1][2]. While SOA does
not dictate any technology usage, in most cases web services
are applied as their standardization increases the flexibility
and maintainability of the architecture from a technical point
of view [3]. In this case, the web services are described using
the World Wide Web Consortium (W3C) standards Web
Services Description Language (WSDL) [4] and XML
Schema Definition (XSD) [5]. Furthermore, in some projects
the Service Component Architecture (SCA) [6] standardized
by the Organization for the Advancement of Structured
Information Standards (OASIS) is applied to describe the
component model.

In the past, many projects have shown that the success of
SOA projects is influenced by the design of the architecture
especially its service layer [7]. On a service layer the
architecture targets the design of service interfaces, service
components, and their dependencies. Decisions, such as the
grouping of operations to services and their granularity,
impact the achievement of the previously described goals.
For that reason in literature many best-practices and patterns
have been identified that describe how to design the service
layer. Furthermore, companies also establish standards or
design guidelines that represent internal experiences and
might be company-, industry-, or project-specific.

Developers are expected to consider these guidelines during
their work. This requires a solid understanding of the
guidelines and discipline to not overlook any application.
From a project management perspective it is also necessary
to ensure a consistent application of the guidelines.

In both cases, the review of developed web services
regarding these requirements is complex and time-
consuming. Besides the necessary interpretation and solid
understanding a manual analysis of every web service and its
relations to other services has to be performed. Furthermore,
every change requires a new analysis not only of the changed
service but – due to interdependencies – of all web services.
The necessary effort is costly and mostly cannot be asserted.
In addition, with increasing complexity of the architecture
measure mistakes become more likely due to the high
number of performed calculations. The result is that quality
analyses regarding guidelines are often neglected even
though they are relevant for the creation of a flexible and
maintainable architecture and the success of SOA projects.

This article introduces an approach to simplify those
analyses on a service layer by means of appropriate
automation or at least semi-automation. For that purpose,
existing best-practices and patterns for service interfaces and
service components are formalized so that no interpretation
effort is necessary and their compliance can be automatically
or at least semi-automatically verified. Even though the
internal behavior of a service component, such as its
implementation using object-oriented languages, influences
the quality of the architecture as a whole, in this article the
focus is on the service part represented by the service layer.
When designing a service-oriented architecture from a
strategic point of view, this is the first essential design task
that has to be performed. Previous work in the context of
service design metrics will serve as basis for this article. In
[8], Gebhart et al. introduced metrics for service designs
based on the Service oriented architecture Modeling
Language (SoaML) that represent design guidelines. These
metrics have been demonstrated by a case study in [9].
Combined with work that describes the relation between
SoaML and web services [10] service design metrics based
on SoaML are transferred to web services based on WSDL,
XSD, and SCA. As result, web services can be automatically
analyzed regarding wide-spread guidelines. Furthermore, the
methodology can be applied on any other company-,
industry-, or project-specific design guidelines.

504Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The concept is illustrated using a scenario in the context
of automotive manufacturing. In this case, the usage of
formalized guidelines helps to systematically design web
services and to coordinate several developers. Furthermore,
the concepts are integrated into the QA82 Analyzer as
product for analyzing software and data. The product enables
the automatic measurement of the design quality of the
created SOA, thus increases the efficiency.

The article is organized as follows: Section II introduces
existing guidelines for web services and their formalizations.
The scenario is introduced in Section III. In Section IV, the
services are designed using the formalized guidelines and our
product. Section V concludes this article and introduces
future research work.

II. BACKGROUND

This section describes guidelines for the design of
services in service-oriented architectures that will be
considered within the scenario. Furthermore, this work is
examined regarding the possibility to be efficiently measured
using tool support. The technologies of web services, such as
WSDL, XSD, and SCA are not further introduced in this
article. They are assumed to be well known.

The service design phase is an essential ingredient of
software service engineering that can be defined as the
“discipline for development and maintenance of SOA-
enabled applications” [11]. The service design phase
includes decisions about the interface of a certain service,
such as its grouping of operations, and its internal behavior.
As services constitute the building blocks of an SOA, they
determine its design. For services several best-practices and
patterns have been evolved as guidelines.

In [7] and [12], Erl describes numerous patterns for
services in particular web services. They have been derived
from experiences in real-world projects and provide valuable
hints for architects and developers. Nevertheless, all
guidelines are only textually describes. This results in
ambiguities and requires interpretation before using it in
concrete projects. This again may result in faulty
applications.

Similar to Erl, also Cohen [13] and Josuttis [14] focus on
patterns from a similar point of view. While the guidelines
are clearly motivated, their usage in projects requires
interpretation. Furthermore, due to the textual description
concrete artifacts cannot be checked against these guidelines
without manual effort.

A more academic approach is chosen in [15] and [16].
Perepletchikov et al. introduce metrics for quality attributes,
such as loose couplings. These metrics consider formalized
service designs independent from concrete technologies. The
essential benefit of this work is its ability to perform an
automatic measurement. However, the motivation of the
introduced metrics is not obvious. Work as introduced by Erl
and Josuttis is not reflected by the metrics. This is even not
possible as Perepletchikov et al. consider an abstract
formalization of services. Most of the aspects described by
best-practices refer to elements that are not part of this
formalization.

Similarly to Perepletchikov et al. also Hirzalla et al. [17]
and Choi et al. [18] introduce metrics for services. Also in
this work, the metrics are very abstract and cannot be
directly applied in projects. They do not represent best-
practices as introduced by Erl and Josuttis.

To fill this gap, in previous work we created a quality
model that combines best-practices as introduced by Erl et al.
with a formalization as used by Perepletchikov et al. [8]. The
quality model was aligned with the Service oriented
architecture Modeling Language (SoaML) [19] as profile for
the Unified Modeling Language (UML) [20] that is meant to
replace proprietary UML profiles for services, such as the
one developed by IBM [21][22][23]. As result of this work,
an SOA formalized using SoaML can be checked against
wide-spread guidelines. The usage of SoaML is explained in
[24][25] and a case study that applies the metrics is presented
in [9]. However, in most cases web services are created or
are already existent without a formalization based on
SoaML. Furthermore, some guidelines refer to elements that
are not part of a SoaML-based description. Thus, an
approach is necessary that is applicable on web services
directly.

In [10], it is shown how service designs based on SoaML
can be transformed into web services using the WSDL, XSD,
and SCA. This work was not necessarily created with quality
analysis in mind. However, it can be applied to transfer the
service design metrics based on SoaML to web services.

The summary of existing work shows, that a lot of good
work exists that focuses either on the description of best-
practices, patterns, design guidelines etc. for web services or
on a formalization of academic metrics. Whilst the former
are too abstract to be efficiently measured, the latter are too
academic to be comprehensible understandable and
motivated. For that reason we use the metrics introduced in
[8] that on the one hand represent best-practices and on the
other hand are formalized so that they can be automatically
measured. They are transformed so that they can be applied
on web services using the mapping rules described in [10].

III. SCENARIO

To illustrate the quality analysis of a service-oriented
architecture design, a scenario from automotive
manufacturing is chosen.

Figure 1. Participants and their relationships.

505Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

There is a product and quality manager who coordinates
two developers and in addition delivers reports to the
management and the customer. In some cases, the role of the
product and quality manager might also be fulfilled by an
architect, who is responsible for the design of the
architecture and its quality. Fig. 1 illustrates the participants
and their relationships.

According to this figure, the product and quality manager
has an interest in proving the high quality of the created
software. In this scenario, besides functional requirements
especially the architectural design is considered. So it is
necessary that he understands the meaning of high quality in
the context of service-oriented architecture design.
Furthermore, he is required to analyze software artifacts
regarding these quality requirements. To support this quality
assurance, this article shows how to analyze artifacts, such as
web service interfaces, regarding wide-spread best-practices
and guidelines for services.

The scenario begins with the development of a service
for the manufacturing of automobiles by the first developer.
An SCA Composite is created, which combines a service for
manufacturing automobiles and a service for filing
manufactured automobiles in the database. The artifacts are
filed in a shared Git repository. Fig. 2 illustrates the
composite using the graphical representation introduced in
the official SCA standard. In the scenario, originally a
proprietary tool is used that uses a different visualization.

Figure 2. Created SCA composite.

Starting with this SCA composite the product and quality
manager determines the quality of the architecture using the
approach introduced in the following section.

IV. MEASURING DESIGN QUALITY OF SERVICE-

ORIENTED ARCHITECTURES BASED ON WEB SERVICES

To determine the quality of software, one approach is to
refine the term quality until it can be measured. A wide-
spread quality model methodology is Factor, Criteria, Metric
(FCM) introduced by McCall et al. in [26]. According to this
methodology a factor is refined into more fine-grained
criteria that again are refined into quantifiable metrics.
Similar approaches use the equivalent terms quality
characteristics, quality sub-characteristics, and quality
indicators.

Correspondingly, applied on the design of service-
oriented architectures the term quality from a design

perspective has to be broken down into measurable aspects
that can be formalized by means of metrics. In [8], a quality
model has been created that enables the measurement or at
least systematic determination of best-practices and patterns
that have been identified as important for service-oriented
architectures. However, the quality model has been
formalized on basis of Service oriented architecture
Modeling Language (SoaML) as language to formalize the
architecture. When the product and quality manager of the
scenario in Section III tries to apply this quality model, the
usage of SoaML hampers the direct. As in the scenario other
technologies in particular WSDL, XSD, and SCA are used,
the metrics introduced in [8] cannot be applied without
additional effort. However, in [10], a mapping between
SoaML and web service technologies is described. The
combination of this work enables the transformation of
metrics onto web services so that they can be directly
applied. This application is shown next.

A. Application of Metrics

According to Gebhart et al. [8] in particularly four quality
sub-characteristics or criteria can be considered as relevant
for the design quality: Unique categorization, loose coupling,
discoverability, and autonomy. Even though this set of
quality characteristics is not expected to be complete it is a
good starting point to evaluate the design of a service-
oriented architecture and to illustrate the approach.

In this section, especially the unique categorization as
quality sub-characteristic is considered. This sub-
characteristic is comparable to the concept of cohesion in
object-oriented systems. It consists of four quality indicators
with metrics introduced in [8][27][28]. To illustrate the
approach, these metrics are mapped and applied to analyze
the service-oriented architecture design.

1) Division of Agnostic and Non-Agnostic
Functionality:

TABLE I. VARIABLES AND FUNCTIONS USED FOR DANF

Element Description and Mapping

DANF Division of Agnostic and Non-agnostic Functionality

s service: the considered service that is provided or
required

It is represented by a SCA Service or Reference element.

SI(s) Service Interface: service interface of the service s

It is represented by the WSDL document that describes

the SCA Service or Reference.

RI(si) Realized Interfaces: realized interfaces of the service

interface si.

It is represented by the WSDL PortType that includes
provided operations of the service.

O(i) Operations: operations within the interface i

The WSDL Operations within the identified WSDL

PortType are expected to be returned.

AF(o) Agnostic Functionality: operations providing agnostic
functionality out of the set of operations o

This information has to be determined by an IT expert. It
cannot be found within the web service technologies.

| o | Number of operations o

Manufacturing

Process

Manufacturing

Mediator Deliver

Mediator

Manufacturing

Construction

ManufacturedAutomobile

506Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

The background of this metric is that generic functionality
should be split from specific ones so that changes regarding
the specific operations do not affect the highly reused ones.
It has its origin in the patterns described by Erl [7].

 ()
| (((()))) |

| ((())) |
 

To apply this metric for the scenario, the functions and

variables have to be mapped onto elements within XSD,
WSDL, and SCA. Table I shows a brief introduction of the
element and afterwards a mapping. This mapping specifies
where to find this information.

As result a value of 0 or 1 is desired. These values mean
that the service operations provide only agnostic or only non-
agnostic functionality.

Based on this mapping information, the metric can be
applied for the Manufacturing service that is the SCA
Service within the SCA Composite. According to the metric,
in a first step the service interface has to be identified. This is
the WSDL file Manufacturing.wsdl. Next, the WSDL
PortType comprising the provided operations within the
WSDL is selected and finally, the operations themselves are
returned. Fig. 3 shows the proceeding.

 Figure 3. Determination of DANF metric.

After the relevant operations have been identified, the IT
quality manager has to decide whether these operations are
agnostic or non-agnostic. If he is not capable to answer these
questions, he has to ask the developers and estimate the
reusability of these operations. In this case, the quality
manager comes to the conclusion that the operation
“Manufacture” is non-agnostic as it is very specific and
cannot be used in other contexts. The operation
“getManufacturedAutomobiles” however is agnostic as it
provides functionality to request manufactured automobiles,
which can be reused in several scenarios. As result the metric
returns 0.5, which represents a suboptimal value.

2) Division of Business-Related and Technical
Functionality: A metric similar to DANF is DBTF that
targets the division of business and technical functionality.
It can be mapped in a similar way. To illustrate the approach
a more complex metric, the data superiority, is chosen next.

3) Data Superiority: This quality sub-characteristic
describes that a service that manages an entity is exclusively
responsible for managing it. The metric can be formalized
as follows. Most functions have already been described. The
others are explained in Table II.

 ()

||

 (((())))

 ((((()))))
||

| (((())))|
 

TABLE II. VARIABLES AND FUNCTIONS USED FOR DS

Element Description and Mapping

DS Data Superiority

M1 \ M2 Elements of set M1 without elements of set M2 or the
element M2

ALLS All existing services

Represented by all SCA Services

ME(o) Managed Entities: entities that are managed by

operations o

This information has to be determined by an IT expert. It

cannot be found within the web service technologies.

Figure 4. Determination of DS metric.

composite.xml

…

<service name="Manufacturing.service" ui:wsdlLocation="Manufacturing.wsdl">

<interface.wsdl

interface="http://xmlns.oracle.com/bpmn/bpmnProcess/Manufacturing#

wsdl.interface(ManufacturingPortType)"

…

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

<wsdl:operation name=„Manufacturing">

<wsdl:input message="tns:start"/>

</wsdl:operation>

<wsdl:operation name=„getManufacturedAutomobile">

<wsdl:input message="tns:getManufacturedAutomobileRequest"/>

<wsdl:output message="tns:getManufacturedAutomobileReponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

1

2

3

Dr. Michael Gebhart: QA82 Analyzer - Demonstration Video

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

<wsdl:operation name=„Manufacturing">

<wsdl:input message="tns:start"/>

</wsdl:operation>

<wsdl:operation name=„getManufacturedAutomobile">

<wsdl:input message="tns:getManufacturedAutomobileRequest"/>

<wsdl:output message="tns:getManufacturedAutomobileReponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

2

ManufacturedAutomobile.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturedAutomobilePortType">

<wsdl:operation name="get">

<wsdl:input message="tns:GetRequest"/>

<wsdl:output message="tns:GetResponse"/>

</wsdl:operation>

<wsdl:operation name="create">

<wsdl:input message="tns:CreateRequest"/>

<wsdl:output message="tns:CreateResponse"/>

</wsdl:operation>

<wsdl:operation name="delete">

<wsdl:input message="tns:DeleteRequest"/>

<wsdl:output message="tns:DeleteResponse"/>

</wsdl:operation>

<wsdl:operation name="update">

<wsdl:input message="tns:UpdateRequest"/>

<wsdl:output message="tns:UpdateResponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

Managed Entities

Manufactured Automobiles

1

Summarized

Manufactured Automobiles

2

Managed Entities

Manufactured Automobiles

6

Managed Entities

Manufactured Automobiles

5

Managed Entities

Manufactured Automobiles

4

Managed Entities

Manufactured Automobiles

3

2
Summarized

Manufactured Automobiles

7

507Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

To illustrate this metric we assume that the
ManufacturedAutomobile Reference within the SCA
Composite refers to a service described by the
ManufacturedAutomobile.wsdl and that no other services are
relevant for this metric.

To calculate the metric, the product and quality manager
has to consider the provided operations of the Manufacturing
service and of all other services, i.e., the
ManufacturedAutomobile service in this case. Afterwards,
he has to decide for each operation whether an entity is
managed by this one. Finally, he has to compare the set of
managed entities of the services to identify conflicts. Fig. 4
illustrates the proceeding for the Manufacturing service.
According to this figure all entities managed by the
Manufacturing service are not exclusively managed. The
Manufactured Automobile service that corresponds to an
entity service [1][7] manages manufactured automobiles too.
So from a data superiority perspective the Manufacturing
service is not ideal and should be revised.

4) Common Entity Usage: Finally the last quality
indicator of the unique categorization quality sub-
characteristic can be measured. According to the common
entity usage metric, all operations within a service should
work on the same entities. This guarantees that entities that
do not belong together are managed by different services. In
turn, the prior described data superiority ensures that
operations that manage the same entities are part of one
service.

 ()

|

|

(

 ((()))

 (
 ((())) (((())))

 (((())))
)

)

|

|

 | ((())) |



TABLE III. VARIABLES AND FUNCTIONS USED FOR CEU

Element Description and Mapping

CEU Common Entity Usage

CMP(o,
e1, e2)

Composition: biggest set of entities managed by
operations o out of e2 that depend on entitites e1

UE(o) Used Entities: entities that are used within operations o

as input

MOUE(o) Mostly Often Used Entities: entities that are mostly often
used within one operation out of operations o

OUE(o,
be)

Operations Using Entities: operations out of operations o
that only use entities out of be

This table shows that there is no explicit mapping to web

services necessary. All functions that refer to certain
elements within a technology have already been mapped by
the functions described in Table I and Table II.

Applied on the Manufacturing service the metric returns
the value 1 as all operations that manage entities manage the
same. This is also the case for the Manufactured Automobile
service. As this entity service provides Create, Read, Update,

Delete (CRUD) operations for the same entity, this metric is
also ideal for this service. If the Manufactured Automobile
service would also manage another entity, the CEU metric
would return a suboptimal value.

B. Integration into Scenario

Back in our scenario, the quality manager can use the
results to inform developers about the design weaknesses.
The usage of these metrics in a quality-oriented service
design process is illustrated in [29].

For example, the result of DANF shows that the two
provided service operations “Manufacture” and
“getManufacturedAutomobiles” should be separated into two
services. In addition, the result of the DS metric shows the
conflict between the operations provided by the
Manufactured Automobile service and the operation
“getManufacturedAutomobile” of the Manufacturing service.
Summarized, the operation “getManufacturedAutomobile”
should be deleted as it provides functionality that is also
offered by the Manufactured Automobile service. Service
consumers using this operation should switch to the
Manufactured Automobile Service.

In addition to the revision hints, the results of the metrics
can be used to deliver reports to the management and the
customer. For example the product and quality manager can
justify cost and investments into quality assurances.
Furthermore, he can prove the quality of the software by
means of objective criteria.

V. CONCLUSION AND OUTLOOK

In this article, an approach was illustrated to measure the
design quality of service-oriented architectures regarding
wide-spread best-practices and guidelines. For that purpose
an existing quality model that refers to SoaML as
formalization of a service-oriented architecture design was
chosen. By use of another work that describes the mapping
between SoaML and web service technologies, this quality
model was transferred onto WSDL, XSD, and SCA. By this
means the resulting quality model can be directly applied on
service-oriented architectures based on web services. The
approach demonstrated that for an efficient quality assurance
existing quality models should be mapped onto the used
technologies.

After an examination of existing work, a scenario from
automotive manufacturing was introduced. In this scenario, a
product and quality manager is responsible to ensure the
quality of the resulting architecture. Next, the mapped
quality model was applied to measure the design quality of
services in this scenario. The metrics mapped onto web
services enable the product and quality manager to identify
weaknesses in the current design and thus give the
developers hints about possible improvements. In addition,
the results can be used to deliver reports to the management
and the customer. The reports help to prove the high quality
and to justify investments in additional quality assurance
projects. Furthermore, developers can perform analyses by
themselves. The metrics reduce the additional effort to
interpret the textual descriptions. Furthermore, they directly
refer to concrete elements within the used technologies.

508Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

As part of our research work, we have created a mapping
for all metrics introduced in [8]. We also implemented this
quality model as part of the QA82 Analyzer [30]. Through
this both product and quality managers and developers can
automatically measure their service-oriented architecture
regarding the quality model. This further increases the
efficiency of the quality assurance process.

For the future, we plan to include further quality
characteristics both regarding service-oriented architectures
and related fields. First, we plan to adapt the approach to
analyze services based on REST as it is often applied today.
As REST does not prescribe certain interface formalization,
we assume that the adaptation will require using more
implementation-specific information. Second, we work on a
quality model for business process management (BPM) that
enables the determination of quality characteristics regarding
the functional quality of modeled business processes based
on the Business Process Model and Notation (BPMN) 2.0
[31]. This quality model is expected to be linked with the
experiences we gained with the quality model introduced in
this article. The results of this BPM quality model will be
published as well. Furthermore, it will be supported by our
quality analysis product. Finally, we aim to formalize the
described metrics in a technology-independent but
executable way. With languages, such as OCL [32] or
XQuery [33] it is possible to describe queries that refer to a
certain technology, such as UML or XML. We will examine
the applicability of these languages for our purposes.

REFERENCES

[1] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[2] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[3] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[4] W3C, “Web Services Description Language (WSDL)”, Version 1.1,
2001.

[5] W3C, “XML Schema Part 0: Primer Second Edition”, 2004.

[6] Open SOA (OSOA), “Service component architecture (SCA), sca
assembly model V1.00”, http://osoa.org/download/attachments/35/
SCA_AssemblyModel_V100.pdf, 2009. [accessed: January 04, 2011]

[7] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[8] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[9] M. Gebhart and S. Sejdovic, “Quality-oriented design of software
services in geographical information systems”, International Journal
on Advances in Software, 5(3&4), 2012, pp. 293-307.

[10] M. Gebhart and J. Bouras, “Mapping between service designs based
on soaml and web service implementation artifacts”, Seventh
International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, November 2012, pp. 260-266.

[11] W. van den Heuvel, O. Zimmermann, F. Leymann, P. Lago, I.
Schieferdecker, U. Zdun, and P. Avgeriou, „Software Service
Engineering: Tenets and Challenges”, 2009.

[12] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[13] S. Cohen, “Ontology and Taxonomy of Services in a Service-
Oriented Architecture”, Microsoft Architecture Journal, 2007.

[14] N. Josuttis, SOA in Practice, O'Reilly Media, 2007. ISBN 978-0-59-
652955-0.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[16] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[17] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[18] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[19] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.1, 2012.

[20] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[21] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[22] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[23] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: July 11, 2012]

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[25] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.
Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[26] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software
quality”, 1977.

[27] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[28] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth Internation Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[29] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[30] Gebhart Quality Analysis (QA) 82, QA82 Architecture Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

[31] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[32] Object Management Group, “Object constraint language”, Version
2.0, 2006.

[33] W3C, “XQuery 1.0: an XML query language (second edition)”,
Version 1.0, 2010.

509Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

