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Abstract—Renewable energy storage originating from solar en-
ergy is possible in an accumulator-bank, from where the demands
and utilization may be provided by robots. A novel optimal
route planning algorithm is proposed in this paper that is based
on the cooperation of the robots implemented as agents. The
interaction between the agent-robots is learned to enhancethe
stability of the system, and in such a way more efficient operation
can be achieved. A special model is developed for describing
the operation of the multi-agent system formed by the robots,
and the route planning algorithm determines the optimal route
considering the cooperation of the robots in special situations. The
operation and properties of the proposed algorithm is illustrated
using simple examples with robots in different conflict situations.

Keywords-cooperation; renewable energy; accumulator bank;
multi-agent system

I. I NTRODUCTION

Nowadays, all problems related to the application of re-
newable energy sources enjoy an increased attention and
popularity. Beside of their advantageous properties from en-
vironmental and sustainability point of view, these energy
sources suffer from limited and unpredictable availability. A
solar panel, for example, can produce enough energy during
the day, but during the night (or just on cloudy days) it proves
unusable. Therefore, a sufficient amount of electrical energy
storage capacity should be provided along with each renewable
energy source to ensure the availability of sufficient energy on
demand. One of the easiest ways is to use accumulators as
energy storage, but the price and the storage place they need
is too large compared to their capacity. If we would like to
store energy in large volumes, we would need to place the
accumulators in very large storage parks. The service of this
storage (accumulators out and to transport) is a big logistics
task. It is then very important to solve the problem of efficient
place utilization and the quick service. We developed a system
of self-service for an accumulator-bank. For this purpose self-
propelled robots are required which are able to transport the
accumulators, and can perform independent decision making
as well as reacting to certain environmental events. In such

a distributed setting, the cooperation among the robots may
significantly enhance the performance of the system.

The above accumulator-bank servicing problem is much
similar to some well investigated problems in traffic manage-
ment and control, and logistics. An important approach to solve
these problems is to usemulti-agenttechniques. A multi-agent
approach to design in the transportation domain is presented
in [4]. It presents three important instances for distributed
artificial intelligence techniques that proved to be usefulin
the transportation applications: cooperation among the agents,
task decomposition and allocation, and decentralized planning.
They can be used to obtain good initial solutions for complex
resource allocation problems. As another example, one can
consider real-time approaches to manage roadway network
congestion over time and space, that is a difficult problem. A
solution approach based on cooperative negotiation between
agents based on multi-agent principles is proposed in [1].

In one of our earlier works [8], we dealt also with au-
tonomous agents, as we considered such circumstances that
make autonomy important, such as extreme high or low
temperatures and closeness of dangerous materials. These
circumstances had the need of applying robots, they had to
solve their problems self-sufficiently, without any directhuman
intervention.

In the field of logistics, operations research approaches
deal with Vehicle Routing Problem (VRP) ([3], [7]) and its
solutions that help the companies in their logistic tasks aswell.
Because of the huge application area of VRP, lots of variants
of the problem have born. Some of them include additional
constraints (e.g., [9]), while other variants modify the basic
tasks (e.g., [5]). The cooperation of vehicles has proven tobe
useful in this problem class, too [2], where we proposed a
method of choosing the directions of the routes of the VRP
solution which has the best answer (the minimal extra route)
in case of an immediate event supposing cooperative agents.
As an immediate event may happen at different phases of the
completion of the transportation task, the event’s effect has to
be taken into account on average.

Usually, in a multi-agent system the agents have specific
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pre-defined abilities to perform a certain task. One of the
challenges of a multi-agent system is to develop agents with
the ability of learning from each others’ behavior. The aim of
this paper is to present an algorithm that allows autonomous
agents to use cooperation in conflict situations through com-
munication with other robots. The agents are not in interaction
with humans during operation.

The paper is organized as follows. First, we describe
the domain of the multi-agent system (Section 2). Then, we
introduce our algorithm that can be applied in the context of
the multi-robot system example (Section 3). The testing of the
algorithm is presented in Section 4. Section 5 concludes the
paper.

II. OPTIMAL ROUTE PLANNING IN THE
ACCUMULATOR-BANK

This section describes the simple model that is used to
design the route of the robots in the accumulator-bank.

A. Plan of routes

Let us divide the storage place into cells of equal size such
that a transport robot fits in them. It is very important that we
use the available place in the storage the best possible way.The
resulted matrix is used as a tool for describing the traffic of
the robots: they move from cell to cell to get from one place
to another. Obviously, if we use the smallest possible units,
then more condition examination and much more calculation
have to be performed. There is a trade-off between achieving
the best possible result and the efficiency of the algorithm.

Basic assumptions for the route planning algorithm are as
follows.

• The capacity of each robot is one unit as is the weight
and size of every accumulator, too.

• The orientation is based upon a grid of cells which
allows the robots to drive only among the neighboring
cells (but not diagonally). In every cell there is at most
one robot at a time.

• Every robot moves a unit distance in a unit time, i.e.
they move only to the closest neighboring cell. The
90 degrees turn takes a unit time, too.

• One accumulator fits into one storing cell of the
storage place.

B. Identification of the optimal route

The robots move along the cells of a grid between the
neighboring cells with a one cell per time unit velocity, andthe
90 degrees rotation takes a unit time, too. A widely-used path
search algorithm has been modified for the identification of the
optimal route. This is a popular version of Dijkstra’s graph-
based algorithm, that was developed by Hart et al. [6], where
they described how heuristic information from a problem
domain can be incorporated into a formal mathematical theory
of graph search and demonstrated an optimal property of a
class of search strategies. The algorithm stores the path length
from the starting point to the points of graph on the graph’s
points, that is used again when the recursive algorithm re-visits

this point. This re-visit is easily detectable, and the stored value
is used to prevent continued counting on the given branch
(because we found an existing shorter way) or we can stop
the run of the branch because at this point we have already
found a more efficient path.

The main modification is that we reduced the cost by
reducing the distance between cells. Because the turning of
robots requires time, too, we have to record from which
direction the robot arrived in to the examined cell and to which
direction it continued the search. We add the cost of every90

degrees turns made between cells as a unit virtual distance.
Another modification serves the route which makes traceability
easier: when we get a smaller value in a point than the former
ones and we overwrite until now the smallest approaching cost,
then we note it too, from where (from which direction) the
robot comes to a given point. So we can determine easier the
compliant route after the filling of a table.

Fig. 1 shows an example of the distance table with the
distances in the cells. The green cell is a start point, the blue
cell is an end point and the red cells mark obstacles (wall/rack).

Figure 1. Matrix-based orientation - the problem of listingall the routes

The pseudo code of the proposed basic route search algorithm
can be seen in Fig. 2.

The determination of the shortest route is happening back-
ward: it starts at the end point and determines the desired
route unanimously. For this purpose one has to record from
which cell the robot arrived (source cell) when the length of
the shortest route is modified. The easiest method for doing
this is to build a new data unit in the cells of matrix (source
cell). With this we have a structure similar to a chained list.

It occurs often that there are some routes with equal length
between two given points. It is advisable to process each of
them, so a crisis situation could be avoided in the future. The
routes of equal length present a problem, as the source cell is
not enough to store a single value in the cells when the robot
can arrive to a cell from several sides after driving the same
route length. In order to process the case of equal route lengths
properly, it is very important that we consider the following.

• If the robot arrives in a cell and the covered distance
is less than the smallest distance until now, we have
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Figure 2. Pseudo code of the proposed basic route search algorithm

to cancel the list of source cells (this information is
not relevant).

• If the values of the two distances are equal we have
to record it in the source cell to the list, making sure
not to overwrite the past values.

C. Constructing the list of all routes

The specification of every optimal route and taking into
consideration the turning cost presents a problem when con-
structing the list of all routes. For clarity, let us consider the
example in Fig. 1. The values in the cells mean the distance
values and these are determined by the above algorithm. For
example, the red lines are the shortest routes (with the same
lengths), but the black line has the same length as the other two
red lines (not all routes are drawn in the figure). The source of
the problem is hidden in the grey colored cell. When the robot
approaches the goal from bottom (black line), the distance
value of the cell is17. But when the robot comes from the left-
hand side (red line) the distance value is16, because the cell
value is overwritten with the larger17 value (this information
is correct). However, we have to turn90 degrees to achieve
the target following the red line, that would add one time unit
at this point and the length of the two routes are in fact equal
(17), that we lost by overwriting it.

The easiest way to resolve this problem takes place during
the building of the route. We examine all cells and compare
the directions either with rotation or a straight route. Since a
rotation is not straight, we calculate where the next cell isif
we go on straight. If the direction value of this deviates by
maximum1 from the direction value of the current cell then
we add this cell to the list of the previous routes. Because
in each cell the shortest route to get there and its length are
stored, it is enough if we make up the connection only from
the overwritten cell, the recursive route construction will bring
us to the start cell.

III. C OOPERATIVE ROUTE SEARCHING OF THE ROBOTS

While a single robot navigates in the storage, it can use the
previously described algorithm. However, in the case of more

than one robot, it is important that we deal with prevention of
conflicts, e.g., with the collision of two robots. The possible
collision can be detected in advance, not locally. The robots
can cross-check the routes in advance so they can search for
another route at the start moment instead of waiting for another
robot if a possible collision is forecasted. For this reason, the
robots make a note to each cell when they pass through it, and
notify the other robots about this event. In order to reduce the
load of the communication channel, in certain cases the robots
may communicate indirectly to each other. In this situationwe
install a central computer that is able to store the collected
information of the storage of the cells and it can pass these
information at the request of the robots.

Fig. 3 (a) shows a situation when two robots starting from
the pointsA1 andA3, respectively, may have a collision.

We have got two possibilities to avoid the collision.

• The robots go to the meeting point and after that one
of the robots goes round the other robot. This route
will be longer than the pre-planned route because of
the turns. This can be seen in Fig. 3 (b).

• If the robots plans their routes in advance then the
roundabout route may be shorter, this can be seen in
Fig. 3 (c).

When a robot plans a route for itself then it reserves specific
cells for itself at pre-planned time instances. Because each
navigating robot uses the same time unit, we consider the
time unit to be the time step of the system (we suppose that
every robot pushes on in synchrony). When the next robot
plans its route, it queries the data of the previous robots so
it knows exactly what the first robot (or all previous robots)
reserved: exactly when and which cells they intend to visit.
Now the robot in turn can take this into consideration during
route searching, therefore it can decide what is more profitable
in case of crossing routes: waiting for the passing of another
robot or looking for another route.

A. Waiting for other robots

There may be situations in which it is simply not enough
to avoid another robot because for example the robot takes up
a bottleneck passage and the other passage is too far. At that
time it is more appropriate to wait for the passing of another
robot than to choose a bypass route.

In order to handle such situations properly, we should
modify the route search algorithm so that the algorithm deals
not only with the travelled distance but also with the latency.
For this purpose we must note the latency in every cell together
with the exact current shortest distance, and when the robot
comes into a new cell, we need to compare the sum of the two
values with the entered value. If the following cell is reserved
at the moment of arrival we must wait until the cell will be
empty. During the latency we need to pay attention to the
current cell (in which the robot waits) so that no other robot
traverses it. If this is to happen, the waiting is not possible.

B. Passages

There can be some narrow passages in the storage for the
sake of the better utilization of space, therefore we also need
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(a)

(b) (c)

Figure 3. Comparison of the local collision detection and pre-planning: (a) A possible collision, (b) The unplanned route, (c) The pre-planned route

to deal with them. In these passages there can be one robot at
a time, this can cause a traffic-jam. If two robots approach the
passage at its opposite ends then the route search algorithmcan
sense only the character of the problem before the collisions.

In order to handle passages in a proper way, a new seizing
method had to be developed. When a robot comes into a
passage it places a separate seizing at the end of the passage
(i.e., at the cell after the last cell of the passage), which is valid
not only for the duration when the robot will pass through the
cell but it already starts before entering the passage and keeps
until when the robot steps out from the passage.

A simple example of a passage situation is seen in Fig. 4.
The white squares mark empty cells and the red squares mark
obstacles (wall/rack). The robot marked with the blue arrow
tries to get out from the passage, his route being reserved.
During the route planning of the other robot the recursive
algorithm goes in regularly on the red marked route, it senses
the collision with the first robot, because this branch stops(in
this direction is not any route temporarily). The other green
routes are open though, but with different conditions: on the
dark green route we have not got to wait for the first robot
supposing that we leave the cell before the robot arrives at the
end of passage; on the light green route we have to wait in
any case for the first robot (or else we find ourselves face to
face with the robot and one of them has to turn back). The
problem is that the waiting for a given cell (in our case it is
B3) depends on to which cell we want to go to later.

Figure 4. Comparison of the local collision detection and advance planning:
The problem of stepping in the passage

Figure 5. Comparison of the local collision detection and advance planning:
Different stopping required in various passages

Unfortunately, however, a more complicated situation can
also arise (as it is depicted in Fig. 5. In this case it may happen,
that with each of the three different further directions we need
to wait for a different duration. This can be resolved if we
examine separately every case in the course of route searching.
If we perceive a special seizing before entering a cell we have
to examine to which passage it is allocated because the rate
of waiting will depend on this. For every touched passage we
need to create a separate branch and to examine the waiting
time of them before we can go over to this special cell. We
need to attend to the given branch with the individual waiting
time in the direction of only one given cell.

C. Cells multiple visited

There may be cases in which the optimal route passes
through a cell twice or even more times. This situation presents
a problem to the proposed route planning method, because
the cells between two visits can not be clearly defined, and
the other robots can not decide on the direction they should
proceed. One such example is shown in Fig. 6. The first robot
(black arrow) is planning to pass for the first time so the route
of this is specific: the robot goes straight from cell E11 to cell
E6. If we assume that the robot can pass through a cell only
once, the second robot (red arrow) is forced to make a long
roundabout way. The shortest route will be the blue route, i.e.
the robot shuns the front of the other robot in cell F7 and
waits while the other robot passes and then continues on it
is way. The original route planning algorithm can not process
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Figure 6. Comparison of the local collision detection and advance planning:
The strategy of the stand aside option in contradiction to the roundabout way

this route satisfactorily, because we leave the end points of
the passages (here it is cell E7) and we register the following
information: the previous value of the cell F7 will be E6 and
the previous value of the cell E8 will be F7. Thus, there will
be a stoppage in the course of decryption of the route.

A similar problem may arise where a robot decides to
pass through the cell E7 twice because there are two different
distance values and waiting values. The different waiting value
case is more important. When the second robot passes through
the cell for the first time, the algorithm records0 waiting, then
a positive value for the second time (assuming that we need to
wait some time units for the first robot). These values should
also be noted separately in a suitable data structure. Three
parameters are needed for this: the previous and next cells
(these identify where the robot came from and where it is going
to when it passes through the cell) and the waiting value. This
permits us to record the difference in the duration of waiting
times before the robot steps into the different passages.

IV. CASE STUDIES

Simple case studies were used to test the operation and
efficiency of the proposed cooperative route planning algo-
rithm. For this purpose an implementation of the algorithm
has been developed in Delphi programming language (we
used also Indy (Internet Direct) component package to the
communication), and this simulation environment can visualize
the robots’ movements.

Every measurement result was verified with the following
configuration:

• CPU: Inter Celeron 560@2.13 GHz

• Operating system: Microsoft Windows XP SP2

A. Route planning tests

Each case study had a few cooperating robots and the
topology of the accumulator-bank storage place was also
different. The planning order of the robots was the same
in each case, and it corresponded to their serial number (in
ascending order).

Fig. 7 illustrates the starting situation and the movements
of the robots in the following two examples. The grey cells
show the actual positions of the robots, where both the robots’
serial number and their actual direction are indicated. Thecells
with a number denote the goal of the robot with the same serial
number.

TABLE I. T HE EFFECT OF THE MAP SIZE ON THE RUNNING TIME

Size of map Time of route Time of planning/

planning (ms) robot(ms)

25x25 62,6 3,13

25x50 175 8,75

50x50 334,8 16,74

TABLE II. T HE EFFECT OF THE ROBOT NUMBER ON THE RUNNING

TIME

Number of robots Time of route Time of planning/

planning (ms) robot(ms)

5 14,4 3,08

10 28 2,8

15 46,8 3,12

20 62,6 3,13

• Example 1: Passages
There are four robots in the storage and they know to
which cells they need to get to. We can see in Fig.
7 (a) that every robot stands in compliance with his
forward direction. Robot3 waits till robot1 and robot2
pass through the passage, thereafter robot3 goes on in
the direction of its goal. Robot4 has attained the goal
in the meantime because its route has not crossed the
others. Fig. 7 (b) illustrates the movement of the robots
in this situation.

• Example 2: Getting out of the way
This example illustrates the getting out of the way:
robot1 planned first, it has priority, so robot2 gets
out of its way in the other passage. Thereafter robot2
continues on its way when robot1 passes before it.
We can see the starting situation in Fig. 7 (c), and the
movements in Fig. 7 (d).

B. Efficiency test

In order to test the efficiency of the proposed algorithm,
we recorded the full running time of the algorithm and noticed
how this value changed with the increasing complexity of the
planning problem.

Effect of the map size:In the first test we examined
how the time of planning changes by increasing the size of
the map applying the same number of robots (in the present
instance 20 robots). The robots were randomly placed on the
map. The results are collected in Table I.

The average length of the randomly placed robots’ route
doubled in case of doubling the map size, so the route search
algorithm had to explore the space with twice as large radius
in this case.

Effect of the number of robots:In case of the other test
the robots were arranged randomly in a25x25 of size map-file.
Five program running was performed with each robot number
value, and the running times were averaged. Table II shows
the simulation results.

It can be seen from the results that the system integrates
the new robots well, the robot pre-planning time is about3 ms
independently of the number of robots. This important result
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(a) (b)

(c) (d)

Figure 7. (a) Example1, starting situation, (b) Example1, movements of the robots, (c) Example2, starting situation, (d) Example2, movements of the robots,

shows that the proposed algorithm scales up well with the
size and complexity of the problem, thus offering an efficient
service of the accumulator-bank.

V. CONCLUSION

A novel optimal route planning algorithm is proposed in
this paper that is based on the cooperation of the robots
implemented as agents. The basic version of the algorithm
uses a special data structure that is arranged according to the
matrix-type grid of the cells defined in the storage place.

The robots use the same route planning algorithm in turn,
and take into account the plans of the other robots in order to
avoid collision. This way they can detect and avoid collision
in advance and not locally. Special conflicting situations,
including waiting, passage handling and multiple visitingof
cells are also investigated.

The operation and properties of the proposed algorithm
are illustrated using simple examples with robots in different
special conflict situations.

For optimizing the navigation of the robots, we aim at en-
riching their communication process with learning capabilities.

ACKNOWLEDGMENT

We acknowledge the financial support of the Hungarian
State and the European Union under the TAMOP-4.2.2.A-
11/1/KONV-2012-0072. This publication/research has been
supported by the European Union and Hungary and co-
financed by the European Social Fund through the project
TAMOP-4.2.2.C-11/1/KONV-2012-0004 - National Research
Center for Development and Market Introduction of Advanced
Information and Communication Technologies.

REFERENCES

[1] J.L. Adler and V.J. Blue, ”A cooperative multi-agent transportation
management and route guidance system”, Transportation Research Part
C: Emerging Technologies 10(5-6). 2002, pp. 433-454.
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