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Abstract— This paper presents the architecture, design, and 

implementation of a real-time Distributed Software 

Framework for Biosphere 2 Land Evolution Observatory 

Autonomic Cyber-Physical System, which uses an optimum 

technology mix discovered through intensive research, design, 

and development over a period of two years (2010- 2012) using 

a novel adaptable process framework named as Jacky’s 

Universal Process. It has a Service Oriented Architecture with 

Publish/Subscribe interaction pattern and Object Oriented 

Design. It applies self-healing feature of Autonomic Computing 

and uses Cloud Computing and OpenSplice Data Distribution 

Service. The distributed system software (software + service) of 

this framework is a complete production quality software 

product that requires near zero maintenance since only sensor 

drivers for new sensor types need to be developed and by 

appropriately mixing and matching the services all required 

system level capabilities can be provided. This framework 

deployed on B2 server, is capable of handling 45x the expected 

load having a total of about 148,500 sensors. It is highly 

reliable, robust, fault tolerant, scalable (both vertically and 

horizontally), extensible, secured, and easy to use. It 

successfully resolves all technological risks, provides concept 

consistency, and supersedes the functional and non-functional 

requirements. 

Keywords-distributed software framework; data distribution 

service; service oriented architecture; autonomic computing, 

jacky’s universal process. 

I.  INTRODUCTION 

 The Biosphere 2 Land Evolution Observatory (LEO) is 
an interdisciplinary project aimed to quantify various earth 
and atmospheric processes to understand the complex non-
linear interaction among these processes by coupling 
controllable physical systems with numerical models of the 
interacting processes using a cyber-physical system, which is 
a specialized cyberinfrastructure (CI) for LEO and referred 
to as Autonomic Cyber-Physical System (ACPS). ACPS 
requires a highly reliable, robust, fault-tolerant, scalable, 
extensible, and easy to maintain real-time Distributed 
Software Framework (DSF) with a life span of about 10 
years that can be deployed on any heterogeneous distributed 
system and resolve integration risks. The primary users of 
this framework are researchers and engineers interested in 
development of scientific domain specific applications and 

computational models, which in turn are meant to be used by 
scientists and students for research and education (e.g., CI 
for Atmospheric Sciences, Earth Sciences, and Engineering 
Research) as mentioned in NSF’s CI vision for 21

st
 century 

discovery [2]. 
In order to meet the challenging requirements and resolve 

technological risks, autonomic computing, cloud computing, 
service oriented architecture (that uses publish/subscribe 
interaction pattern), and object-oriented design were used. 
The optimum technology mix was discovered through 
intensive research, design, and development over a period of 
two years (2010-2012). In this paper, the final production 
quality architecture, design, and implementation of ACPS 
DSF for Biosphere 2 LEO are presented. A secondary 
outcome of this research and development effort, also 
introduced in this paper, is the inception of a novel adaptable 
process framework for software engineering of self-
managing distributed systems, which is named as Jacky’s 
Universal Process (JUP). 

The rest of the paper is organized as follows: Section II 
provides a theoretical foundation through literature review; 
Section II explains the methodology used; Section IV lists 
the requirements, and discusses the architecture and design; 
Section V discusses testing, and results; Section VI discusses 
experimentation and results; and finally, Section VII 
describes conclusion and future work. 

II. LITERATURE REVIEW 

At present, no similar distributed software framework for 
cyber physical systems that use autonomic computing exist. 
Hence the fundamental concepts are briefly presented here to 
provide the theoretical foundation. 

A. Distributed Systems 

A collection of independent systems that appear as a 
single coherent system is called a distributed system [3], 
which has key goals of achieving reliability, availability, 
adaptability, expandability, scalability, robustness, and fault-
tolerance (through redundancy) while providing distribution 
transparency [4]. ACPS DSF, being a distributed software 
framework, naturally provides the non-functional needed by 
Biosphere 2 LEO. 
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Figure 1. Jacky’s Universal Process (JUP) 

B. Autonomic Computing 

The overall goal of Autonomic computing, modeled upon 
autonomous nervous system, is that computing systems will 
self-manage taking only high-level objectives from 
administrators (human beings) [5]. The four aspects of self-
management are: 1) Self-configuration; 2) Self-optimization; 
3) Self-healing; and 4) Self-protection. In ACPS DSF, self-
healing aspect is implemented to provide fault tolerance for 
critical system-level services, and monitoring and 
notification for sensors of the physical system. 

C. Cloud Computing 

Data center hardware and software is known as a cloud 
[6]. Using a composability methodology, cloud computing 
systems can be classified into any of the five layers [7]: 1) 
Cloud Application Layer (SaaS); 2) Cloud Software 
Environment Layer (PaaS); 3) Cloud Infrastructure Layer 
(IaaS); 4) Software Kernel; 5) Hardware and Firmware. For 
example, Amazon EC2 is IaaS, Google AppEngine SaaS, 
and Microsoft Azure is PaaS [6]. ACPS DSF system-level 
services need to be run locally on Biosphere 2 servers to 
avoid latency issues as experienced during testing on 
Amazon EC2. However, ACPS DSF application-level 
software can easily be deployed to a cloud. 

D. OMG Data Distribution Service 

Object Management Group (OMG) Data Distribution 
Service (DDS) is an open specification for publish-subscribe 
(PS) data distribution systems [8] that attempts to provide 
formal definition for defining Quality of Service (QoS) to 
configure service and help connect information producers 
(publishers) with information consumers (subscribers). Many 
real-time applications, including ACPS DSF, have the need 
to have pure data-centric architectural pattern and take 
advantage of DDS. OpenSplice [9] is the most advanced, 
complete and widely used (commercial and open source) 
implementation of OMG DDS specification. This is a tried 
and tested commercial-of-the-shelf product and was chosen 
for ACPS DSF as the OMG DDS implementation of choice. 

III. METHODOLOGY 

This project was primarily a complex large-scale 
interdisciplinary engineering project with intensive 
technology research. The greatest risks in the project were 
the technical risks and the greatest challenge was to maintain 
conceptual integrity among interdisciplinary Biosphere 2 
staff members. The Spiral model was applied when the 
project was completely risk driven. As critical risks were 
resolved by incorporating new technologies like OpenSplice 
DDS and as development moved from middleware / 
distributed system software towards distributed application 
software, the approach moved more towards Lean (Agile) 
[11] principles. All of the critical risks have been resolved by 
developing Proof of Concepts (PoCs) for Data Turbine, 
OpenSplice DDS, real-time Visualizations using Matlab 
compiled codes, and coming up with ways to deliver data 
from DDS and plots over the web using Java Server Pages 
(JSP). Code quality has been ensured by incorporating 

recommendations of S. McConnell [18] whenever 
applicable. 

By going through the activities in the engineering 
notebook and through self-reflection, the hybrid (model that 
was being used naturally) has been extracted. John S. 
Miranda, a manager at Intel, proposed that any organization 
that tries to implement such hybrid approach should have a 
set of questions / criteria to decide the best mix. This 
research confirms that requirements stability, software 
generalizability, software life expectancy and dependency 
are some key criteria. 

Although, at present, there is no quantitative data to 
confirm the effectiveness of such a hybrid approach (the 
focus of this project was in research, design, and 
development of ACPS DSF), but the fact that a complicated 
large-scale software project like ACPS DSF was very 
successful may set some foundation for future research. In 
this paper a novel adaptable process framework for Self-
managing Distributed Systems that adds a third dimension to 
the Rational Unified Process (RUP) [1] [12] is proposed. 
This new process framework is named as Jacky’s Universal 
Process (JUP) of Software Engineering for Self-managing 
Distributed Systems. As shown in Figure 1, while the pre-
existing axes from RUP provide sequential increments and 
iterative workflows, in JUP the third dimension provides 
parallel augmentations. Augmentations are different from 
increments in that they are very loosely coupled services that 
can be connected or disconnected anytime as required. Each 

parallel augmentation can apply Spiral, Lean (Agile), or 
Hybrid e.g. Spiral + Lean (Agile), or any other model as 
appropriate. The four universal categories of services in this 
third augmentation axis are: 

 System Services: Any distributed system level 
services. 

 Autonomic System Services: Any or all of Self-* 
features of Autonomic Computing at the system 
level (global). 

 Application Services: Any distributed application 
level services. 
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Figure 2. System Architecture (Cyber System) 

 Autonomic Application Services: Any or all of 
Self-* features of Autonomic Computing at the 
application level (local). 

The four universal categories of services can be seen in 
the ACPS DSF Software Architecture (Figure 3). For 
example, Universal Critical Services are System Services, 
Autonomic Managers are Autonomic System Services, 
Visualizations are Application Services, and Control Panel is 
an Autonomic Application Service. At present use of JUP in 
different kinds of distributed system that have some 
capabilities of Autonomic Computing is advocated. Further 

research in JUP will provide some quantitative measures of 
its effectiveness. For now, use ACPS DSF as the case study 
to learn JUP by example.  

IV. REQUIREMENTS, ARCHITECTURE, AND DESIGN 

A. Requirements 

As any other project, the requirements of this project 
were very vague initially. The vision, overall requirements, 
and detailed requirements have been collected through 
interaction with Biosphere 2 Scientists and Biosphere 2 Staff 
members. At any point, technology risks and non-functional 
requirements were the key drivers for all subsequent system 
architecture, software architecture, software design and 

implementation. The overall requirement was to research, 
design, and develop a distributed software framework that 
would facilitate the establishment of LEO cyberinfrastructure 
by providing a standard reliable, robust, and fault-tolerant 
means of data acquisition, data distribution, data 
visualization, data assimilation, modeling, and simulation. 
No hard and fast metric for feature requirements were 
defined, but the overall requirements can be listed as follows: 

 The software framework should collect data from the 
physical system and store it in database. 

 The software framework should make data available 

to real-time monitoring and visualization. 

 The software framework should have facility for off-
line modeling and simulation. 

 The software framework should use technologies 
best for LEO’s cyberinfrastructure. 

 The visualizations should be available to 
students/faculty members over the web. 

 The software framework should be: 
o Scalable 
o Reliable 
o Robust 
o Fault tolerant 
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Figure 3. Software Architecture 

o Easy to maintain (preferably no 
maintenance) 

o Easy to extend 

B. System Architecture 

The system architecture, provided in Figure 2, is the final 
standard cyber system architecture consisting of 
heterogeneous systems, which can be modified in the future 
if desired and/or required. In the future, there will be at least 

one feed-back loop going from the cyber system to the 
physical system. 

Basically, this architecture shows that the entry into the 
cyber system happens through the file system—a ‘Source’ 
folder where the physical system drops measurement data 
files. From there, Physical2Cyber uploads data to both 
database and DDS. From the DDS, DDS2GenericFileFormat 
samples the most recent sensor values in to a special generic 
file format for current and future web/cloud applications to 

read. Also, there is a DDS2SurfacePlot, a composite service, 
which uses CommandExecuter to generate surface plots. 
DDS2Database is service that can be used to sample DDS 
contents directly into database. AutonomicSensorManager 
monitors sensors and writes notifications of sensor failures 
according to defined policy and also stores knowledge of 
failures. AutonomicServiceManager monitors the heartbeats 
of the critical services according to the defined policy. In 
case of failures of any services, it takes the appropriate 

actions as defined in policy while storing knowledge of any 
failures. The web/cloud application reads data from the 
‘Sink’ folder (in particular, from files created and updated 
byDDS2GenericFileFromat and notification files created by 
AutonomicSensorManager), and database to show text data, 
visuals, text and provide audio warnings when required [13]. 

All of the servers shown in this system architecture are 
important (ftp server being the most important one) and the 
flow of data and events through them can easily be analyzed 
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and best understood using the system architecture, which 
also shows the best technology mix. The physical system is 
modeled as a system that generates data. As a matter of fact, 
details of the physical system, which was outside the scope 
of my responsibility, is not provided to emphasize the cyber 
system. 

C. Software Architecture 

The ACPS Distributed Software Framework (DSF) 
architecture is shown in Figure 3. It basically consists of 
three layers in an open architecture i.e. any top level layer 
can call any of the bottom layer(s). This architecture is a 
Service Oriented Architecture (SOA) that combines layered 
and data space architectural patterns [3]. It is SOA because it 
is composed of a collection of services that provide the 
fundamental services, which can be mixed and matched to 
provide the universal set of capabilities ACPS will need over 
its life-span. These services use Publish/Subscribe 
interaction pattern by applying the first open international 
middleware standard—OMG Data-Distribution Service for 
Real-Time Systems [14]. The Middleware / Distributed 
System Software (Software + Service) and Distributed 
Application Software (Software as a Service) consists of 
subsystems (projects) and each subsystem consists of 
modules (packages), which in turn contains 
classes/components. 

Each of the software layers are described below starting 

with the bottommost layer first: 

Commercial of the shelf (COTS) Platform, Middleware, 

and Database: This layer of software represents the 

industry standard proven, tried and test products used as the 

foundation for ACPS DSF. The major technologies in this 

layer are: 

 Java Standard Edition: Java was chosen as the 

software platform of choice for performance, 

versatility, portability, and security [15] that ACPS 

DSF requires. 

 OpenSplice Data Distribution Service (DDS): 
OpenSplice DDS is the global leader in real-time 

data distribution middleware technology [9]. It is 

the strictest implementation of Object Management 

Group (OMG) DDS Open Standard providing high 

scalability, low latency, and fault-tolerance for 

real-time distributed systems. 

 Oracle Database: Oracle database provides the 

foundation for high quality information storage and 

delivery [16]. 

Middleware / Distributed System Software (Software + 

Service): This system layer consists of the system software 

and services (S+S) that should be sufficient to provide all of 

the system level capabilities ACPS will ever need over its 

entire life-span of about 10 years. This layer is complete in 

that by combining and configuring the universal critical 

services that use the core, all of the current and future 

system level needs can be met provided the project plan 

does not change radically. Other than sensor driver 

development, and shell script development to meet 

particular deployment need, no maintenance to this level is 

neither expected nor recommended. Overall, this layer 

provides the scalability, robustness, reliability, and fault-

tolerance along with fundamental/core ACPS system (and 

significant application) logic. If ever required, the software 

and services may be extended without making any changes 

to the existing core, services, and emulator. This layer has 

the following subsystems: 

 Core (Kernel): As the name implies, contains all 

of the core system (and some application level) 

logic fundamental to ACPS as a whole. In this 

subsystem, Sensor Object Model is the most 

important module that hosts the most important 

object oriented data structure / application 

programming interfaces (APIs) for all system level 

services. Sensor Drivers is the next most important 

module that hosts all of the derivers for sensors that 

define calibration functions. The File System 

Object Model, Data Access, and Helpers module 

contains relevant classes/APIs for files, database, 

and general helpers. The DDS Object Model, 

contains the APIs for talking to DDS that use data 

structures in Data Msg Model, Event Msg Model, 

and Command Msg Model modules. The Publisher 

Object Model, Subscriber Object Model, Event 

Object Model, and Command Object Model 

provide classes / wrapper APIs to DDS. The 

Service Object Model, contains the base class and 

exception class for any system level service. 

 Universal Critical Services: These are the 

fundamental services that provide universal 

capabilities that ACPS will ever need at the system 

level. Physical 2 Cyber, DDS 2 Generic File 

Format, DDS 2 Database, and Command Executer 

classes represent the critical services. 

 Emulators: At present only one cRIO Emulator is 

needed while B2 LEO is under construction. This 

emulator has the capability to read sensor 

definitions from database and generate data in 

exact established format specification between the 

physical and the cyber system. 

 Autonomic Managers (controllers): The 

autonomic managers provide self-healing 

capabilities of Autonomic Computing to add fault 

tolerance at service level by Autonomic Service 

Manager module and monitoring/notification 

capabilities at sensor level by Autonomic Sensor 

Manager module.  
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Figure 4. Sensor object model (simplified) 

Distributed Application Software (Software as a Service): 
This layer is meant to be extended where all future work will 
take place. All applications in this layer are provided as 
service over internet and expected to be all deployed in 
private and/or public clouds i.e. this is the SaaS layer. Hence, 
all of the control panel and visualization applications are 
available to any portable device in the world with an internet 
connection and a web browser. Essentially, all of the 
web/cloud applications are JavaServer Pages (JSP) that read 
data from appropriate sources (files and database) and 
present them either in text or graphics format in appropriate 
format. Autonomic Sensor Manager refreshes itself 
periodically and monitors contents of a notification file for 
any sensor failures and present such failures to the user along 
with audio warning. Surface Plot Viewer displays the 
appropriate surface plot image generated by DDS 2 Surface 

Plots composite service. Text Data Viewer display the 
appropriate data from generic file format generated and 
updated by DDS 2 Generic File Format service and Time 
Series Plot Viewer shows time series data from database. 

D. Design Overview 

The design of ACPS DSF started with the notion of 
loosely coupled collection of publishers and subscribers 
interacting through a middleware keeping in mind the need 
for scalability due to the massive amount of data flow that is 
expected. In the design, file system was used, in addition to 
OpenSplic DDS, as a queue, and also as a shared memory. 
This way, different systems are decoupled from each other 
through the file system. Also, during the design, parallelism 
was taken as a key design criterion to provide scalability. For 
example, the finished ACPS DSF can be used in parallel by 
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Figure 5. 'Subscriber' machine CPU, Disk, Network, and Memory 

usage (when DDS2SurfacePlot is running) 

splitting the load of one cRIO to multiple cRIOs, which in 
turn would mean splitting the queue, running services in 
parallel, and loading data to database in parallel either at the 
schema level or at the server level. Also, in the design, 
synchronization issues have been carefully assessed and file 
locks were always used for any writing operations. Overall, 
this ACPS DSF is designed to make it easier to develop ad-
hoc applications, which can easily consume data either from 
the file system or from database. The OpenSplice DDS serve 
as a shared memory where most recent value of all sensors 
(from a hill slope) are kept up to date. Any interested 
application can also sample any particular number or types 
of sensors at the desired sampling rate. 

E. Class Design 

Object-oriented design has been used throughout ACPS 
DSF. Although most of the design evolved over time, the 
classes in Sensor Object Model (Figure 4) were carefully 
designed first, even before hitting a single key, and the 
design was always kept in sync with code. This object model 
is the most important data structure integral to ACPS DSF. 
In this design, it is assumed that a sensor has inputs 
(measurements) and outputs (calibrations) which can be a 
function of any number of inputs. In order to make these 
calibrations as general as possible, the strategy design pattern 
[17] was used. Thus, classes collectively referred to as sensor 
drivers, define calibration functions by implementing 
ICalibMethod interface. The next most important sets of 
classes (in respective packages) are those that form wrappers 
around OpenSplice DDS namely those in DDS Object 
Model, Publisher Object Model, Subscriber Object Model, 
Event Object Model, Command Object Model—all of these 
packages/modules are part of the ACPS DSF core. ACPS 
DSF itself is composed of a number of subsystems: 
Controllers, Core, Emulators, Services, and User Interface. 
As the name implies, Core/kernel is the most fundamental 
critical subsystem to the entire distributed system. Each of 
these subsystems is divided into packages/modules as 
required.  

Design pattern [17] was used in three places: Strategy 

Pattern in implementing sensor drivers mechanism, 

Command Patten for commands and events mechanism, and 

Singleton Pattern was used to make sure that only one 

instance of Physical2Cyber can be executed per folder it is 

monitoring. 

F. Message Structure Design 

In this DDS-centric design, message structure is very 

important. In order to make sure that all of the kinds of 

messages that will ever flow through the middleware, are 

general message structures which are specialized over layers 

of software using command pattern. In OpenSplice DDS, 

these messages were defined using Interface Definition 

Language (IDL), and when passed through a tool (idlpp) that 

is part of the OpenSplice, the relevant Java classes were 

generated. 

G. Database Design 

Database is also an integral part of the system. In order to 
decouple the design of the database from the design of ACPS 
DSF, special view specifications were created that serve as 
interface between the full database and the view of the 
database in light of ACPS DSF. These views are prefixed 
with ACPS and all that matters to ACPS DSF is the exact 
number of attributes with proper data types. The query used 
to get these attributes may change and are not a concern for 
ACPS DSF as long as this interface is not broken. 

V. TESTING, RESULTS, AND DISCUSSION 

A. Testing Overview 

The test cases designed were goal oriented as 
recommended by Fenton [19]. All of the test cases basically 
had nominal scale of measurement: Success or Failure. Since 
all of the test cases passed, the correctness and quality of 
ACPS DSF were successfully validated. 

B. System Testing—Biosphere 2 LEO Server Deployment 

In this deployment scenario, three physical cRIO are 
connected which provides the expected amount of load once 
the physical system is completed. In the actual physical 
system, each cRIO is expected to drop files in ‘Source’ 
folder every 10-15 mins. However, for the purpose of testing, 

the connected cRIOs (x, y, and z) are configured to drop files 
every 2 mins. In addition to the physical cRIOs, three 
cRIOEmulators (x, y, and z) are also configured to drop files 
every 1.5 mins. In accordance with the System Architecture 
(Figure 2), the ‘Publisher’ machine is running 
Physical2Cyber, AutonomicSensorManager, and 
AutonomicServiceManager. Similarly, the ‘Subscriber’ 
machine is running DDS2GenericFileFormat, 
DDS2SurfacePlot, and AutonomicServiceManager. 
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Figure 6. 'Publisher' machine CPU, Disk, Network, and Memory usage 

Resource usage for ‘Subscriber’ machine is shown in 
Figure 5, and resource usage of ‘Publisher’ machine is 
shown in Figure 6. From these statistics, it is evident that 
resources in ‘Publisher’ machine can easily be more utilized 
by applying more load i.e., one ‘Publisher’ machine is 
capable of serving multiple hill slopes (physical systems). 

This demonstrates that the system has the capability to 
provide more throughput than required. However, in 
‘Subscriber’ machine resource utilization is more intense 
when plotting routines of Matlab is in use as expected. Thus 
it may be reasonable to have one ‘Subscriber’ machine per 
hill slope. Another option could be to have a dedicated 
machine to run DDS2SurfacePlot, which is indeed the most 
resource intensive service and in this configuration, a single 
‘Subscriber’ machine could serve multiple hill slopes. 

C. System Testing—Amazon Web Services/Cloud 

Deployent 

A test bed was created on Amazon Web Services (EC2) 
with minimal machine (m1.small) configuration. At present, 
a shared folder on ‘ACPSServer’ to be accessed by 
‘ACPSPublisher’ and ‘ACPSSubscriber’ machines could not 
be created. So the backup plan was to test everything on the 
‘ACPSServer’ machine with predefined m1.small 
configuration. Since this server is in Amazon EC2, loading 
time to database was taking much longer ~ 4 minutes for 
cRIOEmulatorX, which has the largest number of sensors 
attached to it. The time to load to database (including 
network latency) directly determines the throughput of the 
system. Hence for the purpose of testing, cRIOEmulatorX, 
cRIOEmulatorY, and cRIOEmulatorZ were configured to 
generate sensor measurement data files every 5 minutes. A 
total of three sets of application setup were tried: ‘Publisher’ 
setup, ‘Subscriber’ setup, and ‘Web Server’ setup. 

D. Reliability Testing 

 Until present time, there has never been any software 
downtime. The best way to understand the reliability would 
be to have a look at a production release of Biosphere 2 
Sensor Network Data Acquisition System (Bio2SNDAS), 
which is the precursor to Physical2Cyber service in ACPS 
DSF. In the ACPS DSF, in the final release, none of the 
universal critical services ever failed i.e. zero crashes so far 
during non-stop execution. 

E. Robustness Testing 

Error could be introduced into the ACPS DSF from three 
primary places: sensor measurement files, configuration 
files, and database sensor definitions. Error checking, sensor 
verification and validation and lots of try-catch blocks were 
used. As a result, the final release of ACPS DSF never 
crashed due to any input error. 

F. Fault-tolerance Testing 

ACPS DSF is configured using batch files in both 
‘Publisher’ and ‘Subscriber’ machines with shortcut from 
startup folder such that incase of any machine restart, it will 
start automatically. Also, self-healing capabilities provided 
by AutonomicServiceManager ensures that if any service 
dies, it is restarted according to the defined policy. As of 
now, none of the service ever crashed. However, for the 
purpose of testing, they were manually terminated, and in all 
of the trials, AutonomicServiceManager was always able to 
do its job. 

G. Scalability Testing 

ACPS DSF has been tested thoroughly, and it can be 
parallelized at the cRIO level, service level, database schema 
level, and obviously at the database server level. As a matter 
of fact, the current deployment of ACPS DSF far exceeds the 
requirements. As long as the network and the database does 
not become a bottleneck, ACPS DSF is highly scalable. To 
overcome any network latency, the database should be as 
geographically close as possible to the cRIOs and the 
‘Publisher’ machine. In order to overcome any possible 
database insertion inefficiency, various techniques including 
indexing that are common in database optimization should 
be applied. Hence, this software product supports both 
scaling up and scaling out both of which are limited only by 
the available resources and the imagination of the 
administrator of the product. 

H. Maintainability Testing/Assessment 

ACPS DSF requires near zero maintenance for the 
middleware / distributed system software level since only 
new sensor drivers need to be developed for new sensor 
types. The universal critical services can be mixed and 
matched to provide all of the system level capabilities ACPS 
will ever need. Hence, at this level, it is a complete product 
and is expected to be used like a commercial of the shelf 
product. 
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Figure 7. Finding utilization of 1.0 

I. Extensibility Testing/Assesment 

At the distributed application software level, ACPS DSF 
is expected to be extended throughout its entire lifespan. It 
has a service oriented architecture using publish/subscribe 
interaction pattern. Also, it has object-oriented design. 
Anyone can extend ACPS DSF both at the middleware / 
system and at the application level. 

J. Usability Testing/Assessment 

ACPS DSF is very easy to use once a user learns how to 
configure it, which is also easy. Basically, once it is 
configured, due to self-healing feature of autonomic 
computing, no human monitoring of the software is required. 
As a matter of fact, it can be considered as a fire and forget 
software system. 

K. Security Testing 

As of now, all user input is through button clicks. 
Web/Cloud application is completely decoupled from the 

middleware. Security was taken in to account throughout the 
entire design and development cycle. Also, no nice-to-have 
features were implemented, which often lead to security 

holes. Overall, ACPS DSF is highly a secured software 
product, however, the Web/Cloud app could have 
vulnerability in that user could try SQL injection from the 
address bar. At the same time, these critical web pages are 
not expected to be exposed to the general public but only 
restricted to the B2 employees. It would be nice to have a 
team of ethical hackers try to compromise it and provide 
further insight into security issues (if any) of the Web/Cloud. 
For now, no further tests were done. 

VI. EXPERIMENTATION, RESULTS, AND DISCUSSION 

From all of the testing conducted in Section Error! 
Reference source not found., it is evident that not only does 
ACPS DSF meets all of the functional and non-functional 
requirements of B2 LEO, but exceeds them by more than 
10x. In B2 server setup, one deployed instance of ACPS 
DSF is already demonstrating capability to serve more than 
10 hill slopes. The calculation for this load multiplier for the 
present experimental configuration on B2 LEO is provided 
in Error! Reference source not found.. Even with these 
experiments, it is evident from the resource usage profiles 
that the machine is not fully utilized. This is indeed an 
exploratory analysis. From this analysis, a theory is 
established that ACPS DSF have the capability by far more 
than 10x. To test the theory, a confirmatory analysis is 
conducted using Queuing Theory [20]. 

TABLE I. LOAD MULTIPLIER CALCULATION 

 Actual 

system 

Experimental 

emulated system 

Experimental 

physical system 

Sensor 

Measurement 

File 

interarrival 

time (minutes) 

tactual = 10 temulated = 1.5 tphysical = 2 

Number of 

cRIO 
nactual = 3 nemulated = 3 nphysical = 3 

Load 

multiplier 
(tactual / 

tactual) * 

(nactual / 

nactual) = 1 

(tactual / temulated) 

* (nemulated  / 

nactual) = 6.67 

(tactual / tphysical) 

* (nphysical / 

nactual)  = 5 

Total load 

multiplier 

(emulated + 

physical) 

N / A (tactual / temulated) * (nemulated  / 

nactual) + (tactual / tphysical) * 

(nphysical / nactual) = 11.67 > 10 

 
The Source Folder in File System can be considered as a 

queue where sensor measurement files arrive. The time it 
takes to process each measurement file, depends upon the 
amount of data it has, which in turn depends upon the 
number of sensors connected to the particular cRIO (X, Y, or 
Z). cRIO Y has the most number of sensors (little more than 
1000). The time taken to process a measurement file from 
cRIO Y in the current B2 server is about 4s. For cRIO X, Z, 
the time taken is negligible. However, let us take the 
maximum service time for all of the measurement files X, Y, 
and Z. Hence, the interarrival rate, λ, is 3 measurement files 
every (10 * 60) seconds, and the service rate, μ, is 3 
measurement files every 12 seconds. The utilization of server 
is given by equation (Error! Reference source not found.). 
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Figure 8. Graph of utilization vs. number of hill slopes 

 ρ λμ 

By entering this information in an Excel Spreadsheet, the 
number of hill slopes for which utilization of the current 
system becomes one is found as shown in Figure 7. 

According to this calculation, the current system will attain 
an utilization of 1.0 when a load of 50 hill slopes i.e. 150 
cRIO is provided (assuming they have the same size of 
sensor measurement files i.e. same number of sensors 
attached). A graph of utilization vs. number of hill slopes is 
also provided in Figure 8. It is evident that the system will 
have utilization of 0.9 for 45 hill slopes, even this is way 
more than the amount of load each cyber system is expected 
to have when augmented sensors are introduced in future. In 
order to simulate a 45x load, the cRIOEmulators (X, Y, and 
Z) can be configured with lower interarrival time and verify 
that the cyber system is still stable. Hence, an experiment is 
conducted with each cRIOEmulators configured to have an 
interarrival time of 600 / 45 = 13.33 seconds on B2 server 
‘Publisher’ machine and are configured to use a development 
shared folder so that the files from physical cRIOs are not 
included in the experiment. The outcome of this experiment 
is exactly as expected. The queue (source folder) goes almost 
full, then Physical2Cyber completes processing them all and 
as soon as it finishes, more measurements file arrive. This is 
an excellent utilization (0.9) of the ‘Publisher’ machine and 
this utilization represents 45 hill slopes. This experiment 
confirms the theory that ACPS DSF is not only capable of 
meeting the non-functional requirements but goes above and 
beyond—it has the ability to process the load of as many as 
45 hill slopes with a server utilization of 0.9 and each hill 
slope having three cRIOs with each cRIO connected to about 
1100 sensors (i.e. a total of about 45 * 3 * 1100 = 148,500 
sensors). 

It is important to note that to load measurement file from 
cRIO Y from Amazon cloud to LEO database server, it took 
about 4 minutes. Hence, both the ACPS DSF and database 
are highly optimized. The network latency is a major 
bottleneck and should be resolved by locating databases as 
close to the cRIO as possible to reduce latency. 

VII. CONCLUSION AND FUTURE WORK 

In conclusion, this was a very exciting and challenging 
project. Turning various ideas into reality, shaping the ideas 
and finding the best architecture, design, and implementation 
with the perfect technology mix was a great accomplishment 
in an interdisciplinary team like this, where maintaining 
concept consistency itself was a great challenge. ACPS DSF 
provide the ultimate technical solution for B2 LEO so that it 
can now focus on integrating computational models with the 
confidence that the underlying middleware / distributed 
system software is organized physically into the standard 
system architecture will always provide the performance and 
the reliability, robustness, fault-tolerance, scalability, and 
extendibility it needs. This ACPS DSF provide the strategic 
directions for all kinds of application development—
applications that all fit into the distributed software 
framework. No more maintenance is needed (at the 
distributed system software level) once all of the different 
sensor types are purchased, and all of the sensor drivers are 
developed. OpenSplice DDS and Oracle Database make real-
time, near-real-time, and offline analyses possible. 
Moreover, this optimum technology mix found through this 
research project resolves all of the critical technological 
risks. The best architecture, design, and implementation 
methods are clearly demonstrated through this distributed 
software framework, which is expected to last for the entire 
life-span of B2 LEO project of about 10 years. In this 
research project how Matlab can be used creatively to 
generate plots that can be delivered over the web through 
simple techniques as just pooling plot files generated by 
Matlab from JSP pages using auto refresh mechanism is 
clearly demonstrated. Such simple mechanisms allow thin 
clients to access all of the applications as a service over 
web/cloud. The audio alarm in addition to text alarm are 
extremely helpful and provide such off-site monitoring of 
sensor from anywhere in the world with just a portable 
device with internet connection and a browser. This Service 
Oriented Architecture allows very loose coupling enabling 
each subsystem to decouple from one another. In case of 
maintenance only the required machines can be turned down 
for maintenance ACPS DSF can be configured to auto-start. 
The Source folder where all files are dropped from the 
physical system act as a queue, and the Sink folder where all 
data and plots are dropped serve as a shared memory. The 
Source folder decouples the physical system from the 
middleware, and the Sink folder decouples any application 
from the middleware. Likewise the database also decouples 
applications from the middleware. Hence, any physical 
system application and/or any application software do not 
have to know the details of the middleware, but need to 
know how to access text files, pictures, and database. The 
middleware in the meantime provide all of the non-
functional capabilities that B2 LEO ACPS will ever need.  

Overall, ACPS DSF resolves all of the technology risks 
by providing the middleware and by providing efficient 
application solutions; it provides concept consistency 
through the framework in which all future applications can 
evolve. ACPS DSF is a very successful real-time product 
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with meets all of the functional and non-functional 
requirements. As a matter of fact, since one instance of 
ACPS DSF can handle the load of as many as 45 hill slopes 
having a total of 148,500 sensors with a utilization of 0.9, B2 
LEO will never have to worry about any development in 
ACPS DSF middleware / distributed system software. Also, 
the hope is that JUP will add value to both industry and 
academia for software engineering of self-managing 
distributed software systems. 

Future work consists of extending ACPS DSF by 
building new applications at the distributed application level. 
The immediate next set of work include creating services 
that read data from database and transform them into 
NetCDF format so that the very first model known as Kathy 
can be run for analysis. Along with the models simulation, 
new visualizations will be required. From there, it will all 
depend upon the priorities and progress of other new models. 
If there is new sensor types, drivers for them should be 
developed. Any change to ACPS DSF middleware / 
distributed system software is neither expected nor 
recommended. ACPS DSF is a finished product and should 
be used like a commercial-of-the-shelf software framework. 
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