
Distributed Software Framework

For Biosphere 2 Land Evolution Observatory (LEO) Autonomic Cyber-Physical System (ACPS)

Shafiul Islam

The Department of Electrical and Computer Engineering

The University of Arizona

Tucson, U.S.A.

jacky@email.arizona.edu

Abstract— This paper presents the architecture, design, and

implementation of a real-time Distributed Software

Framework for Biosphere 2 Land Evolution Observatory

Autonomic Cyber-Physical System, which uses an optimum

technology mix discovered through intensive research, design,

and development over a period of two years (2010- 2012) using

a novel adaptable process framework named as Jacky’s

Universal Process. It has a Service Oriented Architecture with

Publish/Subscribe interaction pattern and Object Oriented

Design. It applies self-healing feature of Autonomic Computing

and uses Cloud Computing and OpenSplice Data Distribution

Service. The distributed system software (software + service) of

this framework is a complete production quality software

product that requires near zero maintenance since only sensor

drivers for new sensor types need to be developed and by

appropriately mixing and matching the services all required

system level capabilities can be provided. This framework

deployed on B2 server, is capable of handling 45x the expected

load having a total of about 148,500 sensors. It is highly

reliable, robust, fault tolerant, scalable (both vertically and

horizontally), extensible, secured, and easy to use. It

successfully resolves all technological risks, provides concept

consistency, and supersedes the functional and non-functional

requirements.

Keywords-distributed software framework; data distribution

service; service oriented architecture; autonomic computing,

jacky’s universal process.

I. INTRODUCTION

 The Biosphere 2 Land Evolution Observatory (LEO) is
an interdisciplinary project aimed to quantify various earth
and atmospheric processes to understand the complex non-
linear interaction among these processes by coupling
controllable physical systems with numerical models of the
interacting processes using a cyber-physical system, which is
a specialized cyberinfrastructure (CI) for LEO and referred
to as Autonomic Cyber-Physical System (ACPS). ACPS
requires a highly reliable, robust, fault-tolerant, scalable,
extensible, and easy to maintain real-time Distributed
Software Framework (DSF) with a life span of about 10
years that can be deployed on any heterogeneous distributed
system and resolve integration risks. The primary users of
this framework are researchers and engineers interested in
development of scientific domain specific applications and

computational models, which in turn are meant to be used by
scientists and students for research and education (e.g., CI
for Atmospheric Sciences, Earth Sciences, and Engineering
Research) as mentioned in NSF’s CI vision for 21

st
 century

discovery [2].
In order to meet the challenging requirements and resolve

technological risks, autonomic computing, cloud computing,
service oriented architecture (that uses publish/subscribe
interaction pattern), and object-oriented design were used.
The optimum technology mix was discovered through
intensive research, design, and development over a period of
two years (2010-2012). In this paper, the final production
quality architecture, design, and implementation of ACPS
DSF for Biosphere 2 LEO are presented. A secondary
outcome of this research and development effort, also
introduced in this paper, is the inception of a novel adaptable
process framework for software engineering of self-
managing distributed systems, which is named as Jacky’s
Universal Process (JUP).

The rest of the paper is organized as follows: Section II
provides a theoretical foundation through literature review;
Section II explains the methodology used; Section IV lists
the requirements, and discusses the architecture and design;
Section V discusses testing, and results; Section VI discusses
experimentation and results; and finally, Section VII
describes conclusion and future work.

II. LITERATURE REVIEW

At present, no similar distributed software framework for
cyber physical systems that use autonomic computing exist.
Hence the fundamental concepts are briefly presented here to
provide the theoretical foundation.

A. Distributed Systems

A collection of independent systems that appear as a
single coherent system is called a distributed system [3],
which has key goals of achieving reliability, availability,
adaptability, expandability, scalability, robustness, and fault-
tolerance (through redundancy) while providing distribution
transparency [4]. ACPS DSF, being a distributed software
framework, naturally provides the non-functional needed by
Biosphere 2 LEO.

243Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 1. Jacky’s Universal Process (JUP)

B. Autonomic Computing

The overall goal of Autonomic computing, modeled upon
autonomous nervous system, is that computing systems will
self-manage taking only high-level objectives from
administrators (human beings) [5]. The four aspects of self-
management are: 1) Self-configuration; 2) Self-optimization;
3) Self-healing; and 4) Self-protection. In ACPS DSF, self-
healing aspect is implemented to provide fault tolerance for
critical system-level services, and monitoring and
notification for sensors of the physical system.

C. Cloud Computing

Data center hardware and software is known as a cloud
[6]. Using a composability methodology, cloud computing
systems can be classified into any of the five layers [7]: 1)
Cloud Application Layer (SaaS); 2) Cloud Software
Environment Layer (PaaS); 3) Cloud Infrastructure Layer
(IaaS); 4) Software Kernel; 5) Hardware and Firmware. For
example, Amazon EC2 is IaaS, Google AppEngine SaaS,
and Microsoft Azure is PaaS [6]. ACPS DSF system-level
services need to be run locally on Biosphere 2 servers to
avoid latency issues as experienced during testing on
Amazon EC2. However, ACPS DSF application-level
software can easily be deployed to a cloud.

D. OMG Data Distribution Service

Object Management Group (OMG) Data Distribution
Service (DDS) is an open specification for publish-subscribe
(PS) data distribution systems [8] that attempts to provide
formal definition for defining Quality of Service (QoS) to
configure service and help connect information producers
(publishers) with information consumers (subscribers). Many
real-time applications, including ACPS DSF, have the need
to have pure data-centric architectural pattern and take
advantage of DDS. OpenSplice [9] is the most advanced,
complete and widely used (commercial and open source)
implementation of OMG DDS specification. This is a tried
and tested commercial-of-the-shelf product and was chosen
for ACPS DSF as the OMG DDS implementation of choice.

III. METHODOLOGY

This project was primarily a complex large-scale
interdisciplinary engineering project with intensive
technology research. The greatest risks in the project were
the technical risks and the greatest challenge was to maintain
conceptual integrity among interdisciplinary Biosphere 2
staff members. The Spiral model was applied when the
project was completely risk driven. As critical risks were
resolved by incorporating new technologies like OpenSplice
DDS and as development moved from middleware /
distributed system software towards distributed application
software, the approach moved more towards Lean (Agile)
[11] principles. All of the critical risks have been resolved by
developing Proof of Concepts (PoCs) for Data Turbine,
OpenSplice DDS, real-time Visualizations using Matlab
compiled codes, and coming up with ways to deliver data
from DDS and plots over the web using Java Server Pages
(JSP). Code quality has been ensured by incorporating

recommendations of S. McConnell [18] whenever
applicable.

By going through the activities in the engineering
notebook and through self-reflection, the hybrid (model that
was being used naturally) has been extracted. John S.
Miranda, a manager at Intel, proposed that any organization
that tries to implement such hybrid approach should have a
set of questions / criteria to decide the best mix. This
research confirms that requirements stability, software
generalizability, software life expectancy and dependency
are some key criteria.

Although, at present, there is no quantitative data to
confirm the effectiveness of such a hybrid approach (the
focus of this project was in research, design, and
development of ACPS DSF), but the fact that a complicated
large-scale software project like ACPS DSF was very
successful may set some foundation for future research. In
this paper a novel adaptable process framework for Self-
managing Distributed Systems that adds a third dimension to
the Rational Unified Process (RUP) [1] [12] is proposed.
This new process framework is named as Jacky’s Universal
Process (JUP) of Software Engineering for Self-managing
Distributed Systems. As shown in Figure 1, while the pre-
existing axes from RUP provide sequential increments and
iterative workflows, in JUP the third dimension provides
parallel augmentations. Augmentations are different from
increments in that they are very loosely coupled services that
can be connected or disconnected anytime as required. Each

parallel augmentation can apply Spiral, Lean (Agile), or
Hybrid e.g. Spiral + Lean (Agile), or any other model as
appropriate. The four universal categories of services in this
third augmentation axis are:

 System Services: Any distributed system level
services.

 Autonomic System Services: Any or all of Self-*
features of Autonomic Computing at the system
level (global).

 Application Services: Any distributed application
level services.

244Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 2. System Architecture (Cyber System)

 Autonomic Application Services: Any or all of
Self-* features of Autonomic Computing at the
application level (local).

The four universal categories of services can be seen in
the ACPS DSF Software Architecture (Figure 3). For
example, Universal Critical Services are System Services,
Autonomic Managers are Autonomic System Services,
Visualizations are Application Services, and Control Panel is
an Autonomic Application Service. At present use of JUP in
different kinds of distributed system that have some
capabilities of Autonomic Computing is advocated. Further

research in JUP will provide some quantitative measures of
its effectiveness. For now, use ACPS DSF as the case study
to learn JUP by example.

IV. REQUIREMENTS, ARCHITECTURE, AND DESIGN

A. Requirements

As any other project, the requirements of this project
were very vague initially. The vision, overall requirements,
and detailed requirements have been collected through
interaction with Biosphere 2 Scientists and Biosphere 2 Staff
members. At any point, technology risks and non-functional
requirements were the key drivers for all subsequent system
architecture, software architecture, software design and

implementation. The overall requirement was to research,
design, and develop a distributed software framework that
would facilitate the establishment of LEO cyberinfrastructure
by providing a standard reliable, robust, and fault-tolerant
means of data acquisition, data distribution, data
visualization, data assimilation, modeling, and simulation.
No hard and fast metric for feature requirements were
defined, but the overall requirements can be listed as follows:

 The software framework should collect data from the
physical system and store it in database.

 The software framework should make data available

to real-time monitoring and visualization.

 The software framework should have facility for off-
line modeling and simulation.

 The software framework should use technologies
best for LEO’s cyberinfrastructure.

 The visualizations should be available to
students/faculty members over the web.

 The software framework should be:
o Scalable
o Reliable
o Robust
o Fault tolerant

245Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 3. Software Architecture

o Easy to maintain (preferably no
maintenance)

o Easy to extend

B. System Architecture

The system architecture, provided in Figure 2, is the final
standard cyber system architecture consisting of
heterogeneous systems, which can be modified in the future
if desired and/or required. In the future, there will be at least

one feed-back loop going from the cyber system to the
physical system.

Basically, this architecture shows that the entry into the
cyber system happens through the file system—a ‘Source’
folder where the physical system drops measurement data
files. From there, Physical2Cyber uploads data to both
database and DDS. From the DDS, DDS2GenericFileFormat
samples the most recent sensor values in to a special generic
file format for current and future web/cloud applications to

read. Also, there is a DDS2SurfacePlot, a composite service,
which uses CommandExecuter to generate surface plots.
DDS2Database is service that can be used to sample DDS
contents directly into database. AutonomicSensorManager
monitors sensors and writes notifications of sensor failures
according to defined policy and also stores knowledge of
failures. AutonomicServiceManager monitors the heartbeats
of the critical services according to the defined policy. In
case of failures of any services, it takes the appropriate

actions as defined in policy while storing knowledge of any
failures. The web/cloud application reads data from the
‘Sink’ folder (in particular, from files created and updated
byDDS2GenericFileFromat and notification files created by
AutonomicSensorManager), and database to show text data,
visuals, text and provide audio warnings when required [13].

All of the servers shown in this system architecture are
important (ftp server being the most important one) and the
flow of data and events through them can easily be analyzed

246Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

and best understood using the system architecture, which
also shows the best technology mix. The physical system is
modeled as a system that generates data. As a matter of fact,
details of the physical system, which was outside the scope
of my responsibility, is not provided to emphasize the cyber
system.

C. Software Architecture

The ACPS Distributed Software Framework (DSF)
architecture is shown in Figure 3. It basically consists of
three layers in an open architecture i.e. any top level layer
can call any of the bottom layer(s). This architecture is a
Service Oriented Architecture (SOA) that combines layered
and data space architectural patterns [3]. It is SOA because it
is composed of a collection of services that provide the
fundamental services, which can be mixed and matched to
provide the universal set of capabilities ACPS will need over
its life-span. These services use Publish/Subscribe
interaction pattern by applying the first open international
middleware standard—OMG Data-Distribution Service for
Real-Time Systems [14]. The Middleware / Distributed
System Software (Software + Service) and Distributed
Application Software (Software as a Service) consists of
subsystems (projects) and each subsystem consists of
modules (packages), which in turn contains
classes/components.

Each of the software layers are described below starting

with the bottommost layer first:

Commercial of the shelf (COTS) Platform, Middleware,

and Database: This layer of software represents the

industry standard proven, tried and test products used as the

foundation for ACPS DSF. The major technologies in this

layer are:

 Java Standard Edition: Java was chosen as the

software platform of choice for performance,

versatility, portability, and security [15] that ACPS

DSF requires.

 OpenSplice Data Distribution Service (DDS):
OpenSplice DDS is the global leader in real-time

data distribution middleware technology [9]. It is

the strictest implementation of Object Management

Group (OMG) DDS Open Standard providing high

scalability, low latency, and fault-tolerance for

real-time distributed systems.

 Oracle Database: Oracle database provides the

foundation for high quality information storage and

delivery [16].

Middleware / Distributed System Software (Software +

Service): This system layer consists of the system software

and services (S+S) that should be sufficient to provide all of

the system level capabilities ACPS will ever need over its

entire life-span of about 10 years. This layer is complete in

that by combining and configuring the universal critical

services that use the core, all of the current and future

system level needs can be met provided the project plan

does not change radically. Other than sensor driver

development, and shell script development to meet

particular deployment need, no maintenance to this level is

neither expected nor recommended. Overall, this layer

provides the scalability, robustness, reliability, and fault-

tolerance along with fundamental/core ACPS system (and

significant application) logic. If ever required, the software

and services may be extended without making any changes

to the existing core, services, and emulator. This layer has

the following subsystems:

 Core (Kernel): As the name implies, contains all

of the core system (and some application level)

logic fundamental to ACPS as a whole. In this

subsystem, Sensor Object Model is the most

important module that hosts the most important

object oriented data structure / application

programming interfaces (APIs) for all system level

services. Sensor Drivers is the next most important

module that hosts all of the derivers for sensors that

define calibration functions. The File System

Object Model, Data Access, and Helpers module

contains relevant classes/APIs for files, database,

and general helpers. The DDS Object Model,

contains the APIs for talking to DDS that use data

structures in Data Msg Model, Event Msg Model,

and Command Msg Model modules. The Publisher

Object Model, Subscriber Object Model, Event

Object Model, and Command Object Model

provide classes / wrapper APIs to DDS. The

Service Object Model, contains the base class and

exception class for any system level service.

 Universal Critical Services: These are the

fundamental services that provide universal

capabilities that ACPS will ever need at the system

level. Physical 2 Cyber, DDS 2 Generic File

Format, DDS 2 Database, and Command Executer

classes represent the critical services.

 Emulators: At present only one cRIO Emulator is

needed while B2 LEO is under construction. This

emulator has the capability to read sensor

definitions from database and generate data in

exact established format specification between the

physical and the cyber system.

 Autonomic Managers (controllers): The

autonomic managers provide self-healing

capabilities of Autonomic Computing to add fault

tolerance at service level by Autonomic Service

Manager module and monitoring/notification

capabilities at sensor level by Autonomic Sensor

Manager module.

247Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

#Type

SensorMetadata

#Index
#Id
#Name
#Unit
#NoDataValue

VariableMetadata

+Calibrate(in InputVariableMap, in InputVariableValueMap, in ParameterMap)
-loadCalibMethod()

#CalibMethod

OutputVariableMetadata

#ValidRangeFrom
#ValidRangeTo

InputVariableMetadata

#Code
#Value

Parameter

1

*

#ID

Variable

+isInValidRange(in inputVlalue : float(idl)) : boolean(idl)

InputVariable

*

1

+Calibrate(in InputVariableValueMap) : float(idl)

OutputVariable

*

1

*

1

1

*

1

*

#ID
#Code
#DataTableName

Sensor

1

*

1

*

1

*

C+<SensorType>+<VariableID>

Each OutpubVariableMetada will load particular
class at run-time from a classpath using the
class name as C+<SensorType>+<VariableID>
e.g. C5TM1 i.e. this is an application of strategy pattern.

1

1

1
1

+LoadSensors()
+LoadSensorDataList(in DataFile) : object(idl)
-LoadSensorMetadata()
-ValidateSensorData()

+SensorMap
-SensorMetadataMap

SensorObjectModel

Value of InputVariable is read from measurement files at run-time.
Value of OutputVariable is calculated at run-time.

+Calibrate(in InputVariableMap, in InputVariableValueMap, in ParameterMap) : float(idl)

«interface»
ICalibMethod

#LocalDateTime
#InputVariableValueMap
#OutputVariableValueMap

SensorData

*

1

#id
#code
#name
#localX
#localY
#localProjection
#localZ
#verticalProjection
#posAccuracyM
#boxX
#boxY
#boxProjection
#boxZ
#boxVerticalDatum
#dLevel
#elevation
#comments

SensorLocation

11

«uses»

Figure 4. Sensor object model (simplified)

Distributed Application Software (Software as a Service):
This layer is meant to be extended where all future work will
take place. All applications in this layer are provided as
service over internet and expected to be all deployed in
private and/or public clouds i.e. this is the SaaS layer. Hence,
all of the control panel and visualization applications are
available to any portable device in the world with an internet
connection and a web browser. Essentially, all of the
web/cloud applications are JavaServer Pages (JSP) that read
data from appropriate sources (files and database) and
present them either in text or graphics format in appropriate
format. Autonomic Sensor Manager refreshes itself
periodically and monitors contents of a notification file for
any sensor failures and present such failures to the user along
with audio warning. Surface Plot Viewer displays the
appropriate surface plot image generated by DDS 2 Surface

Plots composite service. Text Data Viewer display the
appropriate data from generic file format generated and
updated by DDS 2 Generic File Format service and Time
Series Plot Viewer shows time series data from database.

D. Design Overview

The design of ACPS DSF started with the notion of
loosely coupled collection of publishers and subscribers
interacting through a middleware keeping in mind the need
for scalability due to the massive amount of data flow that is
expected. In the design, file system was used, in addition to
OpenSplic DDS, as a queue, and also as a shared memory.
This way, different systems are decoupled from each other
through the file system. Also, during the design, parallelism
was taken as a key design criterion to provide scalability. For
example, the finished ACPS DSF can be used in parallel by

248Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 5. 'Subscriber' machine CPU, Disk, Network, and Memory

usage (when DDS2SurfacePlot is running)

splitting the load of one cRIO to multiple cRIOs, which in
turn would mean splitting the queue, running services in
parallel, and loading data to database in parallel either at the
schema level or at the server level. Also, in the design,
synchronization issues have been carefully assessed and file
locks were always used for any writing operations. Overall,
this ACPS DSF is designed to make it easier to develop ad-
hoc applications, which can easily consume data either from
the file system or from database. The OpenSplice DDS serve
as a shared memory where most recent value of all sensors
(from a hill slope) are kept up to date. Any interested
application can also sample any particular number or types
of sensors at the desired sampling rate.

E. Class Design

Object-oriented design has been used throughout ACPS
DSF. Although most of the design evolved over time, the
classes in Sensor Object Model (Figure 4) were carefully
designed first, even before hitting a single key, and the
design was always kept in sync with code. This object model
is the most important data structure integral to ACPS DSF.
In this design, it is assumed that a sensor has inputs
(measurements) and outputs (calibrations) which can be a
function of any number of inputs. In order to make these
calibrations as general as possible, the strategy design pattern
[17] was used. Thus, classes collectively referred to as sensor
drivers, define calibration functions by implementing
ICalibMethod interface. The next most important sets of
classes (in respective packages) are those that form wrappers
around OpenSplice DDS namely those in DDS Object
Model, Publisher Object Model, Subscriber Object Model,
Event Object Model, Command Object Model—all of these
packages/modules are part of the ACPS DSF core. ACPS
DSF itself is composed of a number of subsystems:
Controllers, Core, Emulators, Services, and User Interface.
As the name implies, Core/kernel is the most fundamental
critical subsystem to the entire distributed system. Each of
these subsystems is divided into packages/modules as
required.

Design pattern [17] was used in three places: Strategy

Pattern in implementing sensor drivers mechanism,

Command Patten for commands and events mechanism, and

Singleton Pattern was used to make sure that only one

instance of Physical2Cyber can be executed per folder it is

monitoring.

F. Message Structure Design

In this DDS-centric design, message structure is very

important. In order to make sure that all of the kinds of

messages that will ever flow through the middleware, are

general message structures which are specialized over layers

of software using command pattern. In OpenSplice DDS,

these messages were defined using Interface Definition

Language (IDL), and when passed through a tool (idlpp) that

is part of the OpenSplice, the relevant Java classes were

generated.

G. Database Design

Database is also an integral part of the system. In order to
decouple the design of the database from the design of ACPS
DSF, special view specifications were created that serve as
interface between the full database and the view of the
database in light of ACPS DSF. These views are prefixed
with ACPS and all that matters to ACPS DSF is the exact
number of attributes with proper data types. The query used
to get these attributes may change and are not a concern for
ACPS DSF as long as this interface is not broken.

V. TESTING, RESULTS, AND DISCUSSION

A. Testing Overview

The test cases designed were goal oriented as
recommended by Fenton [19]. All of the test cases basically
had nominal scale of measurement: Success or Failure. Since
all of the test cases passed, the correctness and quality of
ACPS DSF were successfully validated.

B. System Testing—Biosphere 2 LEO Server Deployment

In this deployment scenario, three physical cRIO are
connected which provides the expected amount of load once
the physical system is completed. In the actual physical
system, each cRIO is expected to drop files in ‘Source’
folder every 10-15 mins. However, for the purpose of testing,

the connected cRIOs (x, y, and z) are configured to drop files
every 2 mins. In addition to the physical cRIOs, three
cRIOEmulators (x, y, and z) are also configured to drop files
every 1.5 mins. In accordance with the System Architecture
(Figure 2), the ‘Publisher’ machine is running
Physical2Cyber, AutonomicSensorManager, and
AutonomicServiceManager. Similarly, the ‘Subscriber’
machine is running DDS2GenericFileFormat,
DDS2SurfacePlot, and AutonomicServiceManager.

249Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 6. 'Publisher' machine CPU, Disk, Network, and Memory usage

Resource usage for ‘Subscriber’ machine is shown in
Figure 5, and resource usage of ‘Publisher’ machine is
shown in Figure 6. From these statistics, it is evident that
resources in ‘Publisher’ machine can easily be more utilized
by applying more load i.e., one ‘Publisher’ machine is
capable of serving multiple hill slopes (physical systems).

This demonstrates that the system has the capability to
provide more throughput than required. However, in
‘Subscriber’ machine resource utilization is more intense
when plotting routines of Matlab is in use as expected. Thus
it may be reasonable to have one ‘Subscriber’ machine per
hill slope. Another option could be to have a dedicated
machine to run DDS2SurfacePlot, which is indeed the most
resource intensive service and in this configuration, a single
‘Subscriber’ machine could serve multiple hill slopes.

C. System Testing—Amazon Web Services/Cloud

Deployent

A test bed was created on Amazon Web Services (EC2)
with minimal machine (m1.small) configuration. At present,
a shared folder on ‘ACPSServer’ to be accessed by
‘ACPSPublisher’ and ‘ACPSSubscriber’ machines could not
be created. So the backup plan was to test everything on the
‘ACPSServer’ machine with predefined m1.small
configuration. Since this server is in Amazon EC2, loading
time to database was taking much longer ~ 4 minutes for
cRIOEmulatorX, which has the largest number of sensors
attached to it. The time to load to database (including
network latency) directly determines the throughput of the
system. Hence for the purpose of testing, cRIOEmulatorX,
cRIOEmulatorY, and cRIOEmulatorZ were configured to
generate sensor measurement data files every 5 minutes. A
total of three sets of application setup were tried: ‘Publisher’
setup, ‘Subscriber’ setup, and ‘Web Server’ setup.

D. Reliability Testing

 Until present time, there has never been any software
downtime. The best way to understand the reliability would
be to have a look at a production release of Biosphere 2
Sensor Network Data Acquisition System (Bio2SNDAS),
which is the precursor to Physical2Cyber service in ACPS
DSF. In the ACPS DSF, in the final release, none of the
universal critical services ever failed i.e. zero crashes so far
during non-stop execution.

E. Robustness Testing

Error could be introduced into the ACPS DSF from three
primary places: sensor measurement files, configuration
files, and database sensor definitions. Error checking, sensor
verification and validation and lots of try-catch blocks were
used. As a result, the final release of ACPS DSF never
crashed due to any input error.

F. Fault-tolerance Testing

ACPS DSF is configured using batch files in both
‘Publisher’ and ‘Subscriber’ machines with shortcut from
startup folder such that incase of any machine restart, it will
start automatically. Also, self-healing capabilities provided
by AutonomicServiceManager ensures that if any service
dies, it is restarted according to the defined policy. As of
now, none of the service ever crashed. However, for the
purpose of testing, they were manually terminated, and in all
of the trials, AutonomicServiceManager was always able to
do its job.

G. Scalability Testing

ACPS DSF has been tested thoroughly, and it can be
parallelized at the cRIO level, service level, database schema
level, and obviously at the database server level. As a matter
of fact, the current deployment of ACPS DSF far exceeds the
requirements. As long as the network and the database does
not become a bottleneck, ACPS DSF is highly scalable. To
overcome any network latency, the database should be as
geographically close as possible to the cRIOs and the
‘Publisher’ machine. In order to overcome any possible
database insertion inefficiency, various techniques including
indexing that are common in database optimization should
be applied. Hence, this software product supports both
scaling up and scaling out both of which are limited only by
the available resources and the imagination of the
administrator of the product.

H. Maintainability Testing/Assessment

ACPS DSF requires near zero maintenance for the
middleware / distributed system software level since only
new sensor drivers need to be developed for new sensor
types. The universal critical services can be mixed and
matched to provide all of the system level capabilities ACPS
will ever need. Hence, at this level, it is a complete product
and is expected to be used like a commercial of the shelf
product.

250Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 7. Finding utilization of 1.0

I. Extensibility Testing/Assesment

At the distributed application software level, ACPS DSF
is expected to be extended throughout its entire lifespan. It
has a service oriented architecture using publish/subscribe
interaction pattern. Also, it has object-oriented design.
Anyone can extend ACPS DSF both at the middleware /
system and at the application level.

J. Usability Testing/Assessment

ACPS DSF is very easy to use once a user learns how to
configure it, which is also easy. Basically, once it is
configured, due to self-healing feature of autonomic
computing, no human monitoring of the software is required.
As a matter of fact, it can be considered as a fire and forget
software system.

K. Security Testing

As of now, all user input is through button clicks.
Web/Cloud application is completely decoupled from the

middleware. Security was taken in to account throughout the
entire design and development cycle. Also, no nice-to-have
features were implemented, which often lead to security

holes. Overall, ACPS DSF is highly a secured software
product, however, the Web/Cloud app could have
vulnerability in that user could try SQL injection from the
address bar. At the same time, these critical web pages are
not expected to be exposed to the general public but only
restricted to the B2 employees. It would be nice to have a
team of ethical hackers try to compromise it and provide
further insight into security issues (if any) of the Web/Cloud.
For now, no further tests were done.

VI. EXPERIMENTATION, RESULTS, AND DISCUSSION

From all of the testing conducted in Section Error!
Reference source not found., it is evident that not only does
ACPS DSF meets all of the functional and non-functional
requirements of B2 LEO, but exceeds them by more than
10x. In B2 server setup, one deployed instance of ACPS
DSF is already demonstrating capability to serve more than
10 hill slopes. The calculation for this load multiplier for the
present experimental configuration on B2 LEO is provided
in Error! Reference source not found.. Even with these
experiments, it is evident from the resource usage profiles
that the machine is not fully utilized. This is indeed an
exploratory analysis. From this analysis, a theory is
established that ACPS DSF have the capability by far more
than 10x. To test the theory, a confirmatory analysis is
conducted using Queuing Theory [20].

TABLE I. LOAD MULTIPLIER CALCULATION

 Actual

system

Experimental

emulated system

Experimental

physical system

Sensor

Measurement

File

interarrival

time (minutes)

tactual = 10 temulated = 1.5 tphysical = 2

Number of

cRIO
nactual = 3 nemulated = 3 nphysical = 3

Load

multiplier
(tactual /

tactual) *

(nactual /

nactual) = 1

(tactual / temulated)

* (nemulated /

nactual) = 6.67

(tactual / tphysical)

* (nphysical /

nactual) = 5

Total load

multiplier

(emulated +

physical)

N / A (tactual / temulated) * (nemulated /

nactual) + (tactual / tphysical) *

(nphysical / nactual) = 11.67 > 10

The Source Folder in File System can be considered as a

queue where sensor measurement files arrive. The time it
takes to process each measurement file, depends upon the
amount of data it has, which in turn depends upon the
number of sensors connected to the particular cRIO (X, Y, or
Z). cRIO Y has the most number of sensors (little more than
1000). The time taken to process a measurement file from
cRIO Y in the current B2 server is about 4s. For cRIO X, Z,
the time taken is negligible. However, let us take the
maximum service time for all of the measurement files X, Y,
and Z. Hence, the interarrival rate, λ, is 3 measurement files
every (10 * 60) seconds, and the service rate, μ, is 3
measurement files every 12 seconds. The utilization of server
is given by equation (Error! Reference source not found.).

251Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 8. Graph of utilization vs. number of hill slopes

 ρ λμ

By entering this information in an Excel Spreadsheet, the
number of hill slopes for which utilization of the current
system becomes one is found as shown in Figure 7.

According to this calculation, the current system will attain
an utilization of 1.0 when a load of 50 hill slopes i.e. 150
cRIO is provided (assuming they have the same size of
sensor measurement files i.e. same number of sensors
attached). A graph of utilization vs. number of hill slopes is
also provided in Figure 8. It is evident that the system will
have utilization of 0.9 for 45 hill slopes, even this is way
more than the amount of load each cyber system is expected
to have when augmented sensors are introduced in future. In
order to simulate a 45x load, the cRIOEmulators (X, Y, and
Z) can be configured with lower interarrival time and verify
that the cyber system is still stable. Hence, an experiment is
conducted with each cRIOEmulators configured to have an
interarrival time of 600 / 45 = 13.33 seconds on B2 server
‘Publisher’ machine and are configured to use a development
shared folder so that the files from physical cRIOs are not
included in the experiment. The outcome of this experiment
is exactly as expected. The queue (source folder) goes almost
full, then Physical2Cyber completes processing them all and
as soon as it finishes, more measurements file arrive. This is
an excellent utilization (0.9) of the ‘Publisher’ machine and
this utilization represents 45 hill slopes. This experiment
confirms the theory that ACPS DSF is not only capable of
meeting the non-functional requirements but goes above and
beyond—it has the ability to process the load of as many as
45 hill slopes with a server utilization of 0.9 and each hill
slope having three cRIOs with each cRIO connected to about
1100 sensors (i.e. a total of about 45 * 3 * 1100 = 148,500
sensors).

It is important to note that to load measurement file from
cRIO Y from Amazon cloud to LEO database server, it took
about 4 minutes. Hence, both the ACPS DSF and database
are highly optimized. The network latency is a major
bottleneck and should be resolved by locating databases as
close to the cRIO as possible to reduce latency.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this was a very exciting and challenging
project. Turning various ideas into reality, shaping the ideas
and finding the best architecture, design, and implementation
with the perfect technology mix was a great accomplishment
in an interdisciplinary team like this, where maintaining
concept consistency itself was a great challenge. ACPS DSF
provide the ultimate technical solution for B2 LEO so that it
can now focus on integrating computational models with the
confidence that the underlying middleware / distributed
system software is organized physically into the standard
system architecture will always provide the performance and
the reliability, robustness, fault-tolerance, scalability, and
extendibility it needs. This ACPS DSF provide the strategic
directions for all kinds of application development—
applications that all fit into the distributed software
framework. No more maintenance is needed (at the
distributed system software level) once all of the different
sensor types are purchased, and all of the sensor drivers are
developed. OpenSplice DDS and Oracle Database make real-
time, near-real-time, and offline analyses possible.
Moreover, this optimum technology mix found through this
research project resolves all of the critical technological
risks. The best architecture, design, and implementation
methods are clearly demonstrated through this distributed
software framework, which is expected to last for the entire
life-span of B2 LEO project of about 10 years. In this
research project how Matlab can be used creatively to
generate plots that can be delivered over the web through
simple techniques as just pooling plot files generated by
Matlab from JSP pages using auto refresh mechanism is
clearly demonstrated. Such simple mechanisms allow thin
clients to access all of the applications as a service over
web/cloud. The audio alarm in addition to text alarm are
extremely helpful and provide such off-site monitoring of
sensor from anywhere in the world with just a portable
device with internet connection and a browser. This Service
Oriented Architecture allows very loose coupling enabling
each subsystem to decouple from one another. In case of
maintenance only the required machines can be turned down
for maintenance ACPS DSF can be configured to auto-start.
The Source folder where all files are dropped from the
physical system act as a queue, and the Sink folder where all
data and plots are dropped serve as a shared memory. The
Source folder decouples the physical system from the
middleware, and the Sink folder decouples any application
from the middleware. Likewise the database also decouples
applications from the middleware. Hence, any physical
system application and/or any application software do not
have to know the details of the middleware, but need to
know how to access text files, pictures, and database. The
middleware in the meantime provide all of the non-
functional capabilities that B2 LEO ACPS will ever need.

Overall, ACPS DSF resolves all of the technology risks
by providing the middleware and by providing efficient
application solutions; it provides concept consistency
through the framework in which all future applications can
evolve. ACPS DSF is a very successful real-time product

252Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

with meets all of the functional and non-functional
requirements. As a matter of fact, since one instance of
ACPS DSF can handle the load of as many as 45 hill slopes
having a total of 148,500 sensors with a utilization of 0.9, B2
LEO will never have to worry about any development in
ACPS DSF middleware / distributed system software. Also,
the hope is that JUP will add value to both industry and
academia for software engineering of self-managing
distributed software systems.

Future work consists of extending ACPS DSF by
building new applications at the distributed application level.
The immediate next set of work include creating services
that read data from database and transform them into
NetCDF format so that the very first model known as Kathy
can be run for analysis. Along with the models simulation,
new visualizations will be required. From there, it will all
depend upon the priorities and progress of other new models.
If there is new sensor types, drivers for them should be
developed. Any change to ACPS DSF middleware /
distributed system software is neither expected nor
recommended. ACPS DSF is a finished product and should
be used like a commercial-of-the-shelf software framework.

ACKNOWLEDGMENT

Thanks to Biosphere 2 LEO for funding this research and
development.

REFERENCES

[1] P. Kruchten, The Rational Unified Process: An Introduction (2nd

Edition), Addison-Wesley Professional, 2000.

[2] NSF, Cyberinfrastructure Vision for 21st Century Discovery, National

Science foundation Cyberinfrastructure Council, 2007.

[3] A. S. Tanebaum and M. V. Steen, Distributeds Systems: Principles

and Paradigms (2nd edition), Upper Saddle River: Pearson, Prentice
Hall, 2006.

[4] P. Veríssimo and L. Rodrigues, Distributed Systems for System
Architects, Springer, 2001.

[5] J. Kephart, "The vision of autonomic computing," Computer, vol. 36,

no. 1, pp. 41-50, 2003.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, and G. Lee, "A View of Cloud Computing,"

Communications of the ACM, vol. 53, no. 4, pp. 50-58, 04 2010.

[7] M. Butrico and D. Da Silva, "Toward a Unified Ontology of Cloud

Computing," in Grid Computing Environments workshop, Santa

Barbara, 2008.

[8] G. Pardo-Castellote, "OMG Data-Distribution Service: architectural

overview," in Distributed Computing Systems Workshops, 2003.

[9] "OpenSplice DDS Overview," PrismTech, [Online]. Available:
http://www.prismtech.com/opensplice/products/opensplice-dds-

overview. [retrieved: September, 2012].

[10] B. W. Bohem, "A spiral model of software development and
enhancement," Computer, vol. 21, no. 5, pp. 61-72, 1988.

[11] M. Poppendieck and P. Tom, Lean Software Development: An Agile

Toolkit, Upper Saddle River: Addison Wesley, 2003.

[12] S. Schach, Object-Oriented Software Engineering, McGraw-Hill

Science/Engineering/Math, 2007.

[13] S. Islam, A. Robertson, C. M. Kartchner, D. V. Sickinger, and J. L.
Eyre, "Situational Awareness Detection and Warning for Airport

Operations," The University of Arizona., Tucson, 2010.

[14] "Data Distribution Service Portal," Object Management Group,
[Online]. Available: http://portals.omg.org/dds/. [retrieved:

September, 2012].

[15] "Java SE Overview - at a Glance," Oracle, [Online]. Available:
http://www.oracle.com/technetwork/java/javase/overview/index.html.

[retrieved: September, 2012].

[16] "Oracle Database 11g Release 2," Oracle, [Online]. Available:
http://www.oracle.com/technetwork/database/enterprise-

edition/overview/index.html. [retrieved: September, 2012].

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley

Professional, 1994.

[18] S. McConnell, Code complete: A Practical Handbook of Software

Construction (2nd Edition), Microsoft Press, 2004.

[19] N. E. Fenton and S. L. Pfleege, Software Metrics: A Rigorous and

Practical Approach, Revised (2nd edition), Course Technology, 1998.

[20] L. L. Peterson and B. S. Davie, Computer Networks, Elsevier Science,

2007.

253Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

	I. Introduction
	II. Literature Review
	A. Distributed Systems
	B. Autonomic Computing
	C. Cloud Computing
	D. OMG Data Distribution Service

	III. Methodology
	IV. Requirements, Architecture, and Design
	A. Requirements
	B. System Architecture
	C. Software Architecture
	D. Design Overview
	E. Class Design
	F. Message Structure Design
	G. Database Design

	V. Testing, Results, And Discussion
	A. Testing Overview
	B. System Testing—Biosphere 2 LEO Server Deployment
	C. System Testing—Amazon Web Services/Cloud Deployent
	D. Reliability Testing
	E. Robustness Testing
	F. Fault-tolerance Testing
	G. Scalability Testing
	H. Maintainability Testing/Assessment
	I. Extensibility Testing/Assesment
	J. Usability Testing/Assessment
	K. Security Testing

	VI. Experimentation, Results, And Discussion
	VII. Conclusion and Future Work
	Acknowledgment
	References

