
Implementation of Business Processes in Service Oriented Architecture

Krzysztof Sacha and Andrzej Ratkowski
Warsaw University of Technology

Warszawa, Poland
{k.sacha, a.ratkowski}@ia.pw.edu.pl

Abstract—The paper develops a method for transformational
implementation of business processes in a service oriented
architecture. The method promotes separation of concerns and
allows making business decisions by business people and
technical decisions by technical people. To achieve this goal, a
description of a business process designed by business people is
automatically translated into a program in Business Process
Execution Language, which is then subject to a series of
transformations developed by technical people. The
transformations are selected manually and executed by an
automatic tool. Each transformation changes the process
structure to improve the quality characteristics. The method
applies a correct-by-construction approach and defines a set of
transformations, which do not change the process behavior.
The quality of the process implementation is assessed using a
set of metrics.

Keywords-business process; BPEL language; service
oriented architecture; SOA; transformational implementation.

I. INTRODUCTION
A business process is a set of logically related activities

performed to achieve a defined business outcome [1]. The
structure of a business process and the ordering of activities
reflect business decisions made by business people and,
when defined, can be visualized using an appropriate
notation, e.g., Business Process Model and Notation [2] or
the notation of ARIS [3]. The implementation of a business
process on a computer system is expected to exhibit the
defined behavior at a satisfactory level of quality. Reaching
the required level of quality may need decisions, made by
technical people and aimed at restructuring of the initial
process in order to benefit from the characteristics offered by
an execution environment. The structure of the
implementation can be described using another notation of,
e.g., Business Process Executable Language [4] or UML
activity diagrams [5].

This paper describes a transformational method for
implementing business processes in a service oriented
architecture (SOA). The method begins with an initial
definition of a business process, written by business people
using Business Process Modeling Notation (BPMN). The
business process is automatically translated into a program in
Business Process Executable Language (BPEL), called a
reference process. The program is subject to a series of
transformations, each of which preserves the behavior of the
reference process, but changes the order of activities, as

means to improve the quality of the process implementation,
e.g., by benefiting from the parallel structure of services.
Transformations applied to the reference process are selected
manually by human designers (technical people) and
performed automatically, by a software tool. When the
design goals have been reached, the iteration stops and the
result is a transformed BPEL process, which can be executed
on a target SOA environment.

Such an approach promotes separation of concerns and
allows making business decisions by business people and
technical decisions by technical people.

A critical part of the method is providing assurance on
the correctness of the transformation process. In this paper
we apply a correct-by-construction approach, and define a
set of safe transformations, which do not change the process
behavior. If each transformation is safe, the resulting
program will also be correct, i.e., semantically equivalent to
the original reference process.

The rest of this paper is organized as follows. Related
work is briefly surveyed in Section II. The semantics of a
BPEL process and its behavior are defined in Section III. An
illustrative case study is provided in Sections IV and VI.
Safe transformations are introduced in Section V. Quality
metrics to assess transformation results are described in
Section VII. Conclusions and plans for future research are
given in Section VIII.

II. RELATED WORK
Transformational implementation of software is not a

new idea. The approach was developed many years ago
within the context of monolithic systems, with the use of
several executable specification techniques. The formal
foundation was based on problem decomposition into a set of
concurrent processes, use of functional languages [6] and
formal modeling by means of Petri nets [7].

An approach for transformational implementation of
business processes was developed in [8]. This four-phase
approach is very general and not tied to any particular
technology. Our method, which can be placed in the fourth
phase (implementation), is much more specific and focused
on the implementation of runnable processes described in
BPMN and BPEL.

BPMN defines a model and a graphical notation for
describing business processes, standardized by OMG [2].
The reference model of SOA [9,10] and the specification of
BPEL [4] are standardized by OASIS. An informal mapping
of BPMN to BPEL was defined in [2] and a comprehensive

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

discussion of the translation between BPMN and BPEL can
be found in [11,12]. An open-source tool is available for
download at [20].

The techniques of building program dependence graph
and program slicing, which we adopted for proving safeness
of transformations, were developed in [13,14] and applied to
BPEL programs in [15].

Quality metrics to measure parallel programs have been
studied for many years. A traditional tool for measuring
performance of a parallel application is Program Activity
Graph, which describes parallel flow of control within the
application [16]. We do not use this graph, nevertheless, our
metrics Length of thread and Response time can be viewed
as an approximation of Critical path metric described in [16].
Similarly, our Number of threads metric is similar to
Available concurrency defined in [17].

Our work on the implementation of business processes in
a service oriented architecture is to the best of our
knowledge, original. An early version of our approach was
published in [18]. A definition of safeness, an extended set of
transformations, the proofs of transformation safeness, a
revised algorithm for building program dependence graph
and performance metrics are introduced in this paper.

III. THE SEMANTICS OF A BUSINESS PROCESS
A business process is a collection of logically related

activities, performed in a specific order to produce a service
or product for a customer. The activities can be implemented
on-site, by local data processing tasks, or externally, by
services offered by a service-oriented environment. The
services can be viewed from the process perspective as the
main business data processing functions.

A specification of a business process can be defined
textually, e.g., using a natural language, or graphically, using
Business Process Modeling Notation. An example BPMN
process, which shows a simplified processing of a bank
transfer order is shown in Fig. 1. The process begins, and
waits for an external invocation from a remote client
(another process). When the invocation is received, the
process extracts the source and the target account numbers
from the message, checks the availability of funds at source
and splits into two alternative branches. If the funds are
missing, the process prepares a negative acknowledgement
message, replies to the invoker and ends. Otherwise, the
alternative branch is empty. Then, the process invokes the
withdraw service at source account, invokes the deposit
service at target account, packs the results returned by the

two services into a single reply message, replies to the
invoker and ends. This way, the process implements a
service, which is composed of another services.

BPMN specification of a business process can be
automatically translated into a BPEL program, which can be
used for a semi-automatic implementation.

 BPEL syntax is composed of a set of instructions, called
activities, which are XML elements indicated in the
document by explicit markup. The set of BPEL activities is
rich. However, in this paper, we focus on a limited subset of
activities for defining control flow, service invocation and
basic data handling.

The body of a BPEL process consists of simple activities,
which are elementary pieces of computation, and structured
elements, which are composed of other simple or structured
activities, nested in each other to an arbitrary depth. Simple
activities are <assign>, which implements substitution,
<invoke>, which invokes an external service, and <receive>,
<reply> pair, which receives and replies to an invocation.
Structured activities are <sequence> element to describe
sequential execution, <flow> element to describe parallel
execution and <if> alternative branching. An example BPEL
program, which implements the business process in Fig. 1, is
shown in Fig. 2. Name attribute will be used to refer to
particular activities of the program in the subsequent figures.

The first executable activity of the program is <receive>,
which waits for a message that invokes the process execution
and conveys a value of the input argument. The last activity
of the process is <reply>, which responds to the invocation
and sends a message that returns the result. The activities
between <receive> and <reply> execute a business process,
which invokes other services and transforms the input into
the output. This is a typical construction of a BPEL process,
which can be viewed as a service invoked by other services.

SOA services are assumed stateless [19], which means
that the result of a service execution depends only on values
of data passed to the service at the invocation, and manifests
to the outside world as values of data sent by the service in
response to the invocation. Therefore, we assume that the
observable behavior of a process in a SOA environment
consists of data values, which the process passes as
arguments when it invokes external services, and data values,
which it sends in reply to the invoker.

To capture the influence of a process structure into the
process behavior, we use a technique called program slicing
[13,14], which allows finding all the instructions in a
program, which influence the value of a variable in a specific

Extract source
account no

Extract target
account no

Check funds
at source

Prepare
negative ack

Empty

Pack the
results

Withdraw at
source

Deposit at
target

Figure 1. BPMN specification of a business process

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

point of the program. For example, finding the instructions,
which influence the value of a variable that is used as an
argument by a service invocation activity or by a reply
activity of the process.

The conceptual tool for the analysis is Program
Dependence Graph (PDG), which nodes are activities of a
BPEL program, and edges reflect dependencies between the
activities. An algorithm for constructing PDG of a BPEL
program consists of the following steps:
1. Define nodes of the graph, which are activities at all

layers of nesting.
2. Define control edges (solid lines in Fig. 3), which follow

the nested structure of the program, e.g., an edge from
<sequence> to <if> shows that <if> activity is nested
within the <sequence> element. Output edges of <if>
node are labeled "Yes" or "No", respectively.

3. Define data edges (dashed lines in Fig. 3), which reflect
dataflow dependencies between the activities, e.g., an
edge from activity "rcv" to activity "src" shows that an
output variable of "rcv" is used as input variable to "src".

4. Convert "Yes" and "No" edges that output <if> activities
into data edges (Fig. 3).

5. Add data edges from <receive> activity, which is nested
within a <sequence> element, to each subsequent activity
of this <sequence> such that no paths from <receive> to
this activity exists (there are no such items in Fig. 3).
Data edges within a program dependence graph reflect

the dataflow dependencies between activities, which
determine values of the program variables. Data edges added
in step 5 reflect the semantics of the process as a service,
which starts after receiving an invocation message. The flow
of control within a BPEL program complies with data edges
of its program dependence graph.

In the rest of this paper we adopt a definition that a
transformation preserves the process behavior, if it keeps the
set of messages sent by the process as well as the data values
carried by these messages unchanged. Such a definition
neglects the timing aspects of the process execution. This is
justified, given that it does not change the business
requirements. There are many delays in a SOA system and
the correctness of software must not relay on a specific order
of activities, unless they are explicitly synchronized.

A transformation, which preserves the process behavior
will be called safe.

Definition (Safeness of a transformation)
A transformation is safe, if the set of messages sent by

the activities of a program remains unchanged and the flow
of control within the transformed program complies with the
direction of data edges within the program dependence graph
of the reference process. □

The set of activities executed within a program may vary,
depending on decisions made when passing through decision
points of <if> activities. To fulfill the above definition, the
set of messages must remain unchanged, for each particular
combination of these decisions.

A path composed of data edges in a program dependence
graph reflects the data flow relationships between the
activities, and implies that the result of the activity at the end

of the path depends only on the preceding activities on this
path. If the succession of activities executed within a
program complies with the data edges, then the values of
variables computed by the program remain the same,
regardless of the ordering of other activities of this program.

Safeness of a transformation guarantees that the
transformation preserves the behavior of the transformed
program as observed by other services in a SOA
environment. Safeness is transitive and a sequence of safe
transformations is also safe. Therefore, a process resulting
from a series of safe transformations applied to a reference
process preserves the behavior of the reference process.

IV. CASE STUDY
Consider a process of transferring funds between two

different bank accounts, shown in Fig. 1, implemented by a
BPEL process.

The process body is a sequence of activities, which starts
at <receive>. Then, it proceeds through a series of steps to

<sequence>
 <receive name="rcv" variable="transfer"/>
 <assign name="src">
 <copy> <from variable="transfer" part="srcAccNo"/>
 <to variable="source" part="account"/> </copy>
 <copy> <from variable="transfer" part="srcAmount"/>
 <to variable="source" part="amount"/> </copy>
 </assign>
 <assign name="dst">
 <copy> <from variable="transfer" part="dstAccNo"/>
 <to variable="target" part="account"/> </copy>
 <copy> <from variable="transfer" part="dstAmount"/>
 <to variable="target" part="amount"/> </copy>
 </assign>
 <invoke name="verify" inputVariable="source"
 outputVariable="fundsAvailable"/>
 <if> <condition> $fundsAvailable.res </condition>
 <empty name="empty"/>
 <else> <sequence>
 <assign name="fail">
 <copy> <from> 'lack of funds' </from>
 <to variable="response" part="fault"/> </copy>
 </assign>
 <reply name="nak" variable="response"/>
 <exit name="exit"/>
 </sequence> </else> </if>
 <invoke name="withdraw" inputVariable="source"
 outputVariable="wResult"/>
 <invoke name="deposit" inputVariable="target"
 outputVariable="dResult"/>
 <assign name="success">
 <copy> <from variable="wResult" part="res"/>
 <to variable="result" part="withdraw"/> </copy>
 <copy> <from variable="dResult" part="res"/>
 <to variable="result" part="deposit"/> </copy>
 </assign>
 <reply name="ack" variable="result"/>
</sequence>

Figure 2. A skeleton of a BPEL program of a bank transfer (Fig. 1)

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

process the received bank transfer order and to invoke
services offered by the banking systems to verify availability
of funds at source account, to withdraw funds and to deposit
the funds at the destination account. Finally, it ends after
replying positively, if the transfer has successfully been
done, or negatively, if the required amount of funds was not
available at source. A skeleton of the simplified BPEL
program of this process is shown in Fig. 2.

PDG of this program is shown in Fig. 3. The first two
<assign> activities process the contents of the received
message in order to extract the source and destination
account numbers and the amount of money to transfer.
Therefore, there are data edges from "rcv" to "src" and to
"dst" nodes in PDG. The next consecutive <invoke> activity
uses the extracted source account number and the amount of
money to invoke the verification service, and the response of
the invocation is checked by <if> activity. Therefore, two
data edges from src to verify and from verify to <if> exist in
the graph. Similarly, the <invoke> activities named
"withdraw" and "deposit" use the account numbers
calculated by "src" and "dst", respectively. Two data edges
from "withdraw" and "deposit" nodes to "success" node, and
then an edge from "success" to "ack", reflect the path of
preparing the acknowledgement message that is sent to the
invoker when the transfer is finished.

V. TRANSFORMATIONS
The body of a BPEL process consists of simple activities,

e.g., <assign>, which define elementary pieces of
computation, and structured elements, e.g., <flow>, which is
composed of other simple or structured activities. The
behavior of the process results from the order of execution of
activities, which stem from the type of structured elements

and the positioning of activities within these elements. A
transformation applies to a structured element and consists in
replacing one element, e.g., <flow>, by another element, e.g.,
<sequence>, or in relocation of activities within the
structured element. If the behavior of the transformed
element before and after the transformation is the same, then
the behavior of the process stands also unchanged.

Several transformations have been defined. The basic
ones: Simple and alternative displacement, parallelization
and serialization of the process operations, and process
partitioning are described in detail below. All the
transformations are safe, according to definition of safeness
given in Section III. As pointed out in Section III, a safe
transformation does not change the behavior of a process,
which is composed of stateless services. A problem may
arise, if the services invoked by a process have an impact on
the real world. If this is the case, a specific ordering of these
services may be required. In our approach, a designer can
express the necessary ordering conditions adding
supplementary edges to the program dependence graph.
Transformation 1: Simple displacement

Consider a <sequence> element, which contains n
arbitrary activities executed in a strictly sequential order.
Transformation 1 moves a selected activity A from its
original position i, into position j within the sequence.
Theorem 1. Transformation 1 is safe, if no paths between
activity A and the activities placed on positions i+1, … j in
the sequence existed in the program dependence graph of the
transformed program.

<sequence>

Proof: Assume that i < j (move forward). The
transformation has no influence on activities placed on
positions lower than i or higher than j. However, moving
activity A from position i to j reverts the direction of the flow
of control between A and the activities that are in-between.
This could be dangerous if a data flow from A to those
activities existed. However, if no data paths from A to the
activities placed on positions i+1, … j existed in the program
dependence graph, then no inconsistency between the control
and data flow can exist.

If j < i (move backward), the proof is analogous. The lack
of data path guarantees lack of inconsistency between the
data and control flows within the program. □
Transformation 2: Pre-embracing

Consider a <sequence> element, which includes an <if>
element preceded by an <assign> activity, among others.
Branches of <if> element are <sequence> elements.
Transformation 2 moves <assign> activity from its original
position in the outer <sequence>, into the first position
within one branch of <if> element.
Theorem 2. Transformation 2 is safe, if neither a path from
the moved <assign> to an activity placed in the other branch
of <if>, nor a path from the moved <assign> to the activities
positioned after <if> in the outer sequence, existed in the
program dependence graph of the transformed program.

Proof: The transformation has no influence on activities
placed prior to <if> element in the outer <sequence>.
Moving <assign> activity to one branch of <if> removes the
flow of control from <assign> to activities in the other
branch of <if> and – possibly – to activities placed after

"dst"

"withdraw" "ack" "deposit" "success"

"empty"

<sequence>

"fail" "nak"

"exit"

"verify"

"src"

<if>

"rcv"

Y N

Figure 3. Program dependence graph of the bank transfer process

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

<if>. But according to the assumption of this theorem, there
is no data flow between these activities. Therefore, no
inconsistency between the control and data flow can exist. □

<invoke name="xxx" (a)
 inputVariable="source" outputVariable="target"
/>

<sequence> (b)
 <invoke name="xxx_i" inputVariable="source"/>
 <receive name="xxx_r" variable="target"/>
</sequence>

Figure 4. Synchronous (a) and asynchronous service invocation (b)

Transformation 3: Post-embracing
Consider a <sequence> element, which includes an <if>

activity followed by a number of another activities. Branches
of <if> element are <sequence> elements, one of which
contains <exit> activity. Transformation 3 moves the
activities, which follow <if>, from its original position in the
outer <sequence> into the end of the second <sequence> of
<if> element.
Theorem 3. Transformation 3 is safe.

Proof: Activities, which are placed after an <if> element
in the reference process, are executed only after the
execution of <if> is finished. The existence of <exit> in one
branch of <if> prevents execution of these activities when
this branch is selected. The activities are executed only in
case the other branch is selected. Therefore, neither the flow
of control nor the flow of data is changed in the program,
when the activities are moved to the other branch of <if>,
i.e., the branch without <exit> activity. □
Transformation 4: Parallelization

Consider a <sequence> element, which contains n
arbitrary activities executed in a strictly sequential order.
Transformation 4 parallelizes the execution of activities by
replacing <sequence> element by <flow> element composed
of the same activities, which – according to the semantics of
<flow> – are executed in parallel.
Theorem 4. Transformation 4 is safe, if for each pair of
activities Ai , Aj neither a path from Ai to Aj nor a path from Aj
to Ai existed in the program dependence graph of the
transformed program.

Proof: The transformation changes the flow of control
between the activities of the transformed element. The lack
of data paths between these activities means that no
inconsistency between the control and data flow can exist. □
Transformation 5: Serialization

Consider a <flow> element, which contains n arbitrary
activities executed in parallel. Transformation 5 serializes the
execution of activities by replacing <flow> element by
<sequence> element, composed of the same activities, which
are now executed sequentially.
Theorem 5. Transformation 5 is safe.

Proof: The proof is obvious. Parallel commands can be
executed in any order, also sequentially.
Transformation 6: Asynchronization

Consider a two-way <invoke> activity, which sends a
message to invoke an external service and then waits for a
response (Fig. 4a). Transformation 6 replaces the two-way
<invoke> activity with a sequence of a one-way <invoke>
activity followed by a <receive> (Fig. 4b). This way, a
synchronous invocation of a service is converted into an
asynchronous one.

Transformation 6 can be proved safe, if we add a data
edge from <invoke> node to <receive> node in the program
dependence graph of each program, which includes an
asynchronous service invocation shown in Fig. 4b.
Theorem 6. Transformation 6 is safe.

Proof: The transformation has no influence on activities
executed prior to <invoke> activity. Data edges from these
activities to <invoke> remain unchanged. The transformation
has no influence on activities executed after <invoke>, as
well. Data edges to these activities from <invoke> are
redirected to begin at node <receive>. Hence, there is a one-
to-one mapping between the sets of data paths, which exist in
program dependence graph of a program before and after the
transformation. Therefore, no inconsistency between the
control and data flow can exist.

Transformations 1 through 6 can be composed in any
order, resulting in a complex transformation of the process
structure. Transformations 7 and 8 play an auxiliary role and
facilitate such a composition. These transformations are safe,
because they do not change the order of execution of any
activities within a BPEL program. □
Transformation 7: Sequential partitioning

Transformation 7 divides a single <sequence> element
into a nested structure of <sequence> elements (Fig. 5a).
Transformation 8: Parallel partitioning

Transformation 8 divides a single <flow> element into a
nested structure of <flow> elements (Fig. 5b).

<sequence> (a) <flow> (b)
 <sequence> <flow>
 <C1> </C1> <C1> </C1>

 <Ck> </Ck> <Ck> </Ck>
 </sequence> </flow>
 <sequence> <flow>
 <Ck+1> </Ck+1> <Ck+1> </Ck+1>

 <Cn> </Cn> <Cn> </Cn>
 </sequence> </flow>
</sequence> </flow>

Figure 5. Sequential (a) and parallel (b) partitioning of commands

VI. CASE STUDY (CONTINUED)
Consider BPEL program of a bank transfer process

described in Section IV. The analysis of the program
dependence graph in Fig. 3 reveals that no data flow path
between activity named "dst" and the next two activities
"src" and "verify" exists in the graph. Therefore, these
activities can be executed in parallel. Similarly, there is no
data flow path between two consecutive <invoke> activities
"withdraw" and "deposit". These two activities can also be
executed in parallel.

133Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

To perform these changes, we can partition the outer
<sequence> element using transformation 6 three times, and
then parallelize the program structure using transformation 4
twice. A skeleton of the resulting BPEL program is shown in
Fig. 6. Only names of the activities are shown in Fig. 6. The
variables used by the activities are omitted for brevity.

However, this is not the only way of transformation.
Alternatively, the designer can displace "dst" forward, just
before <if> activity, and then use transformation 2 in order to
enter "dst" to the inside of <if> in place of <empty> activity.
Next, transformation 3 can be used to embrace the last three
activities of the outer <sequence> element into the first
branch of <if> element, consecutively following "dst". Then,
the designer can move "dst" forward, adjacent to "deposit",
partition the inner sequence of <if> using transformation 6,
and parallelize the program structure using transformation 4.
A skeleton of the resulting BPEL program is shown in Fig. 7.
We removed "exit" activity from the final program, because
it is obviously redundant at the end of the program.

The main advantage of the transformed process over the
original one is higher level of parallelism, which can lead to
better performance of the program execution. If we compare
the two alternative designs, then intuition suggests that the
structure of the second process is better than of the first one.
In order to verify this impression, the reference process and
the transformed processes can be compared to each other,
with respect to a set of quality metrics. Depending on the
results, the design phase can stop, or a selected candidate (a
transformed process) can be substituted as the reference
process for the next iteration of the design phase.

<sequence>
 <receive name="rcv"> - receive order
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds
 <if>
 <condition> ... </condition> - check availability
 <sequence>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <sequence>
 <assign name="dst"> - extract dst. no
 <invoke name="deposit"> - deposit funds
 </sequence>
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
 </sequence>
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 </sequence> </else>
 </if>
</sequence>

Figure 7. A skeleton of the transformed bank transfer process – variant II

<sequence>
 <receive name="rcv"> - receive transfer order
 <flow>
 <assign name="dst"> - extract destination no
 <sequence>
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds at source
 </sequence>
 </flow>
 <if>
 <condition> ... </condition> - check availability
 <empty name="empty"> - do nothing if available
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 <exit name="exit"> - end of execution
 </sequence> </else>
 </if>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <invoke name="deposit"> - deposit funds
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
</sequence>

Figure 6. A skeleton of the transformed bank transfer process – variant I

VII. QUALITY METRICS
Many metrics to measure various characteristics of

software have been proposed in literature [16,17]. In this
research we use simple metrics that characterize the size of a
BPEL process, the complexity and the degree of parallel
execution. The value of each metric can be calculated using a
program dependence graph.

The size of a process is measured as the number of
simple activities in a BPEL program. More precisely, the
value of this metric equals the number of leaf nodes in the
program dependence graph of a BPEL process. For example,
the size of the processes shown in Fig. 2 and 6 is 12, while
the size of the process in Fig. 7 equals 10.

Leaf nodes are simple activities, which perform the
processing of data. Therefore, the value of the process size
metric could be considered a measure of the amount of work,
which can be provided by the process. However, smaller
number of this metric may result from removing excessive,
unstructured activities, like <empty> and <exit>. This is the
case of program in Fig. 7.

The complexity of a process is measured as the total
number of nodes in PDG. For example, size of the process
structure of the program shown in Fig. 2 is 15, size of the
process structure of the program in Fig. 6 is 18, and size of
the process structure of the program in Fig. 7 is 16.

The number of nodes in PDG, compared to the size of the
process, describes the amount of excess in the graph, which
can be considered a measure of the process complexity.

The number of threads is measured as the number of
items within <flow> elements of a BPEL program, at all
levels of nesting. A problem with this metric is such that the
number of executed items can vary, depending on values of
conditions within <if> elements. Therefore, the metric is a

134Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

TABLE I. NUMBER OF THREADS METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 1 2 2
NO 1 2 1

vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight of a <flow> element is the sum of

weights assigned to the descending nodes (i.e., nodes
directly nested within the <flow> element),

• the weight of a <sequence> element is the maximum
of weights assigned to the descending nodes (i.e.,
nodes directly nested within the <sequence>
element),

• the weight of an <if> element is the weight assigned
to the activity in this branch of <if>, which is
executed according to a given value of condition
within the <if> element.

The number of executed items can be influenced also by
the presence of <exit> activity, which ends the process
execution. Therefore, the nodes directly nested within a
<sequence> element are ordered in compliance with the
order of execution. Nodes subsequent to a node, which is, or
which comprises, <exit> activity, are not taken into account
in the computation.

The metric value equals the weight assigned to the top
<sequence> node of PDG. Values of the metric for the
processes in Fig. 2, 6 and 7 are shown in Table I. Program
dependence graph and calculation of the metric for the
program in Fig. 6 is shown in Fig. 8 (grey numbers right to
the nodes).

The length of thread is measured as the number of
sequentially executed activities within a BPEL program.
Because the number of executed items can vary, depending
on values of conditions within <if> elements, the metric is a
vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight of a <flow> element is the maximum of

weights assigned to the descending nodes (i.e., nodes
directly nested within the <flow> element),

• the weight of a <sequence> element is the sum of
weights assigned to the descending nodes (i.e., nodes
directly nested within the <sequence> element),

• the weight of an <if> element is the weight assigned
to the activity in this branch of <if>, which is
executed according to a given value of condition
within the <if> element.

Nodes directly nested within a <sequence> element are
ordered in compliance with the order of execution. Nodes
subsequent to a node, which is, or which comprises, <exit>
activity, are not taken into account in the computation.

The metric value equals the weight assigned to the top
<sequence> node of PDG. Values of the metric for the
processes in Fig. 2, 6 and 7 are shown in Table II.

The response time is measured as the sum of estimated
execution times of activities, which are sequentially executed
within a BPEL program. Because the number of executed
items can vary, depending on values of conditions within
<if> elements, the metric is a vector of values, computed for
all combinations of values of these conditions The algorithm
of computation is identical to the algorithm of computation
of the length of thread metric, except of the first point, which
now reads:

• the weight of a simple activity is the estimated
execution time of this activity,

In the simplest case, the estimated execution time can
just differentiate between local data manipulation activity

TABLE II. LENGTH OF THREAD METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 9 7 7
NO 7 6 5

TABLE III. RESPONSE TIME METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 36 25 25
NO 16 15 14

verify

dst

<if>

<sequence>

withdraw

deposit ack

nak

Y
N

<sequence>
Y: 25 / N: 14 Y: 2 / N: 1

src

<sequence>

<flow>

1 1 1 10 1 1

1 10

11

10

11

1

13

1

1

2

1

1 1 1

1

2

2

1

1

1

success
1

rcv

fail

<sequence>

1

Figure 8. Program dependence graph of the program in Fig. 6 and
calculation of metrics: Number of threads (grey numbers right to the

nodes) and length of execution (left to the nodes)

135Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

and a service invocation. Values of the metric for the
processes in Fig. 2, 6 and 7, calculated under an assumption
that a local data manipulation time equals 1, while a service
execution time equals 10, are shown in Table III. Program
dependence graph and calculation of the metric for the
program in Fig. 7 is shown in Fig. 8 (numbers left to the
nodes).

Comparing the values of metrics calculated for the
processes considered in the case study in Sections IV and VI,
one can note that both transformed processes are faster than
the original reference process (smaller value of the response
time metric). Speeding up the process execution is a benefit
from parallel invocation of services in a SOA environment.
Comparing the variants of the transformed bank transfer
process (Fig. 6 and Fig. 7), one can note that the second
variant is a bit faster and simpler (smaller values of the size
metrics). This variant can be accepted by the customer or
used as a new reference process in the next transformation
cycle.

VIII. CONCLUSION AND FUTURE WORK
Defining the behavior of a business process is a business

decision. Defining the implementation of a business process
on a computer system is a technical decision. The
transformational method for implementing business
processes in a service oriented architecture, described in this
paper, promotes separation of concerns and allows making
business decisions by business people and technical
decisions by technical people.

The transformations described in this paper are correct by
construction in that they do not change the behavior of a
transformed process. However, the transformations change
the process structure in order to improve efficiency and
benefit from the parallel execution of services in a SOA
environment. The quality characteristics of the process
implementation are measured by means of quality metrics,
which account for the process size, complexity and the
response time of the process as a service. Other quality
features, such as modifiability or reliability, are not covered
in this paper.

The correct-by-construction approach is appealing for the
implementation designer because it can open the way
towards automatic process optimization. However, the
approach has also some practical limitations. If the external
services invoked by a process have an impact on the real
world, as is usually the case, a specific ordering of these
services may be required, regardless of the dataflow
dependencies between the service invocation activities
within a program. In our approach, a designer can express
the necessary ordering conditions adding supplementary
edges to the program dependence graph. Therefore, the
approach cannot be fully automated and a manual
supervision over the transformation process is needed.

It is also possible that small changes to a process
behavior can be acceptable within the application context.
Therefore, part of our research is aimed at finding a
verification method, capable not only of verifying the

process behavior, but also of showing the designer all the
potential changes, if they exist. The results of this research
are not covered in this paper.

ACKNOWLEDGMENTS
This research was supported in part by the Ministry of

Science and Higher Education under the grant number
5321/B/T02/2010/39.

REFERENCES
[1] T. H. Davenport and J. E. Short, The New Industrial Engineering:

Information Technology and Business Process Redesign, Sloan
Management Review, pp. 11-27 (1990)

[2] OMG, Business Process Model and Notation (BPMN), Version 2.0,
(2011) http://www.omg.org/spec/BPMN/2.0/PDF/ 20.09.2012

[3] A. W. Scheer, ARIS - Business Process Modeling, Springer, Berlin
Heidelberg (2007).

[4] D. Jordan and J. Evdemon, Web Services Business Process Execution
Language Version 2.0. OASIS Standard (2007).

[5] OMG, Unified Modeling Language (UML): Superstructure, V2.1.2,
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF (2007).

[6] P. Zave, An Insider's Evaluation of Paisley. IEEE Trans. Software
Eng., vol. 17 (3), pp. 212-225 (1991)

[7] K. Sacha, Real-Time Software Specification and Validation with
Transnet. Real-Time Systems J., vol. 6, pp. 153-172 (1994)

[8] F. J. Duarte, R. J. Machado, and J. M. Fernandes, BIM: A
methodology to transform business processes into software systems,
SWQD 2012, LNBIP 94, pp. 39-58 (2012)

[9] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
Reference Model for Service Oriented Architecture 1.0. Technical
report, OASIS (2006)

[10] J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, Reference
Architecture for Service Oriented Architecture Version 0.3. Working-
draft, OASIS (2008)

[11] S. A. White, Using BPMN to Model a BPEL Process, BPTrends 3,
pp. 1-18 (2005) www.bptrends.com

[12] J. Recker and J. Mendling, On the Translation between BPMN and
BPEL: Conceptual Mismatch between Process Modeling Languages.
In: T. Latour, M. Petit (Eds.): Proc. 18th International Conference on
Advanced Information Systems Engineering, pp. 521-532 (2006)

[13] M. Weiser, Program slicing. IEEE Trans. Software Eng., 10 (4), pp.
352-357 (1984)

[14] D. Binkley and K. B. Gallagher, Program slicing, Advances in
Computers, 43, pp. 1-50 (1996)

[15] C. Mao, Slicing web service-based software. IEEE International
Conference on Service-Oriented Computing and Applications, IEEE,
pp. 1-8 (2009)

[16] J. K. Hollingsworth and B. P. Miller, Parallel program performance
metrics: A comparison and validation, Proc. ACM/IEEE Conference
on Supercomputing, pp. 4 - 13, IEEE Computer Society Press (1992)

[17] A. S. Van Amesfoort, A. L. Varbanescu, and H. J. Sips, Proc. 15th
Workshop on Compilers for Parallel Computing, pp 1-13 (2010)

[18] A. Ratkowski and K. Sacha, Business Process Design In Service
Oriented Architecture. In: A. Grzech, L. Borzemski, J. Świątek, Z.
Wilimowska (Eds.): Information Systems Architecture and
Technology, pp. 15-24. Wroclaw University of Technology (2011)

[19] T. Erl, Service-oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, Englewood Cliffs (2005)

[20] Bpmn2bpel Project Home, A tool for translating BPMN models into
BPEL processes, http://code.google.com/p/bpmn2bpel/, 22.10.2012

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

