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Abstract—The paper develops a method for transformational 
implementation of business processes in a service oriented 
architecture. The method promotes separation of concerns and 
allows making business decisions by business people and 
technical decisions by technical people. To achieve this goal, a 
description of a business process designed by business people is 
automatically translated into a program in Business Process 
Execution Language, which is then subject to a series of 
transformations developed by technical people. The 
transformations are selected manually and executed by an 
automatic tool. Each transformation changes the process 
structure to improve the quality characteristics. The method 
applies a correct-by-construction approach and defines a set of 
transformations, which do not change the process behavior. 
The quality of the process implementation is assessed using a 
set of metrics. 

Keywords-business process; BPEL language; service 
oriented architecture; SOA; transformational implementation. 

I.  INTRODUCTION 
A business process is a set of logically related activities 

performed to achieve a defined business outcome [1]. The 
structure of a business process and the ordering of activities 
reflect business decisions made by business people and, 
when defined, can be visualized using an appropriate 
notation, e.g., Business Process Model and Notation [2] or 
the notation of ARIS [3]. The implementation of a business 
process on a computer system is expected to exhibit the 
defined behavior at a satisfactory level of quality. Reaching 
the required level of quality may need decisions, made by 
technical people and aimed at restructuring of the initial 
process in order to benefit from the characteristics offered by 
an execution environment. The structure of the 
implementation can be described using another notation of, 
e.g., Business Process Executable Language [4] or UML 
activity diagrams [5]. 

This paper describes a transformational method for 
implementing business processes in a service oriented 
architecture (SOA). The method begins with an initial 
definition of a business process, written by business people 
using Business Process Modeling Notation (BPMN). The 
business process is automatically translated into a program in 
Business Process Executable Language (BPEL), called a 
reference process. The program is subject to a series of 
transformations, each of which preserves the behavior of the 
reference process, but changes the order of activities, as 

means to improve the quality of the process implementation, 
e.g., by benefiting from the parallel structure of services. 
Transformations applied to the reference process are selected 
manually by human designers (technical people) and 
performed automatically, by a software tool. When the 
design goals have been reached, the iteration stops and the 
result is a transformed BPEL process, which can be executed 
on a target SOA environment. 

Such an approach promotes separation of concerns and 
allows making business decisions by business people and 
technical decisions by technical people. 

A critical part of the method is providing assurance on 
the correctness of the transformation process. In this paper 
we apply a correct-by-construction approach, and define a 
set of safe transformations, which do not change the process 
behavior. If each transformation is safe, the resulting 
program will also be correct, i.e., semantically equivalent to 
the original reference process. 

The rest of this paper is organized as follows. Related 
work is briefly surveyed in Section II. The semantics of a 
BPEL process and its behavior are defined in Section III. An 
illustrative case study is provided in Sections IV and VI. 
Safe transformations are introduced in Section V. Quality 
metrics to assess transformation results are described in 
Section VII. Conclusions and plans for future research are 
given in Section VIII. 

II. RELATED WORK 
Transformational implementation of software is not a 

new idea. The approach was developed many years ago 
within the context of monolithic systems, with the use of 
several executable specification techniques. The formal 
foundation was based on problem decomposition into a set of 
concurrent processes, use of functional languages [6] and 
formal modeling by means of Petri nets [7]. 

An approach for transformational implementation of 
business processes was developed in [8]. This four-phase 
approach is very general and not tied to any particular 
technology. Our method, which can be placed in the fourth 
phase (implementation), is much more specific and focused 
on the implementation of runnable processes described in 
BPMN and BPEL. 

BPMN defines a model and a graphical notation  for 
describing business processes, standardized by OMG [2]. 
The reference model of SOA [9,10] and the specification of 
BPEL [4] are standardized by OASIS. An informal mapping 
of BPMN to BPEL was defined in [2] and a comprehensive 
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discussion of the translation between BPMN and BPEL can 
be found in [11,12]. An open-source tool is available for 
download at [20]. 

The techniques of building program dependence graph 
and program slicing, which we adopted for proving safeness 
of transformations, were developed in [13,14] and applied to 
BPEL programs in [15]. 

Quality metrics to measure parallel programs have been 
studied for many years. A traditional tool for measuring 
performance of a parallel application is Program Activity 
Graph, which describes parallel flow of control within the 
application [16]. We do not use this graph, nevertheless, our 
metrics Length of thread and Response time can be viewed 
as an approximation of Critical path metric described in [16]. 
Similarly, our Number of threads metric is similar to 
Available concurrency defined in [17]. 

Our work on the implementation of business processes in 
a service oriented architecture is to the best of our 
knowledge, original. An early version of our approach was 
published in [18]. A definition of safeness, an extended set of 
transformations, the proofs of transformation safeness, a 
revised algorithm for building program dependence graph 
and performance metrics are introduced in this paper. 

III. THE SEMANTICS OF A BUSINESS PROCESS 
A business process is a collection of logically related 

activities, performed in a specific order to produce a service 
or product for a customer. The activities can be implemented 
on-site, by local data processing tasks, or externally, by 
services offered by a service-oriented environment. The 
services can be viewed from the process perspective as the 
main business data processing functions. 

A specification of a business process can be defined 
textually, e.g., using a natural language, or graphically, using 
Business Process Modeling Notation. An example BPMN 
process, which shows a simplified processing of a bank 
transfer order is shown in Fig. 1. The process begins, and 
waits for an external invocation from a remote client 
(another process). When the invocation is received, the 
process extracts the source and the target account numbers 
from the message, checks the availability of funds at source 
and splits into two alternative branches. If the funds are 
missing, the process prepares a negative acknowledgement 
message, replies to the invoker and ends. Otherwise, the 
alternative branch is empty. Then, the process invokes the 
withdraw service at source account, invokes the deposit 
service at target account, packs the results returned by the 

two services into a single reply message, replies to the 
invoker and ends. This way, the process implements a 
service, which is composed of another services. 

BPMN specification of a business process can be 
automatically translated into a BPEL program, which can be 
used for a semi-automatic implementation.  

 BPEL syntax is composed of a set of instructions, called 
activities, which are XML elements indicated in the 
document by explicit markup. The set of BPEL activities is 
rich. However, in this paper, we focus on a limited subset of 
activities for defining control flow, service invocation and 
basic data handling.  

The body of a BPEL process consists of simple activities, 
which are elementary pieces of computation, and structured 
elements, which are composed of other simple or structured 
activities, nested in each other to an arbitrary depth. Simple 
activities are <assign>, which implements substitution, 
<invoke>, which invokes an external service, and <receive>, 
<reply> pair, which receives and replies to an invocation. 
Structured activities are <sequence> element to describe 
sequential execution, <flow> element to describe parallel 
execution and <if> alternative branching. An example BPEL 
program, which implements the business process in Fig. 1, is 
shown in Fig. 2. Name attribute will be used to refer to 
particular activities of the program in the subsequent figures. 

The first executable activity of the program is <receive>, 
which waits for a message that invokes the process execution 
and conveys a value of the input argument. The last activity 
of the process is <reply>, which responds to the invocation 
and sends a message that returns the result. The activities 
between <receive> and <reply> execute a business process, 
which invokes other services and transforms the input into 
the output. This is a typical construction of a BPEL process, 
which can be viewed as a service invoked by other services. 

SOA services are assumed stateless [19], which means 
that the result of a service execution depends only on values 
of data passed to the service at the invocation, and manifests 
to the outside world as values of data sent by the service in 
response to the invocation. Therefore, we assume that the 
observable behavior of a process in a SOA environment 
consists of data values, which the process passes as 
arguments when it invokes external services, and data values, 
which it sends in reply to the invoker.  

To capture the influence of a process structure into the 
process behavior, we use a technique called program slicing 
[13,14], which allows finding all the instructions in a 
program, which influence the value of a variable in a specific 

Extract source 
account no

Extract target 
account no

Check funds 
at source

Prepare 
negative ack

Empty

Pack the 
results

Withdraw at 
source

Deposit at 
target

Figure 1. BPMN specification of a business process 
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point of the program. For example, finding the instructions, 
which influence the value of a variable that is used as an 
argument by a service invocation activity or by a reply 
activity of the process.  

The conceptual tool for the analysis is Program 
Dependence Graph (PDG), which nodes are activities of a 
BPEL program, and edges reflect dependencies between the 
activities. An algorithm for constructing PDG of a BPEL 
program consists of the following steps: 
1. Define nodes of the graph, which are activities at all 

layers of nesting. 
2. Define control edges (solid lines in Fig. 3), which follow 

the nested structure of the program, e.g., an edge from 
<sequence> to <if> shows that <if> activity is nested 
within the <sequence> element. Output edges of <if> 
node are labeled "Yes" or "No", respectively. 

3. Define data edges (dashed lines in Fig. 3), which reflect 
dataflow dependencies between the activities, e.g., an 
edge from activity "rcv" to activity "src" shows that an 
output variable of "rcv" is used as input variable to "src".  

4. Convert "Yes" and "No" edges that output <if> activities 
into data edges (Fig. 3). 

5. Add data edges from <receive> activity, which is nested 
within a <sequence> element, to each subsequent activity 
of this <sequence> such that no paths from <receive> to 
this activity exists (there are no such items in Fig. 3).  
Data edges within a program dependence graph reflect 

the dataflow dependencies between activities, which 
determine values of the program variables. Data edges added 
in step 5 reflect the semantics of the process as a service, 
which starts after receiving an invocation message. The flow 
of control within a BPEL program complies with data edges 
of its program dependence graph.  

In the rest of this paper we adopt a definition that a 
transformation preserves the process behavior, if it keeps the 
set of messages sent by the process as well as the data values 
carried by these messages unchanged. Such a definition 
neglects the timing aspects of the process execution. This is 
justified, given that it does not change the business 
requirements. There are many delays in a SOA system and 
the correctness of software must not relay on a specific order 
of activities, unless they are explicitly synchronized.  

A transformation, which preserves the process behavior 
will be called safe. 

Definition (Safeness of a transformation) 
A transformation is safe, if the set of messages sent by 

the activities of a program remains unchanged and the flow 
of control within the transformed program complies with the 
direction of data edges within the program dependence graph 
of the reference process. □ 

The set of activities executed within a program may vary, 
depending on decisions made when passing through decision 
points of <if> activities. To fulfill the above definition, the 
set of messages must remain unchanged, for each particular 
combination of these decisions. 

A path composed of data edges in a program dependence 
graph reflects the data flow relationships between the 
activities, and implies that the result of the activity at the end 

of the path depends only on the preceding activities on this 
path. If the succession of activities executed within a 
program complies with the data edges, then the values of 
variables computed by the program remain the same, 
regardless of the ordering of other activities of this program.  

Safeness of a transformation guarantees that the 
transformation preserves the behavior of the transformed 
program as observed by other services in a SOA 
environment. Safeness is transitive and a sequence of safe 
transformations is also safe. Therefore, a process resulting 
from a series of safe transformations applied to a reference 
process preserves the behavior of the reference process. 

IV. CASE STUDY 
Consider a process of transferring funds between two 

different bank accounts, shown in Fig. 1, implemented by a 
BPEL process.  

The process body is a sequence of activities, which starts 
at <receive>. Then, it proceeds through a series of steps to 

<sequence> 
     <receive name="rcv" variable="transfer"/> 
     <assign name="src"> 
          <copy> <from variable="transfer" part="srcAccNo"/> 
          <to variable="source" part="account"/> </copy> 
          <copy> <from variable="transfer" part="srcAmount"/> 
          <to variable="source" part="amount"/> </copy> 
     </assign> 
     <assign name="dst"> 
          <copy> <from variable="transfer" part="dstAccNo"/> 
          <to variable="target" part="account"/> </copy> 
          <copy> <from variable="transfer" part="dstAmount"/> 
          <to variable="target" part="amount"/> </copy> 
     </assign> 
     <invoke name="verify" inputVariable="source" 
          outputVariable="fundsAvailable"/> 
     <if> <condition> $fundsAvailable.res </condition> 
          <empty name="empty"/> 
     <else> <sequence> 
          <assign name="fail"> 
               <copy> <from> 'lack of funds' </from> 
               <to variable="response" part="fault"/> </copy> 
          </assign> 
          <reply name="nak" variable="response"/> 
          <exit name="exit"/> 
     </sequence> </else> </if> 
     <invoke name="withdraw" inputVariable="source" 
               outputVariable="wResult"/> 
     <invoke name="deposit" inputVariable="target" 
               outputVariable="dResult"/> 
     <assign name="success"> 
          <copy> <from variable="wResult" part="res"/> 
          <to variable="result" part="withdraw"/> </copy> 
          <copy> <from variable="dResult" part="res"/> 
          <to variable="result" part="deposit"/> </copy> 
     </assign> 
     <reply name="ack" variable="result"/> 
</sequence> 

 
Figure 2. A skeleton of a BPEL program of a bank transfer (Fig. 1) 
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process the received bank transfer order and to invoke 
services offered by the banking systems to verify availability 
of funds at source account, to withdraw funds and to deposit 
the funds at the destination account. Finally, it ends after 
replying positively, if the transfer has successfully been 
done, or negatively, if the required amount of funds was not 
available at source. A skeleton of the simplified BPEL 
program of this process is shown in Fig. 2. 

PDG of this program is shown in Fig. 3. The first two 
<assign> activities process the contents of the received 
message in order to extract the source and destination 
account numbers and the amount of money to transfer. 
Therefore, there are data edges from "rcv" to "src" and to 
"dst" nodes in PDG. The next consecutive <invoke> activity 
uses the extracted source account number and the amount of 
money to invoke the verification service, and the response of 
the invocation is checked by <if> activity. Therefore, two 
data edges from src to verify and from verify to <if> exist in 
the graph. Similarly, the <invoke> activities named 
"withdraw" and "deposit" use the account numbers 
calculated by "src" and "dst", respectively. Two data edges 
from "withdraw" and "deposit" nodes to "success" node, and 
then an edge from "success" to "ack", reflect the path of 
preparing the acknowledgement message that is sent to the 
invoker when the transfer is finished. 

V. TRANSFORMATIONS 
The body of a BPEL process consists of simple activities, 

e.g., <assign>, which define elementary pieces of 
computation, and structured elements, e.g., <flow>, which is 
composed of other simple or structured activities. The 
behavior of the process results from the order of execution of 
activities, which stem from the type of structured elements 

and the positioning of activities within these elements. A 
transformation applies to a structured element and consists in 
replacing one element, e.g., <flow>, by another element, e.g., 
<sequence>, or in relocation of activities within the 
structured element. If the behavior of the transformed 
element before and after the transformation is the same, then 
the behavior of the process stands also unchanged. 

Several transformations have been defined. The basic 
ones: Simple and alternative displacement, parallelization 
and serialization of the process operations, and process 
partitioning are described in detail below. All the 
transformations are safe, according to definition of safeness 
given in Section III. As pointed out in Section III, a safe 
transformation does not change the behavior of a process, 
which is composed of stateless services. A problem may 
arise, if the services invoked by a process have an impact on 
the real world. If this is the case, a specific ordering of these 
services may be required. In our approach, a designer can 
express the necessary ordering conditions adding 
supplementary edges to the program dependence graph. 
Transformation 1: Simple displacement 

Consider a <sequence> element, which contains n 
arbitrary activities executed in a strictly sequential order. 
Transformation 1 moves a selected activity A from its 
original position i, into position j within the sequence. 
Theorem 1. Transformation 1 is safe, if no paths between 
activity A and the activities placed on positions i+1, … j in 
the sequence existed in the program dependence graph of the 
transformed program. 

<sequence> 

Proof: Assume that i < j (move forward). The 
transformation has no influence on activities placed on 
positions lower than i or higher than j. However, moving 
activity A from position i to j reverts the direction of the flow 
of control between A and the activities that are in-between. 
This could be dangerous if a data flow from A to those 
activities existed. However, if no data paths from A to the 
activities placed on positions i+1, … j existed in the program 
dependence graph, then no inconsistency between the control 
and data flow can exist. 

If j < i (move backward), the proof is analogous. The lack 
of data path guarantees lack of inconsistency between the 
data and control flows within the program. □ 
Transformation 2: Pre-embracing 

Consider a <sequence> element, which includes an <if> 
element preceded by an <assign> activity, among others. 
Branches of <if> element are <sequence> elements. 
Transformation 2 moves <assign> activity from its original 
position in the outer <sequence>, into the first position 
within one branch of <if> element. 
Theorem 2. Transformation 2 is safe, if neither a path from 
the moved <assign> to an activity placed in the other branch 
of <if>, nor a path from the moved <assign> to the activities 
positioned after <if> in the outer sequence, existed in the 
program dependence graph of the transformed program. 

Proof: The transformation has no influence on activities 
placed prior to <if> element in the outer <sequence>. 
Moving <assign> activity to one branch of <if> removes the 
flow of control from <assign> to activities in the other 
branch of <if> and – possibly – to activities placed after 

"dst" 

"withdraw" "ack" "deposit" "success" 

"empty" 

<sequence> 

"fail" "nak" 

"exit" 

"verify" 

"src" 

<if> 

"rcv" 

Y N

Figure 3. Program dependence graph of the bank transfer process 
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<if>. But according to the assumption of this theorem, there 
is no data flow between these activities. Therefore, no 
inconsistency between the control and data flow can exist.  □ 

<invoke name="xxx" (a)
     inputVariable="source"  outputVariable="target" 
/> 
 
<sequence> (b)
     <invoke name="xxx_i"  inputVariable="source"/> 
     <receive name="xxx_r"  variable="target"/> 
</sequence> 
 

Figure 4. Synchronous (a) and asynchronous service invocation (b) 

Transformation 3: Post-embracing 
Consider a <sequence> element, which includes an <if> 

activity followed by a number of another activities. Branches 
of <if> element are <sequence> elements, one of which 
contains <exit> activity. Transformation 3 moves the 
activities, which follow <if>, from its original position in the 
outer <sequence> into the end of the second <sequence> of 
<if> element. 
Theorem 3. Transformation 3 is safe. 

Proof: Activities, which are placed after an <if> element 
in the reference process, are executed only after the 
execution of <if> is finished. The existence of <exit> in one 
branch of <if> prevents execution of these activities when 
this branch is selected. The activities are executed only in 
case the other branch is selected. Therefore, neither the flow 
of control nor the flow of data is changed in the program, 
when the activities are moved to the other branch of <if>, 
i.e., the branch without <exit> activity.  □ 
Transformation 4: Parallelization 

Consider a <sequence> element, which contains n 
arbitrary activities executed in a strictly sequential order. 
Transformation 4 parallelizes the execution of activities by 
replacing <sequence> element by <flow> element composed 
of the same activities, which – according to the semantics of 
<flow> – are executed in parallel. 
Theorem 4. Transformation 4 is safe, if for each pair of 
activities Ai , Aj neither a path from Ai to Aj nor a path from Aj 
to Ai existed in the program dependence graph of the 
transformed program. 

Proof: The transformation changes the flow of control 
between the activities of the transformed element. The lack 
of data paths between these activities means that no 
inconsistency between the control and data flow can exist. □ 
Transformation 5: Serialization 

Consider a  <flow> element, which contains n arbitrary 
activities executed in parallel. Transformation 5 serializes the 
execution of activities by replacing <flow> element by 
<sequence> element, composed of the same activities, which 
are now executed sequentially. 
Theorem 5. Transformation 5 is safe. 

Proof: The proof is obvious. Parallel commands can be 
executed in any order, also sequentially. 
Transformation 6: Asynchronization 

Consider a two-way <invoke> activity, which sends a 
message to invoke an external service and then waits for a 
response (Fig. 4a). Transformation 6 replaces the two-way 
<invoke> activity with a sequence of a one-way <invoke> 
activity followed by a <receive> (Fig. 4b). This way, a 
synchronous invocation of a service is converted into an 
asynchronous one.  

Transformation 6 can be proved safe, if we add a data 
edge from <invoke> node to <receive> node in the program 
dependence graph of each program, which includes an 
asynchronous service invocation shown in Fig. 4b. 
Theorem 6. Transformation 6 is safe. 

Proof: The transformation has no influence on activities 
executed prior to <invoke> activity. Data edges from these 
activities to <invoke> remain unchanged. The transformation 
has no influence on activities executed after <invoke>, as 
well. Data edges to these activities from <invoke> are 
redirected to begin at node <receive>. Hence, there is a one-
to-one mapping between the sets of data paths, which exist in 
program dependence graph of a program before and after the 
transformation. Therefore, no inconsistency between the 
control and data flow can exist. 

Transformations 1 through 6 can be composed in any 
order, resulting in a complex transformation of the process 
structure. Transformations 7 and 8 play an auxiliary role and 
facilitate such a composition. These transformations are safe, 
because they do not change the order of execution of any 
activities within a BPEL program. □ 
Transformation 7: Sequential partitioning 

Transformation 7 divides a single <sequence> element 
into a nested structure of <sequence> elements (Fig. 5a). 
Transformation 8: Parallel partitioning 

Transformation 8 divides a single <flow> element into a 
nested structure of <flow> elements (Fig. 5b). 

<sequence> (a) <flow> (b)
     <sequence>      <flow> 
          <C1> </C1>           <C1> </C1> 
          ......           ...... 
          <Ck> </Ck>           <Ck> </Ck> 
     </sequence>      </flow> 
     <sequence>      <flow> 
          <Ck+1> </Ck+1>           <Ck+1> </Ck+1> 
          ......           ...... 
          <Cn> </Cn>           <Cn> </Cn> 
     </sequence>      </flow> 
</sequence> </flow> 

 
Figure 5. Sequential (a) and parallel (b) partitioning of commands

VI. CASE STUDY (CONTINUED) 
Consider BPEL program of a bank transfer process 

described in Section IV. The analysis of the program 
dependence graph in Fig. 3 reveals that no data flow path 
between activity named "dst" and the next two activities 
"src" and "verify" exists in the graph. Therefore, these 
activities can be executed in parallel. Similarly, there is no 
data flow path between two consecutive <invoke> activities 
"withdraw" and "deposit". These two activities can also be 
executed in parallel. 
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To perform these changes, we can partition the outer 
<sequence> element using transformation 6 three times, and 
then parallelize the program structure using transformation 4 
twice. A skeleton of the resulting BPEL program is shown in 
Fig. 6. Only names of the activities are shown in Fig. 6. The 
variables used by the activities are omitted for brevity. 

However, this is not the only way of transformation. 
Alternatively, the designer can displace "dst" forward, just 
before <if> activity, and then use transformation 2 in order to 
enter "dst" to the inside of <if> in place of <empty> activity. 
Next, transformation 3 can be used to embrace the last three 
activities of the outer <sequence> element into the first 
branch of <if> element, consecutively following "dst". Then, 
the designer can move "dst" forward, adjacent to "deposit", 
partition the inner sequence of <if> using transformation 6, 
and parallelize the program structure using transformation 4. 
A skeleton of the resulting BPEL program is shown in Fig. 7. 
We removed "exit" activity from the final program, because 
it is obviously redundant at the end of the program.  

The main advantage of the transformed process over the 
original one is higher level of parallelism, which can lead to 
better performance of the program execution. If we compare 
the two alternative designs, then intuition suggests that the 
structure of the second process is better than of the first one. 
In order to verify this impression, the reference process and 
the transformed processes can be compared to each other, 
with respect to a set of quality metrics. Depending on the 
results, the design phase can stop, or a selected candidate (a 
transformed process) can be substituted as the reference 
process for the next iteration of the design phase. 

<sequence> 
    <receive name="rcv"> - receive order 
    <assign name="src"> - extract source no
    <invoke name="verify"> - verify funds 
    <if> 
          <condition> ... </condition> - check availability
          <sequence> 
               <flow> 
                    <invoke name="withdraw"> - withdraw funds 
                    <sequence> 
                        <assign name="dst"> - extract dst. no 
                        <invoke name="deposit"> - deposit funds 
                    </sequence> 
               </flow> 
                    <assign name="success"> 
                    <reply name="ack"> - reply positively 
          </sequence> 
          <else> <sequence> 
               <assign name="fail"> - set response 
               <reply name="nak"> - reply negatively 
          </sequence> </else> 
    </if> 
</sequence> 

 
Figure 7. A skeleton of the transformed bank transfer process – variant II 

<sequence> 
     <receive name="rcv"> - receive transfer order 
     <flow> 
          <assign name="dst"> - extract destination no 
          <sequence> 
               <assign name="src"> - extract source no 
               <invoke name="verify"> - verify funds at source 
          </sequence> 
     </flow> 
     <if> 
          <condition> ... </condition> - check availability 
               <empty name="empty"> - do nothing if available
          <else> <sequence> 
               <assign name="fail"> - set response 
               <reply name="nak"> - reply negatively 
               <exit name="exit"> - end of execution 
          </sequence> </else> 
     </if> 
     <flow> 
          <invoke name="withdraw"> - withdraw funds 
          <invoke name="deposit"> - deposit funds  
     </flow> 
     <assign name="success"> 
     <reply name="ack"> - reply positively 
</sequence> 
 
Figure 6. A skeleton of the transformed bank transfer process – variant I 

VII. QUALITY METRICS 
Many metrics to measure various characteristics of 

software have been proposed in literature [16,17]. In this 
research we use simple metrics that characterize the size of a 
BPEL process, the complexity and the degree of parallel 
execution. The value of each metric can be calculated using a 
program dependence graph. 

The size of a process is measured as the number of 
simple activities in a BPEL program. More precisely, the 
value of this metric equals the number of leaf nodes in the 
program dependence graph of a BPEL process. For example, 
the size of the processes shown in Fig. 2 and 6 is 12, while 
the size of the process in Fig. 7 equals 10. 

Leaf nodes are simple activities, which perform the 
processing of data. Therefore, the value of the process size 
metric could be considered a measure of the amount of work, 
which can be provided by the process. However, smaller 
number of this metric may result from removing excessive, 
unstructured activities, like <empty> and <exit>. This is the 
case of program in Fig. 7. 

The complexity of a process is measured as the total 
number of nodes in PDG. For example, size of the process 
structure of the program shown in Fig. 2 is 15, size of the 
process structure of the program in Fig. 6 is 18, and size of 
the process structure of the program in Fig. 7 is 16. 

The number of nodes in PDG, compared to the size of the 
process, describes the amount of excess in the graph, which 
can be considered a measure of the process complexity.  

The number of threads is measured as the number of 
items within <flow> elements of a BPEL program, at all 
levels of nesting. A problem with this metric is such that the 
number of executed items can vary, depending on values of 
conditions within <if> elements. Therefore, the metric is a 
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TABLE I.  NUMBER OF THREADS METRIC 

if - 
condition 

Process in 
Fig. 2 

Process in 
Fig. 6 

Process in 
Fig. 7 

YES 1 2 2 
NO 1 2 1 

vector of values, computed for all combinations of values of 
these conditions. The algorithm of computation assigns 
weights to nodes of the program dependence graph of the 
process, starting from the leaves up to the root, according to 
the following rules: 

• the weight of a simple BPEL activity is 1, 
• the weight of a <flow> element is the sum of 

weights assigned to the descending nodes (i.e., nodes 
directly nested within the <flow> element), 

• the weight of a <sequence> element is the maximum 
of weights assigned to the descending nodes (i.e., 
nodes directly nested within the <sequence> 
element), 

• the weight of an <if> element is the weight assigned 
to the activity in this branch of <if>, which is 
executed according to a given value of condition 
within the <if> element. 

The number of executed items can be influenced also by 
the presence of <exit> activity, which ends the process 
execution. Therefore, the nodes directly nested within a 
<sequence> element are ordered in compliance with the 
order of execution. Nodes subsequent to a node, which is, or 
which comprises, <exit> activity, are not taken into account 
in the computation. 

The metric value equals the weight assigned to the top 
<sequence> node of PDG. Values of the metric for the 
processes in Fig. 2, 6 and 7 are shown in Table I. Program 
dependence graph and calculation of the metric for the 
program in Fig. 6 is shown in Fig. 8 (grey numbers right to 
the nodes). 

The length of thread is measured as the number of 
sequentially executed activities within a BPEL program. 
Because the number of executed items can vary, depending 
on values of conditions within <if> elements, the metric is a 
vector of values, computed for all combinations of values of 
these conditions. The algorithm of computation assigns 
weights to nodes of the program dependence graph of the 
process, starting from the leaves up to the root, according to 
the following rules: 

• the weight of a simple BPEL activity is 1, 
• the weight of a <flow> element is the maximum of 

weights assigned to the descending nodes (i.e., nodes 
directly nested within the <flow> element), 

• the weight of a <sequence> element is the sum of 
weights assigned to the descending nodes (i.e., nodes 
directly nested within the <sequence> element), 

• the weight of an <if> element is the weight assigned 
to the activity in this branch of <if>, which is 
executed according to a given value of condition 
within the <if> element. 

Nodes directly nested within a <sequence> element are 
ordered in compliance with the order of execution. Nodes 
subsequent to a node, which is, or which comprises, <exit> 
activity, are not taken into account in the computation. 

The metric value equals the weight assigned to the top 
<sequence> node of PDG. Values of the metric for the 
processes in Fig. 2, 6 and 7 are shown in Table II.  

The response time is measured as the sum of estimated 
execution times of activities, which are sequentially executed 
within a BPEL program. Because the number of executed 
items can vary, depending on values of conditions within 
<if> elements, the metric is a vector of values, computed for 
all combinations of values of these conditions The algorithm 
of computation is identical to the algorithm of computation 
of the length of thread metric, except of the first point, which 
now reads: 

• the weight of a simple activity is the estimated 
execution time of this activity, 

In the simplest case, the estimated execution time can 
just differentiate between local data manipulation activity 

TABLE II.  LENGTH OF THREAD METRIC 

if - 
condition 

Process in 
Fig. 2 

Process in 
Fig. 6 

Process in 
Fig. 7 

YES 9 7 7 
NO 7 6 5 

TABLE III.  RESPONSE TIME METRIC 

if - 
condition 

Process in 
Fig. 2 

Process in 
Fig. 6 

Process in 
Fig. 7 

YES 36 25 25 
NO 16 15 14 

verify 

dst 

<if> 

<sequence> 

withdraw 

deposit ack 

nak 

Y 
N

<sequence> 
Y: 25 / N: 14 Y: 2 / N: 1

src 

<sequence> 

<flow> 

1 1 1 10 1 1 

1 10

11

10

11

1 

13

1 

1 

2 

1 

1 1 1 

1 

2 

2 

1 

1 

1 

success 
1 

rcv 

fail 

<sequence> 

1 

Figure 8. Program dependence graph of the program in Fig. 6 and 
calculation of metrics: Number of threads (grey numbers right to the 

nodes) and length of execution (left to the nodes)
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and a service invocation. Values of the metric for the 
processes in Fig. 2, 6 and 7, calculated under an assumption 
that a local data manipulation time equals 1, while a service 
execution time equals 10, are shown in Table III. Program 
dependence graph and calculation of the metric for the 
program in Fig. 7 is shown in Fig. 8 (numbers left to the 
nodes). 

Comparing the values of metrics calculated for the 
processes considered in the case study in Sections IV and VI, 
one can note that both transformed processes are faster than 
the original reference process (smaller value of the response 
time metric). Speeding up the process execution is a benefit 
from parallel invocation of services in a SOA environment. 
Comparing the variants of the transformed bank transfer 
process (Fig. 6 and Fig. 7), one can note that the second 
variant is a bit faster and simpler (smaller values of the size 
metrics). This variant can be accepted by the customer or 
used as a new reference process in the next transformation 
cycle. 

VIII. CONCLUSION AND FUTURE WORK 
Defining the behavior of a business process is a business 

decision. Defining the implementation of a business process 
on a computer system is a technical decision. The 
transformational method for implementing business 
processes in a service oriented architecture, described in this 
paper, promotes separation of concerns and allows making 
business decisions by business people and technical 
decisions by technical people.  

The transformations described in this paper are correct by 
construction in that they do not change the behavior of a 
transformed process. However, the transformations change 
the process structure in order to improve efficiency and 
benefit from the parallel execution of services in a SOA 
environment. The quality characteristics of the process 
implementation are measured by means of quality metrics, 
which account for the process size, complexity and the 
response time of the process as a service. Other quality 
features, such as modifiability or reliability, are not covered 
in this paper. 

The correct-by-construction approach is appealing for the 
implementation designer because it can open the way 
towards automatic process optimization. However, the 
approach has also some practical limitations. If the external 
services invoked by a process have an impact on the real 
world, as is usually the case, a specific ordering of these 
services may be required, regardless of the dataflow 
dependencies between the service invocation activities 
within a program. In our approach, a designer can express 
the necessary ordering conditions adding supplementary 
edges to the program dependence graph. Therefore, the 
approach cannot be fully automated and a manual 
supervision over the transformation process is needed.  

It is also possible that small changes to a process 
behavior can be acceptable within the application context. 
Therefore, part of our research is aimed at finding a 
verification method, capable not only of verifying the 

process behavior, but also of showing the designer all the 
potential changes, if they exist. The results of this research 
are not covered in this paper. 
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