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Abstract—This paper proposes the use of the control-state
Abstract State Machines for a rigorous foundation in high-
level modeling and validating component-based applications
in Vision-Based Robotics. In particular, an extension of the
classical flowchart notation for control-state ASMs is proposed
to support modularization and reuse in a direct way. The
resulting ASM models are to be intended as “ground models”
that can be used as basis or patterns to practically model
and formally validate the behavior of typical robotic control
tasks, and to link (via successive refinements) these high-level
models of components to their implementation code by making
their functional correctness mathematically controllable. The
proposed flowchart extension and the availability of reusable
and validated ground models allow a better system design and
speed up the development of the system.

Keywords-components; abstract state machines; ground mod-
eling; robotic control tasks.

I. INTRODUCTION

Vision-based robotics is a challenging research field [1].
One of the open and commonly stated problems in the
field is the need for exchange of experiences, best practices,
and high-level models of robust, reliable and flexible robot
control applications with visual servoing functions.

Recently, we investigated [2] the use of the Abstract State
Machine (ASM) formal method [3] for a systematic study
and a rigorous foundation of modeling and validating Visual
Servoing (VS) applications. The ASM method is a discipline
for reliable system development, which allows to bridge the
gap between informal requirements and executable code.
The ASM formalism supports concurrency, heterogeneous
state and modularity (compositional design and verification
techniques). These features are essential to tailor ground
models of control tasks definitions and associated syn-
chronization/communication patterns of VS applications in
rigorous, compositional and abstract terms. Ground models
are blueprints of the to-be-implemented piece of “real world”
that “ground the design in the reality” [4]. In particular, we
exploit the notion of control state ASMs (a class of ASMs
[3]) as a natural extension of Finite State Machines.

In this paper, we present an extension – called pattern-
oriented control-state ASMs – of the classical flowchart
notation for control-state ASMs to support modularization
and reuse in a direct way. The proposed notation is useful
to denote explicitly modeling elements to be further refined,

to allow the definition/instantiation of recurring design so-
lutions or patterns, to perform initial validation of separate
high-level models and to improve model traceability between
the flowchart diagrams and their concrete (textual) ASM
specifications during the ground modeling and development
process. In this context, the term “pattern” is to be intended
to have its classical meaning, i.e., as a schema of a recurring
solution, rather than the meaning of “design pattern” as in
the book of the GoF (Gang of Four).

We here repeat our previous experience in the embedded
system-on-a-chip domain [5][6] to shift the focus from
implementation to design through high-level modeling. Our
approach combines the expressive power and accuracy of
control state ASMs with the intuition provided by visual
flowchart descriptions to capture the behavioral view of
task-level control of VS applications. As starting point, we
manually extracted from the structure of existing (basically
C/C++) code architectural descriptions (in terms of UML
component diagrams) of high-level models of component
control tasks and also recurring synchronization/communica-
tion patterns between tasks that could be used for the ground
modeling and analysis in ASM. We then defined these ASM
abstract models using the pattern-oriented control-state ASM
notation, transformed such models into executable ASM
models using the notation ASMETA/AsmetaL [7][8], and
then validated them through basic formal analysis techniques
(simulation and scenario-based simulation) [9]. The resulting
and validated ASM models are used as basis or patterns
for high-level modeling and validating typical control tasks
of VS applications in a formal way, thus leading from the
abstract models to executable (C/C++) code by making their
functional correctness mathematically controllable.

This paper focuses on presenting the extended control-
state ASM notation and it is organized as follows. Section
II introduces the reader to the field of vision guided robotics
by illustrating the synchronization/communication issues at
control task-level covered in the paper. Section III provides
background notions on the ASMs. Section IV presents the
pattern-oriented control-state ASMs. Section V presents the
ASM ground modeling of some control tasks synchroniza-
tion/communication patterns and, as major case study, their
instantiation to model a VS application. Section VI provides
some details on implementation issues. Section VII presents
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some related works. Finally, Section VIII concludes the
paper and sketches future directions.

II. APPLICATION DOMAIN

This section discusses about modeling issues in visual
assisted robotic control architectures, with emphasis on
synchronization/communication of control tasks.

Robot control applications with VS features: The main
task of a robot automatic control system is to drive robot
actuators (typically electrical motors) in order to follow a
trajectory passed to the controller by higher level applica-
tions of the control architecture, such as motion planners,
production cell controllers, visual systems, etc.
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Figure 1. A Robot controller architecture.

The UML component diagram in Figure 1 shows a typical
architecture of a robot control application. A robot controller
sends set-point values to a motor controller. The encoder
controller acquires data from encoders in order to send them
to both the robot controller and the motor controller. This
last task has to read also the data (motors set-point) produced
by the robot controller in order to drive motors. The motor
and the encoder controllers communicate directly with their
respective devices through physical interconnections. This
control scheme presents non-trivial issues related to the
timing and the synchronization of the involved controllers
since all the tasks have to exchange data periodically.

The need for strict periodic tasks makes it necessary to
encapsulate the communication functionality in a separate
component, the communication channel, thus decoupling
the producer (or sender) from the consumer (or receiver).
A communication channel can be implemented on top of
several protocols. For data exchange among tasks, real-time
programming guides (e.g., [10]) typically suggest the use of
a shared memory (e.g., a FIFO, a ring buffer, a stack, etc.) in
order to ensure lower memory usage and better performance.
In this work, we will focus on the use of the Swinging Buffer
[10] (described below) as shared memory.

A robot builds a representation of the surrounding en-
vironment by acquiring data from several sensors. Visual
servoing [1] is a technique that uses feedback information
extracted from a vision sensor to control the motion of a
robot. A closed-loop control of a vision-based robotic system
usually consists of two intertwined processes: tracking and
control. This architecture (see Figure 2) performs the control
of the robot in two separate stages: first, the vision system
provides input to the robot controller by acquiring and
elaborating images; then, the robot controller uses joint

feedback to internally stabilize the robot. Optionally, set-
point computation can require the acquisition of robot data
via another communication channel.
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Figure 2. A Visual Servoing Robot architecture.

Using parallelism can improve the performance of the
system, but it introduces new non-trivial issues due to VS
functions. First, the visual servoing task can be exploited
only at the presence of an image, so it is the only non-
periodic (asynchronous) task in the control scheme. Second,
the time required for elaboration is not constant because
computer vision algorithms efficiency is strongly affected
by aspects like quality of images, complexity of the envi-
ronment and so on. Finally, the visual servoing task is both
a producer and a consumer because it requires images from
camera for its elaboration and then needs to transmit the
set-point information to the robot.

Synchronization and Communication issues: Basically,
control tasks can be classified in asynchronous and syn-
chronous. Asynchronous tasks are data-driven, because their
elaboration starts when there are data to be consumed and
ends with data transfer. Synchronous tasks are, instead, time-
driven, as they are periodic and have deadlines to respect.
Figure 3 summarizes the possible communication types that
we cover in our work, as collected from visual servoing
and robot control applications (such as pick and place,
object tracking and micro-assembly). The analyzed solutions
involve the use of swinging buffers for the communication
between tasks operating at different frequencies. A swinging
buffer can be viewed as an advanced circular buffer using
two or more shared memory arrays instead of the single
array adopted by a circular buffer. While the producer task
fills up one of the buffers, the consumer empties another one.
When a task reaches the end of the buffer that it is using, it
starts operating from the beginning of another unused array.
Since tasks works on different memory locations, no lock
for the mutual exclusion is needed to access to the data on
the buffer, but only for updating the read/write indexes.
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Figure 3. Task communication types.
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III. BACKGROUND ON ASMS

ASMs are an extension of Finite State Machines (FSMs)
[3] where unstructured control states are replaced by states
of arbitrary complex data. The states of an ASM are multi-
sorted first-order structures, i.e., domains of objects with
functions and predicates (boolean functions) defined on
them. The transition relation is specified by named rules
describing how functions change from one state to the next.
A transition rule has the basic form of guarded update
“if Condition then Updates” where Updates is a set of
function updates of the form f(t1, . . . , tn) := t, which
are simultaneously executed when Condition is true. f is
an arbitrary n-ary function and t1, . . . , tn, t are first-order
terms. Essentially, to fire this rule in a state Si, i ≥ 0,
evaluate all terms t1, . . . , tn, t at Si and update f to t
on parameters t1, . . . , tn. This produces another state Si+1,
which differs from Si only in the new interpretation of f .
A set of rule constructors allows to express simultaneous
parallel actions (par), sequential actions (seq), iterations
(iterate, while, recwhile), and submachine invoca-
tions returning values. Non-determinism (existential quan-
tification choose) and unrestricted synchronous parallelism
(universal quantification forall) are also supported.

Control-state ASMs are a class of ASMs used to model
some overall status or mode, guiding the execution of
guarded synchronous parallel updates of the underlying
state. Figure 4 (slightly adapted from [3]) shows on the
left the conventional flowchart notation that include three
basic symbols. It also shows on the right the corresponding
ASM rule scheme (in textual notation) for control state
ASMs. Circles denote phases (also called control states or
internal states), hexagons (optional) denote test predicates
(also called conditions or guards), and rectangles denote
update actions (i.e., application of ASM rules, including
rule invocations of submachines) and are also optional. The
finitely many control states ctl state ∈ {1 . . .m} are used
to describe different system modes.

IV. PATTERN-ORIENTED CONTROL STATE ASMS

We extended the flowchart notation of control state ASMs
to better enhance some aspects and to capture new ones.
Precisely, we defined a pattern-oriented extension of the
classical flowchart notation for control state ASMs to denote
explicitly parts of the models that have to be further refined,
to denote the definition/instantiation of a pattern, and to
improve model traceability by allocation links between the
flowchart diagrams and their concrete implementations (i.e.,
the ASM specifications) in the textual language AsmetaL.

Revised symbols. We adopt (see Figure 5) dashed lines
for guards and actions to indicate that these elements require
further refinement, i.e., the test predicate for the guard and
the rule for the action. For example, an action can be
refined by introducing other action-state-condition blocks
to model the intended activity. The optional text {text}

Figure 4. Control state ASMs.

Figure 5. Extended control state ASM notation.

near a graphical symbol is used to link diagrams to their
concrete ASM specification spec (in our case, AsmetaL
specification). Specifically: for a state symbol it denotes
the function name in the spec representing the underlying
control state variable; for a guard symbol it denotes the test
predicate name in the spec; for an action symbol it denotes
the rule name in the spec implementing it.

Pattern machines. For modularization and reuse pur-
poses, we introduce two new symbols (see Figure 6) denot-
ing the concepts of pattern (pattern definition) and of pattern
instantiation blocks, respectively. A pattern block is to be
intended as a placeholder for a recurrent and complex action
block, also referred to us as pattern machine. Figure 6 shows
the shape of such a pattern machine that includes an entering
arrow followed by (at least) an action-state-condition block
closed with a floating exit arrow. A pattern machine con-
sisting of an action block only is also admitted. The circles
represent the internal states of the pattern machine and it
usually requires a fresh control state variable ctl_state.
It is a piece of reusable ASM model that can be validated
and verified separately and then re-used in more complex
ASM specifications. The entering arrow denotes always the
evaluation of the guard isUndef(_ctl_state) that is
the mandatory condition that enables the execution of the
pattern machine. The floating exit arrow denotes the exit
point and implies always the mandatory update ctl_state
:= undef.

A pattern machine is then specified in terms of a named
rule and this rule will occur as subrule of the containing
machine. Moreover, we assume that (otherwise specified) the
pattern machine is composed with the other occurring rules
(action blocks), if any, of the containing machine according

Figure 6. Pattern notation.
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to the synchronous parallelism semantics of the par-rule.
The rule name of the pattern machine can be specified (see
Figure 6) near the pattern instantiation symbol.

V. GROUND MODELING ROBOT CONTROL TASKS

We use pattern-oriented control state ASMs for specifying
ground models of robot control tasks.

A. Producer/Consumer models

Figure 7 shows the control state ASM of a simple data
producer module. It contains a pattern machine for the writ-
ing operation on the swinging buffer, presented in Section
V-B. The first action of a producer task is to wait for a
trigger in order to start to acquire and elaborate data; lastly,
data elaborated have to be written in a shared memory (in
our case, a swinging buffer). This machine has blocks to be
refined, because their specific behavior depends on the tasks
nature: tasks can be asynchronous or synchronous, and in
turn master or slave. Listing 1 reports, using the AsmetaL
notation, a possible definition of the test predicates for the
events Trigger and Elaboration Time Elapsed (their names
are also denoted in the diagrams). The event Trigger may
require further refinement. The listing reports a possible
definition of this test predicate (in a particular phase of the
specification development process) that captures two cases:
it is the boolean OR of “waiting for a period of time” for a
synchronous periodic task, and of an “always-true” condition
for an asynchronous task. Both the test predicates take as
parameter the scheduler c, since in our applications each
component is associated to and managed by a scheduler. The
current task scheduled on c is represented by the function
scheduler_MainThread(c).

The data consumer model is straightforward.

Figure 7. Data Producer.

Listing 1. Producer/consumer test predicates.
function trigger($c in Scheduler) = (task_kind(

scheduler_mainThread($c)) = SYNCHRONOUS and
task_elapsedTimeOfPeriod(scheduler_mainThread($c)) >
time(scheduler_currentPhase($c)))
or task_kind(scheduler_mainThread($c)) =

ASYNCHRONOUS

function tElapsed($c in Scheduler) =
scheduler_currentScheduleTime($c) > time(

scheduler_currentPhase($c))

B. Swinging Buffer reading/writing models

The swinging buffer introduces the concept of multiple
shared memory areas. Hence, the producer and consumer
tasks do not share a memory, but only the read/write pointers
to different memory areas. To avoid overwriting problems,
only one task, the master task (either the producer or the
consumer), can manage the indexes update, while the other
tasks, the slaves, behave just classical producers/consumers.
However, in real-time tasks, also the nature of the communi-
cating tasks and their frequency must be considered. In the
case of two asynchronous communicating tasks, a producer
and a consumer, the master task can be either the producer or
the consumer. In the case of two synchronous tasks, instead,
a common practice is to set the slower task as the master
one. In fact, as there is not a single shared memory area,
the master task has to get the lock only when it has to
update its data pointers. Moreover, during its elaboration,
it does not need to get the lock because, as the slave
tasks do not manage indexes, there is no possibility of an
inconsistent update. Finally, in the case of a synchronous-to-
asynchronous communication, the asynchronous task is the
master slave because it does not carry out data elaboration
periodically, but only when new data are available.

This behavioral variability is captured by the ASM pattern
machines for reading/writing from/to swinging buffer shown
in the Figures 8, 9 and 10. In particular, as an example,
Listing 2 for an Asynchronous-Master-Writing operation (see
Figure 8-b) reports the corresponding ASM specification
using the AsmetaL notation. The AsmetaL implementation
of the other pattern machines can be found in [11].

(a) Reading.

(b) Writing.

Figure 8. Swinging Buffer - Asynchr. Master Read/Write.

The Asynchronous-Master-Writing operation (see Figure
8-b) implies first to write data on the shared memory
directly (state Writing), without acquiring the lock for the
critical section. When the writing operation is terminated
(after a certain period of time has passed), the swinging
buffer pointers have to be updated in order to signal to the
consumer that new data are ready. In the next state Managing
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Swinging Buffer, the asynchronous task tries (by the iterative
flowchart part) to get the lock to the critical section for
updating the pointers by executing the action MANAGE
SWINGING BUFFER. After the pointers are updated, the
control exits by releasing the lock (RELEASE SWINGING
BUFFER). As an example, Listing 3 reports the definition of
the rule MANAGE SWINGING BUFFER using the AsmetaL
notation; note again that this rule captures the behavior
of both master and slave tasks by distinguishing clearly
these roles, since it is reused also as action in the other
pattern machines. The AsmetaL implementation for the other
actions and test predicates can be found in [11].

The Asynchronous-Master-Reading pattern (see Figure 8-
a) is similar to the writing one, despite of action order. In
fact, in this case the Managing Swinging Buffer action has
to be performed before reading.

Listing 2. Asynchronous-Master-Writing pattern machine.
rule r_async_master_writing ($c in Scheduler) =
par

//Entering into the pattern machine
if (isUndef (sb_ctrlState(scheduler_currentPhase($c))))
then par

r_write [$c, scheduler_currentPhase($c)]
sb_ctrlState(scheduler_currentPhase($c)):= WRITING

endpar
if (sb_ctrlState(scheduler_currentPhase($c)) = WRITING)
then if (tElapsed ( $c))

then par
r_manageSb [$c, scheduler_currentPhase($c)]
sb_ctrlState(scheduler_currentPhase($c)):=

MANAGING_SB
endpar

if (sb_ctrlState(scheduler_currentPhase($c)) =
MANAGING_SB) then
if (swingingBufferManaged($c)) then //Index updated

par
r_releaseSb[$c]
// Exit from pattern machine
sb_ctrlState(scheduler_currentPhase($c)):=

undef
endpar

else //Index not updated
par //Try again to acquire the lock
r_manageSb [$c, scheduler_currentPhase($c)]
sb_ctrlState(scheduler_currentPhase($c)):=

MANAGING_SB
endpar

endpar

For the reading/writing operations of synchronous master
tasks (see Figure 9), the transition for managing the swinging
buffer indexes is slightly modified: if the lock has not
been acquired, a further guard watchdog Time elapsed is
evaluated: if false (there is no time), the task skips the index
update phase and exits. Finally, for synchronous slave tasks
(see Figure 10 for the reading operation) if the lock cannot
be acquired, the task simply skips the reading/writing action.
The writing operation is fully similar.

Listing 3. The MANAGE SWINGING BUFFER rule.
rule r_manageSb($c in Scheduler, $phase in SchedulePhase)=
par

if (syncPriority($phase) = MASTER)
then seq

r_SwingingBuffer_getLock [sharedMemory($phase)
, scheduler_mainThread($c)]

r_SwingingBuffer_updateIndexes [sharedMemory(
$phase) , scheduler_mainThread($c)]

endseq
if (syncPriority($phase) = SLAVE) then

r_SwingingBuffer_getLock [sharedMemory($phase)
, scheduler_mainThread($c)]

endpar
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Figure 9. Swinging Buffer - Synchr. Master Read/Write.
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Figure 10. Swinging Buffer - Synchronous Slave Read.

C. Major case study: A VS application model

Let us consider the VS application case study described
in Section II. Figure 11 shows the ASM control state for the
visual servoing component shown in Figure 2. It elaborates
images in order to produce the commands to send to the
robot controller component. So, it is an asynchronous task
because it can elaborate images only when they are available.
Note that it plays the role of both an asynchronous pro-
ducer and an asynchronous consumer: it is an asynchronous
consumer of images coming from the synchronous camera
controller component and a producer for the synchronous
robot controller. It communicates with two synchronous
tasks through two swinging buffers and, being asynchronous,
it is the master.

The AsmetaL implementation of this major case study can
be found at [11].

VI. TOOL-SUPPORT AND TARGET IMPLEMENTATION

We adopt the ASM modeling and analysis toolset AS-
META [7], based on the Eclipse EMF. A graphical editor
for the flowchart extension presented in this paper is being
developed. For the execution of ASM models written in
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Figure 11. Visual Servoing component.

AsmetaL we use the ASM simulator AsmetaS. We also
exploit the tool AsmetaV to run execution scenarios and
report any violation of the expected behavior.

As target implementation platform, we have been working
on generating automatically C/C++ code from the ASM
models through a mapping towards common used VS li-
braries, including: Posix Threads library, dc1394 library for
managing the communication from/to a firewire (IEEE1394)
[13] camera, and OpenCv for image elaboration.

VII. RELATED WORK

The use of formal methods to describe the underlying
data exchange mechanisms in distributed control systems
is not a common practice. Within the ASM community,
some few works exist related to the ASM modeling of
multi-process synchronization problems and of inter-process
communication problems [14][15][16]. We took inspiration
from all of them. In particular, to compile ASMs into C/C++
code, we have been repeating the previous experience in the
FALKO project (a tool for railway simulation) [12].

The work in [17] reports on the development of AsmL
(an ASM notation from Microsoft Research) specifications
of Synchronous Dataflow domain schedulers of Ptolemy II
– simulation and code generation framework for heteroge-
neous, concurrent, real-time embedded systems [18]. Their
goal is to give a precise semantics to the implementation.
The use of the ASMs to design and verify low level
communication and data exchange mechanisms, however,
seems lacking.

VIII. CONCLUSION AND FUTURE WORK

We proposed an ASM-based easy and scalable approach
to design reliable and reusable ground models of control
tasks and communication/synchronization mechanisms in
VS robotic applications. The proposed flowchart extension
for control-state ASMS and the availability of such reusable
and validated ground models allow a major comprehension
of the system design (even to non ASM experts) and speed
up the development itself. Though our work is targeted to the
VS domain, we believe the approach can be easily extended
to a wide range of real-time applications.

As future work, we aim at defining an ASM model library
for VS applications and using complex analysis tools in the
ASMETA toolset for formal verification.
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